8fb3cc604841dc68225443ad67f4baccdba809b7
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSh_VdwNone_GeomW4P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_avx_128_fma_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset1;
70     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
71     int              vdwioffset2;
72     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
73     int              vdwioffset3;
74     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     __m128i          ewitab;
83     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
84     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
85     real             *ewtab;
86     __m128           dummy_mask,cutoff_mask;
87     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
88     __m128           one     = _mm_set1_ps(1.0);
89     __m128           two     = _mm_set1_ps(2.0);
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     facel            = _mm_set1_ps(fr->epsfac);
102     charge           = mdatoms->chargeA;
103
104     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
105     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
106     beta2            = _mm_mul_ps(beta,beta);
107     beta3            = _mm_mul_ps(beta,beta2);
108     ewtab            = fr->ic->tabq_coul_FDV0;
109     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
110     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
111
112     /* Setup water-specific parameters */
113     inr              = nlist->iinr[0];
114     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
115     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
116     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
117
118     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
119     rcutoff_scalar   = fr->rcoulomb;
120     rcutoff          = _mm_set1_ps(rcutoff_scalar);
121     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = jnrC = jnrD = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127     j_coord_offsetC = 0;
128     j_coord_offsetD = 0;
129
130     outeriter        = 0;
131     inneriter        = 0;
132
133     for(iidx=0;iidx<4*DIM;iidx++)
134     {
135         scratch[iidx] = 0.0;
136     }
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
154                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
155
156         fix1             = _mm_setzero_ps();
157         fiy1             = _mm_setzero_ps();
158         fiz1             = _mm_setzero_ps();
159         fix2             = _mm_setzero_ps();
160         fiy2             = _mm_setzero_ps();
161         fiz2             = _mm_setzero_ps();
162         fix3             = _mm_setzero_ps();
163         fiy3             = _mm_setzero_ps();
164         fiz3             = _mm_setzero_ps();
165
166         /* Reset potential sums */
167         velecsum         = _mm_setzero_ps();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             jnrC             = jjnr[jidx+2];
177             jnrD             = jjnr[jidx+3];
178             j_coord_offsetA  = DIM*jnrA;
179             j_coord_offsetB  = DIM*jnrB;
180             j_coord_offsetC  = DIM*jnrC;
181             j_coord_offsetD  = DIM*jnrD;
182
183             /* load j atom coordinates */
184             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
185                                               x+j_coord_offsetC,x+j_coord_offsetD,
186                                               &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx10             = _mm_sub_ps(ix1,jx0);
190             dy10             = _mm_sub_ps(iy1,jy0);
191             dz10             = _mm_sub_ps(iz1,jz0);
192             dx20             = _mm_sub_ps(ix2,jx0);
193             dy20             = _mm_sub_ps(iy2,jy0);
194             dz20             = _mm_sub_ps(iz2,jz0);
195             dx30             = _mm_sub_ps(ix3,jx0);
196             dy30             = _mm_sub_ps(iy3,jy0);
197             dz30             = _mm_sub_ps(iz3,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
201             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
202             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
203
204             rinv10           = gmx_mm_invsqrt_ps(rsq10);
205             rinv20           = gmx_mm_invsqrt_ps(rsq20);
206             rinv30           = gmx_mm_invsqrt_ps(rsq30);
207
208             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
209             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
210             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
211
212             /* Load parameters for j particles */
213             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
214                                                               charge+jnrC+0,charge+jnrD+0);
215
216             fjx0             = _mm_setzero_ps();
217             fjy0             = _mm_setzero_ps();
218             fjz0             = _mm_setzero_ps();
219
220             /**************************
221              * CALCULATE INTERACTIONS *
222              **************************/
223
224             if (gmx_mm_any_lt(rsq10,rcutoff2))
225             {
226
227             r10              = _mm_mul_ps(rsq10,rinv10);
228
229             /* Compute parameters for interactions between i and j atoms */
230             qq10             = _mm_mul_ps(iq1,jq0);
231
232             /* EWALD ELECTROSTATICS */
233
234             /* Analytical PME correction */
235             zeta2            = _mm_mul_ps(beta2,rsq10);
236             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
237             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
