Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSh_VdwNone_GeomP1P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_avx_128_fma_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     __m128i          ewitab;
77     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
78     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
79     real             *ewtab;
80     __m128           dummy_mask,cutoff_mask;
81     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
82     __m128           one     = _mm_set1_ps(1.0);
83     __m128           two     = _mm_set1_ps(2.0);
84     x                = xx[0];
85     f                = ff[0];
86
87     nri              = nlist->nri;
88     iinr             = nlist->iinr;
89     jindex           = nlist->jindex;
90     jjnr             = nlist->jjnr;
91     shiftidx         = nlist->shift;
92     gid              = nlist->gid;
93     shiftvec         = fr->shift_vec[0];
94     fshift           = fr->fshift[0];
95     facel            = _mm_set1_ps(fr->epsfac);
96     charge           = mdatoms->chargeA;
97
98     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
99     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
100     beta2            = _mm_mul_ps(beta,beta);
101     beta3            = _mm_mul_ps(beta,beta2);
102     ewtab            = fr->ic->tabq_coul_FDV0;
103     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
104     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
105
106     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
107     rcutoff_scalar   = fr->rcoulomb;
108     rcutoff          = _mm_set1_ps(rcutoff_scalar);
109     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
110
111     /* Avoid stupid compiler warnings */
112     jnrA = jnrB = jnrC = jnrD = 0;
113     j_coord_offsetA = 0;
114     j_coord_offsetB = 0;
115     j_coord_offsetC = 0;
116     j_coord_offsetD = 0;
117
118     outeriter        = 0;
119     inneriter        = 0;
120
121     for(iidx=0;iidx<4*DIM;iidx++)
122     {
123         scratch[iidx] = 0.0;
124     }
125
126     /* Start outer loop over neighborlists */
127     for(iidx=0; iidx<nri; iidx++)
128     {
129         /* Load shift vector for this list */
130         i_shift_offset   = DIM*shiftidx[iidx];
131
132         /* Load limits for loop over neighbors */
133         j_index_start    = jindex[iidx];
134         j_index_end      = jindex[iidx+1];
135
136         /* Get outer coordinate index */
137         inr              = iinr[iidx];
138         i_coord_offset   = DIM*inr;
139
140         /* Load i particle coords and add shift vector */
141         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
142
143         fix0             = _mm_setzero_ps();
144         fiy0             = _mm_setzero_ps();
145         fiz0             = _mm_setzero_ps();
146
147         /* Load parameters for i particles */
148         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
149
150         /* Reset potential sums */
151         velecsum         = _mm_setzero_ps();
152
153         /* Start inner kernel loop */
154         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
155         {
156
157             /* Get j neighbor index, and coordinate index */
158             jnrA             = jjnr[jidx];
159             jnrB             = jjnr[jidx+1];
160             jnrC             = jjnr[jidx+2];
161             jnrD             = jjnr[jidx+3];
162             j_coord_offsetA  = DIM*jnrA;
163             j_coord_offsetB  = DIM*jnrB;
164             j_coord_offsetC  = DIM*jnrC;
165             j_coord_offsetD  = DIM*jnrD;
166
167             /* load j atom coordinates */
168             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
169                                               x+j_coord_offsetC,x+j_coord_offsetD,
170                                               &jx0,&jy0,&jz0);
171
172             /* Calculate displacement vector */
173             dx00             = _mm_sub_ps(ix0,jx0);
174             dy00             = _mm_sub_ps(iy0,jy0);
175             dz00             = _mm_sub_ps(iz0,jz0);
176
177             /* Calculate squared distance and things based on it */
178             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
179
180             rinv00           = gmx_mm_invsqrt_ps(rsq00);
181
182             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
183
184             /* Load parameters for j particles */
185             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
186                                                               charge+jnrC+0,charge+jnrD+0);
187
188             /**************************
189              * CALCULATE INTERACTIONS *
190              **************************/
191
192             if (gmx_mm_any_lt(rsq00,rcutoff2))
193             {
194
195             r00              = _mm_mul_ps(rsq00,rinv00);
196
197             /* Compute parameters for interactions between i and j atoms */
198             qq00             = _mm_mul_ps(iq0,jq0);
199
200             /* EWALD ELECTROSTATICS */
201
202             /* Analytical PME correction */
203             zeta2            = _mm_mul_ps(beta2,rsq00);
204             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
205             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
206             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
207             felec            = _mm_mul_ps(qq00,felec);
208             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
209             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv00,sh_ewald));
210             velec            = _mm_mul_ps(qq00,velec);
211
212             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
213
214             /* Update potential sum for this i atom from the interaction with this j atom. */
215             velec            = _mm_and_