238             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
239             felec            = _mm_mul_ps(qq10,felec);
240             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
241             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv10,sh_ewald));
242             velec            = _mm_mul_ps(qq10,velec);
243
244             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
245
246             /* Update potential sum for this i atom from the interaction with this j atom. */
247             velec            = _mm_and_ps(velec,cutoff_mask);
248             velecsum         = _mm_add_ps(velecsum,velec);
249
250             fscal            = felec;
251
252             fscal            = _mm_and_ps(fscal,cutoff_mask);
253
254              /* Update vectorial force */
255             fix1             = _mm_macc_ps(dx10,fscal,fix1);
256             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
257             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
258
259             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
260             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
261             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
262
263             }
264
265             /**************************
266              * CALCULATE INTERACTIONS *
267              **************************/
268
269             if (gmx_mm_any_lt(rsq20,rcutoff2))
270             {
271
272             r20              = _mm_mul_ps(rsq20,rinv20);
273
274             /* Compute parameters for interactions between i and j atoms */
275             qq20             = _mm_mul_ps(iq2,jq0);
276
277             /* EWALD ELECTROSTATICS */
278
279             /* Analytical PME correction */
280             zeta2            = _mm_mul_ps(beta2,rsq20);
281             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
282             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
283             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
284             felec            = _mm_mul_ps(qq20,felec);
285             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
286             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv20,sh_ewald));
287             velec            = _mm_mul_ps(qq20,velec);
288
289             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
290
291             /* Update potential sum for this i atom from the interaction with this j atom. */
292             velec            = _mm_and_ps(velec,cutoff_mask);
293             velecsum         = _mm_add_ps(velecsum,velec);
294
295             fscal            = felec;
296
297             fscal            = _mm_and_ps(fscal,cutoff_mask);
298
299              /* Update vectorial force */
300             fix2             = _mm_macc_ps(dx20,fscal,fix2);
301             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
302             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
303
304             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
305             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
306             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
307
308             }
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             if (gmx_mm_any_lt(rsq30,rcutoff2))
315             {
316
317             r30              = _mm_mul_ps(rsq30,rinv30);
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq30             = _mm_mul_ps(iq3,jq0);
321
322             /* EWALD ELECTROSTATICS */
323
324             /* Analytical PME correction */
325             zeta2            = _mm_mul_ps(beta2,rsq30);
326             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
327             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
328             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
329             felec            = _mm_mul_ps(qq30,felec);
330             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
331             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv30,sh_ewald));
332             velec            = _mm_mul_ps(qq30,velec);
333
334             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
335
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             velec            = _mm_and_ps(velec,cutoff_mask);
338             velecsum         = _mm_add_ps(velecsum,velec);
339
340             fscal            = felec;
341
342             fscal            = _mm_and_ps(fscal,cutoff_mask);
343
344              /* Update vectorial force */
345             fix3             = _mm_macc_ps(dx30,fscal,fix3);
346             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
347             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
348
349             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
350             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
351             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
352
353             }
354
355             fjptrA             = f+j_coord_offsetA;
356             fjptrB             = f+j_coord_offsetB;
357             fjptrC             = f+j_coord_offsetC;
358             fjptrD             = f+j_coord_offsetD;
359
360             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
361
362             /* Inner loop uses 99 flops */
363         }
364
365         if(jidx<j_index_end)
366         {
367
368             /* Get j neighbor index, and coordinate index */
369             jnrlistA         = jjnr[jidx];
370             jnrlistB         = jjnr[jidx+1];
371             jnrlistC         = jjnr[jidx+2];
372             jnrlistD         = jjnr[jidx+3];
373             /* Sign of each element will be negative for non-real atoms.
374              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
375              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
376              */
377             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
378             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
379             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
380             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
381             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
382             j_coord_offsetA  = DIM*jnrA;
383             j_coord_offsetB  = DIM*jnrB;
384             j_coord_offsetC  = DIM*jnrC;
385             j_coord_offsetD  = DIM*jnrD;
386
387             /* load j atom coordinates */
388             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
389                                               x+j_coord_offsetC,x+j_coord_offsetD,
390                                               &jx0,&jy0,&jz0);
391
392             /* Calculate displacement vector */
393             dx10             = _mm_sub_ps(ix1,jx0);
394             dy10             = _mm_sub_ps(iy1,jy0);
395             dz10             = _mm_sub_ps(iz1,jz0);
396             dx20             = _mm_sub_ps(ix2,jx0);
397             dy20             = _mm_sub_ps(iy2,jy0);
398             dz20             = _mm_sub_ps(iz2,jz0);
399             dx30             = _mm_sub_ps(ix3,jx0);
400             dy30             = _mm_sub_ps(iy3,jy0);
401             dz30             = _mm_sub_ps(iz3,jz0);
402
403             /* Calculate squared distance and things based on it */
404             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
405             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
406             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
407
408             rinv10           = gmx_mm_invsqrt_ps(rsq10);
409             rinv20           = gmx_mm_invsqrt_ps(rsq20);
410             rinv30           = gmx_mm_invsqrt_ps(rsq30);
411
412             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
413             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
414             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
415
416             /* Load parameters for j particles */
417             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
418                                                               charge+jnrC+0,charge+jnrD+0);
419
420             fjx0             = _mm_setzero_ps();
421             fjy0             = _mm_setzero_ps();
422             fjz0             = _mm_setzero_ps();
423
424             /**************************
425              * CALCULATE INTERACTIONS *
426              **************************/
427
428             if (gmx_mm_any_lt(rsq10,rcutoff2))
429             {
430
431             r10              = _mm_mul_ps(rsq10,rinv10);
432             r10              = _mm_andnot_ps(dummy_mask,r10);
433
434             /* Compute parameters for interactions between i and j atoms */
435             qq10             = _mm_mul_ps(iq1,jq0);
436
437             /* EWALD ELECTROSTATICS */
438
439             /* Analytical PME correction */
440             zeta2            = _mm_mul_ps(beta2,rsq10);
441             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
442             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
443             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
444             felec            = _mm_mul_ps(qq10,felec);
445             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
446             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv10,sh_ewald));
447             velec            = _mm_mul_ps(qq10,velec);
448
449             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
450
451             /* Update potential sum for this i atom from the interaction with this j atom. */
452             velec            = _mm_and_ps(velec,cutoff_mask);
453             velec            = _mm_andnot_ps(dummy_mask,velec);
454             velecsum         = _mm_add_ps(velecsum,velec);
455
456             fscal            = felec;
457
458             fscal            = _mm_and_ps(fscal,cutoff_mask);
459
460             fscal            = _mm_andnot_ps(dummy_mask,fscal);
461
462              /* Update vectorial force */
463             fix1             = _mm_macc_ps(dx10,fscal,fix1);
464             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
465             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
466
467             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
468             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
469             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
470
471             }
472
473             /**************************
474              * CALCULATE INTERACTIONS *
475              **************************/
476
477             if (gmx_mm_any_lt(rsq20,rcutoff2))
478             {
479
480             r20              = _mm_mul_ps(rsq20,rinv20);
481             r20              = _mm_andnot_ps(dummy_mask,r20);
482
483             /* Compute parameters for interactions between i and j atoms */
484             qq20             = _mm_mul_ps(iq2,jq0);
485
486             /* EWALD ELECTROSTATICS */
487
488             /* Analytical PME correction */
489             zeta2            = _mm_mul_ps(beta2,rsq20);
490             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
491             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
492             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
493             felec            = _mm_mul_ps(qq20,felec);
494             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
495             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv20,sh_ewald));
496             velec            = _mm_mul_ps(qq20,velec);
497
498             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
499
500             /* Update potential sum for this i atom from the interaction with this j atom. */
501             velec            = _mm_and_ps(velec,cutoff_mask);
502             velec            = _mm_andnot_ps(dummy_mask,velec);
503             velecsum         = _mm_add_ps(velecsum,velec);
504
505             fscal            = felec;
506
507             fscal            = _mm_and_ps(fscal,cutoff_mask);
508
509             fscal            = _mm_andnot_ps(dummy_mask,fscal);
510
511              /* Update vectorial force */
512             fix2             = _mm_macc_ps(dx20,fscal,fix2);
513             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
514             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
515
516             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
517             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
518             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
519
520             }
521
522             /**************************
523              * CALCULATE INTERACTIONS *
524              **************************/
525
526             if (gmx_mm_any_lt(rsq30,rcutoff2))
527             {
528
529             r30              = _mm_mul_ps(rsq30,rinv30);
530             r30              = _mm_andnot_ps(dummy_mask,r30);
531
532             /* Compute parameters for interactions between i and j atoms */
533             qq30             = _mm_mul_ps(iq3,jq0);
534
535             /* EWALD ELECTROSTATICS */
536
537             /* Analytical PME correction */
538             zeta2            = _mm_mul_ps(beta2,rsq30);
539             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
540             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
541             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
542             felec            = _mm_mul_ps(qq30,felec);
543             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
544             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv30,sh_ewald));
545             velec            = _mm_mul_ps(qq30,velec);
546
547             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
548
549             /* Update potential sum for this i atom from the interaction with this j atom. */
550             velec            = _mm_and_ps(velec,cutoff_mask);
551             velec            = _mm_andnot_ps(dummy_mask,velec);
552             velecsum         = _mm_add_ps(velecsum,velec);
553
554             fscal            = felec;
555
556             fscal            = _mm_and_ps(fscal,cutoff_mask);
557
558             fscal            = _mm_andnot_ps(dummy_mask,fscal);
559
560              /* Update vectorial force */
561             fix3             = _mm_macc_ps(dx30,fscal,fix3);
562             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
563             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
564
565             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
566             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
567             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
568
569             }
570
571             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
572             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
573             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
574             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
575
576             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
577
578             /* Inner loop uses 102 flops */
579         }
580
581         /* End of innermost loop */
582
583         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
584                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
585
586         ggid                        = gid[iidx];
587         /* Update potential energies */
588         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
589
590         /* Increment number of inner iterations */
591         inneriter                  += j_index_end - j_index_start;
592
593         /* Outer loop uses 19 flops */
594     }
595
596     /* Increment number of outer iterations */
597     outeriter        += nri;
598
599     /* Update outer/inner flops */
600
601     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*102);
602 }
603 /*
604  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_avx_128_fma_single
605  * Electrostatics interaction: Ewald
606  * VdW interaction:            None
607  * Geometry:                   Water4-Particle
608  * Calculate force/pot:        Force
609  */
610 void
611 nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_avx_128_fma_single
612                     (t_nblist * gmx_restrict                nlist,
613                      rvec * gmx_restrict                    xx,
614                      rvec * gmx_restrict                    ff,
615                      t_forcerec * gmx_restrict              fr,
616                      t_mdatoms * gmx_restrict               mdatoms,
617                      nb_kernel_data_t * gmx_restrict        kernel_data,
618                      t_nrnb * gmx_restrict                  nrnb)
619 {
620     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
621      * just 0 for non-waters.
622      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
623      * jnr indices corresponding to data put in the four positions in the SIMD register.
624      */
625     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
626     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
627     int              jnrA,jnrB,jnrC,jnrD;
628     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
629     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
630     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
631     real             rcutoff_scalar;
632     real             *shiftvec,*fshift,*x,*f;
633     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
634     real             scratch[4*DIM];
635     __m128           fscal,rcutoff,rcutoff2,jidxall;
636     int              vdwioffset1;
637     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
638     int              vdwioffset2;
639     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
640     int              vdwioffset3;
641     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
642     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
643     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
644     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
645     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
646     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
647     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
648     real             *charge;
649     __m128i          ewitab;
650     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
651     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
652     real             *ewtab;
653     __m128           dummy_mask,cutoff_mask;
654     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
655     __m128           one     = _mm_set1_ps(1.0);
656     __m128           two     = _mm_set1_ps(2.0);
657     x                = xx[0];
658     f                = ff[0];
659
660     nri              = nlist->nri;
661     iinr             = nlist->iinr;
662     jindex           = nlist->jindex;
663     jjnr             = nlist->jjnr;
664     shiftidx         = nlist->shift;
665     gid              = nlist->gid;
666     shiftvec         = fr->shift_vec[0];
667     fshift           = fr->fshift[0];
668     facel            = _mm_set1_ps(fr->epsfac);
669     charge           = mdatoms->chargeA;
670
671     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
672     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
673     beta2            = _mm_mul_ps(beta,beta);
674     beta3            = _mm_mul_ps(beta,beta2);
675     ewtab            = fr->ic->tabq_coul_F;
676     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
677     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
678
679     /* Setup water-specific parameters */
680     inr              = nlist->iinr[0];
681     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
682     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
683     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
684
685     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
686     rcutoff_scalar   = fr->rcoulomb;
687     rcutoff          = _mm_set1_ps(rcutoff_scalar);
688     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
689
690     /* Avoid stupid compiler warnings */
691     jnrA = jnrB = jnrC = jnrD = 0;
692     j_coord_offsetA = 0;
693     j_coord_offsetB = 0;
694     j_coord_offsetC = 0;
695     j_coord_offsetD = 0;
696
697     outeriter        = 0;
698     inneriter        = 0;
699
700     for(iidx=0;iidx<4*DIM;iidx++)
701     {
702         scratch[iidx] = 0.0;
703     }
704
705     /* Start outer loop over neighborlists */
706     for(iidx=0; iidx<nri; iidx++)
707     {
708         /* Load shift vector for this list */
709         i_shift_offset   = DIM*shiftidx[iidx];
710
711         /* Load limits for loop over neighbors */
712         j_index_start    = jindex[iidx];
713         j_index_end      = jindex[iidx+1];
714
715         /* Get outer coordinate index */
716         inr              = iinr[iidx];
717         i_coord_offset   = DIM*inr;
718
719         /* Load i particle coords and add shift vector */
720         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
721                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
722
723         fix1             = _mm_setzero_ps();
724         fiy1             = _mm_setzero_ps();
725         fiz1             = _mm_setzero_ps();
726         fix2             = _mm_setzero_ps();
727         fiy2             = _mm_setzero_ps();
728         fiz2             = _mm_setzero_ps();
729         fix3             = _mm_setzero_ps();
730         fiy3             = _mm_setzero_ps();
731         fiz3             = _mm_setzero_ps();
732
733         /* Start inner kernel loop */
734         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
735         {
736
737             /* Get j neighbor index, and coordinate index */
738             jnrA             = jjnr[jidx];
739             jnrB             = jjnr[jidx+1];
740             jnrC             = jjnr[jidx+2];
741             jnrD             = jjnr[jidx+3];
742             j_coord_offsetA  = DIM*jnrA;
743             j_coord_offsetB  = DIM*jnrB;
744             j_coord_offsetC  = DIM*jnrC;
745             j_coord_offsetD  = DIM*jnrD;
746
747             /* load j atom coordinates */
748             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
749                                               x+j_coord_offsetC,x+j_coord_offsetD,
750                                               &jx0,&jy0,&jz0);
751
752             /* Calculate displacement vector */
753             dx10             = _mm_sub_ps(ix1,jx0);
754             dy10             = _mm_sub_ps(iy1,jy0);
755             dz10             = _mm_sub_ps(iz1,jz0);
756             dx20             = _mm_sub_ps(ix2,jx0);
757             dy20             = _mm_sub_ps(iy2,jy0);
758             dz20             = _mm_sub_ps(iz2,jz0);
759             dx30             = _mm_sub_ps(ix3,jx0);
760             dy30             = _mm_sub_ps(iy3,jy0);
761             dz30             = _mm_sub_ps(iz3,jz0);
762
763             /* Calculate squared distance and things based on it */
764             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
765             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
766             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
767
768             rinv10           = gmx_mm_invsqrt_ps(rsq10);
769             rinv20           = gmx_mm_invsqrt_ps(rsq20);
770             rinv30           = gmx_mm_invsqrt_ps(rsq30);
771
772             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
773             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
774             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
775
776             /* Load parameters for j particles */
777             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
778                                                               charge+jnrC+0,charge+jnrD+0);
779
780             fjx0             = _mm_setzero_ps();
781             fjy0             = _mm_setzero_ps();
782             fjz0             = _mm_setzero_ps();
783
784             /**************************
785              * CALCULATE INTERACTIONS *
786              **************************/
787
788             if (gmx_mm_any_lt(rsq10,rcutoff2))
789             {
790
791             r10              = _mm_mul_ps(rsq10,rinv10);
792
793             /* Compute parameters for interactions between i and j atoms */
794             qq10             = _mm_mul_ps(iq1,jq0);
795
796             /* EWALD ELECTROSTATICS */
797
798             /* Analytical PME correction */
799             zeta2            = _mm_mul_ps(beta2,rsq10);
800             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
801             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
802             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
803             felec            = _mm_mul_ps(qq10,felec);
804
805             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
806
807             fscal            = felec;
808
809             fscal            = _mm_and_ps(fscal,cutoff_mask);
810
811              /* Update vectorial force */
812             fix1             = _mm_macc_ps(dx10,fscal,fix1);
813             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
814             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
815
816             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
817             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
818             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
819
820             }
821
822             /**************************
823              * CALCULATE INTERACTIONS *
824              **************************/
825
826             if (gmx_mm_any_lt(rsq20,rcutoff2))
827             {
828
829             r20              = _mm_mul_ps(rsq20,rinv20);
830
831             /* Compute parameters for interactions between i and j atoms */
832             qq20             = _mm_mul_ps(iq2,jq0);
833
834             /* EWALD ELECTROSTATICS */
835
836             /* Analytical PME correction */
837             zeta2            = _mm_mul_ps(beta2,rsq20);
838             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
839             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
840             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
841             felec            = _mm_mul_ps(qq20,felec);
842
843             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
844
845             fscal            = felec;
846
847             fscal            = _mm_and_ps(fscal,cutoff_mask);
848
849              /* Update vectorial force */
850             fix2             = _mm_macc_ps(dx20,fscal,fix2);
851             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
852             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
853
854             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
855             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
856             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
857
858             }
859
860             /**************************
861              * CALCULATE INTERACTIONS *
862              **************************/
863
864             if (gmx_mm_any_lt(rsq30,rcutoff2))
865             {
866
867             r30              = _mm_mul_ps(rsq30,rinv30);
868
869             /* Compute parameters for interactions between i and j atoms */
870             qq30             = _mm_mul_ps(iq3,jq0);
871
872             /* EWALD ELECTROSTATICS */
873
874             /* Analytical PME correction */
875             zeta2            = _mm_mul_ps(beta2,rsq30);
876             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
877             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
878             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
879             felec            = _mm_mul_ps(qq30,felec);
880
881             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
882
883             fscal            = felec;
884
885             fscal            = _mm_and_ps(fscal,cutoff_mask);
886
887              /* Update vectorial force */
888             fix3             = _mm_macc_ps(dx30,fscal,fix3);
889             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
890             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
891
892             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
893             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
894             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
895
896             }
897
898             fjptrA             = f+j_coord_offsetA;
899             fjptrB             = f+j_coord_offsetB;
900             fjptrC             = f+j_coord_offsetC;
901             fjptrD             = f+j_coord_offsetD;
902
903             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
904
905             /* Inner loop uses 93 flops */
906         }
907
908         if(jidx<j_index_end)
909         {
910
911             /* Get j neighbor index, and coordinate index */
912             jnrlistA         = jjnr[jidx];
913             jnrlistB         = jjnr[jidx+1];
914             jnrlistC         = jjnr[jidx+2];
915             jnrlistD         = jjnr[jidx+3];
916             /* Sign of each element will be negative for non-real atoms.
917              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
918              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
919              */
920             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
921             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
922             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
923             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
924             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
925             j_coord_offsetA  = DIM*jnrA;
926             j_coord_offsetB  = DIM*jnrB;
927             j_coord_offsetC  = DIM*jnrC;
928             j_coord_offsetD  = DIM*jnrD;
929
930             /* load j atom coordinates */
931             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
932                                               x+j_coord_offsetC,x+j_coord_offsetD,
933                                               &jx0,&jy0,&jz0);
934
935             /* Calculate displacement vector */
936             dx10             = _mm_sub_ps(ix1,jx0);
937             dy10             = _mm_sub_ps(iy1,jy0);
938             dz10             = _mm_sub_ps(iz1,jz0);
939             dx20             = _mm_sub_ps(ix2,jx0);
940             dy20             = _mm_sub_ps(iy2,jy0);
941             dz20             = _mm_sub_ps(iz2,jz0);
942             dx30             = _mm_sub_ps(ix3,jx0);
943             dy30             = _mm_sub_ps(iy3,jy0);
944             dz30             = _mm_sub_ps(iz3,jz0);
945
946             /* Calculate squared distance and things based on it */
947             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
948             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
949             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
950
951             rinv10           = gmx_mm_invsqrt_ps(rsq10);
952             rinv20           = gmx_mm_invsqrt_ps(rsq20);
953             rinv30           = gmx_mm_invsqrt_ps(rsq30);
954
955             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
956             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
957             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
958
959             /* Load parameters for j particles */
960             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
961                                                               charge+jnrC+0,charge+jnrD+0);
962
963             fjx0             = _mm_setzero_ps();
964             fjy0             = _mm_setzero_ps();
965             fjz0             = _mm_setzero_ps();
966
967             /**************************
968              * CALCULATE INTERACTIONS *
969              **************************/
970
971             if (gmx_mm_any_lt(rsq10,rcutoff2))
972             {
973
974             r10              = _mm_mul_ps(rsq10,rinv10);
975             r10              = _mm_andnot_ps(dummy_mask,r10);
976
977             /* Compute parameters for interactions between i and j atoms */
978             qq10             = _mm_mul_ps(iq1,jq0);
979
980             /* EWALD ELECTROSTATICS */
981
982             /* Analytical PME correction */
983             zeta2            = _mm_mul_ps(beta2,rsq10);
984             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
985             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
986             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
987             felec            = _mm_mul_ps(qq10,felec);
988
989             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
990
991             fscal            = felec;
992
993             fscal            = _mm_and_ps(fscal,cutoff_mask);
994
995             fscal            = _mm_andnot_ps(dummy_mask,fscal);
996
997              /* Update vectorial force */
998             fix1             = _mm_macc_ps(dx10,fscal,fix1);
999             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1000             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1001
1002             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1003             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1004             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1005
1006             }
1007
1008             /**************************
1009              * CALCULATE INTERACTIONS *
1010              **************************/
1011
1012             if (gmx_mm_any_lt(rsq20,rcutoff2))
1013             {
1014
1015             r20              = _mm_mul_ps(rsq20,rinv20);
1016             r20              = _mm_andnot_ps(dummy_mask,r20);
1017
1018             /* Compute parameters for interactions between i and j atoms */
1019             qq20             = _mm_mul_ps(iq2,jq0);
1020
1021             /* EWALD ELECTROSTATICS */
1022
1023             /* Analytical PME correction */
1024             zeta2            = _mm_mul_ps(beta2,rsq20);
1025             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1026             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1027             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1028             felec            = _mm_mul_ps(qq20,felec);
1029
1030             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1031
1032             fscal            = felec;
1033
1034             fscal            = _mm_and_ps(fscal,cutoff_mask);
1035
1036             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1037
1038              /* Update vectorial force */
1039             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1040             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1041             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1042
1043             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1044             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1045             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1046
1047             }
1048
1049             /**************************
1050              * CALCULATE INTERACTIONS *
1051              **************************/
1052
1053             if (gmx_mm_any_lt(rsq30,rcutoff2))
1054             {
1055
1056             r30              = _mm_mul_ps(rsq30,rinv30);
1057             r30              = _mm_andnot_ps(dummy_mask,r30);
1058
1059             /* Compute parameters for interactions between i and j atoms */
1060             qq30             = _mm_mul_ps(iq3,jq0);
1061
1062             /* EWALD ELECTROSTATICS */
1063
1064             /* Analytical PME correction */
1065             zeta2            = _mm_mul_ps(beta2,rsq30);
1066             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
1067             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1068             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1069             felec            = _mm_mul_ps(qq30,felec);
1070
1071             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1072
1073             fscal            = felec;
1074
1075             fscal            = _mm_and_ps(fscal,cutoff_mask);
1076
1077             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1078
1079              /* Update vectorial force */
1080             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1081             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1082             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1083
1084             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1085             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1086             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1087
1088             }
1089
1090             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1091             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1092             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1093             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1094
1095             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1096
1097             /* Inner loop uses 96 flops */
1098         }
1099
1100         /* End of innermost loop */
1101
1102         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1103                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1104
1105         /* Increment number of inner iterations */
1106         inneriter                  += j_index_end - j_index_start;
1107
1108         /* Outer loop uses 18 flops */
1109     }
1110
1111     /* Increment number of outer iterations */
1112     outeriter        += nri;
1113
1114     /* Update outer/inner flops */
1115
1116     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*96);
1117 }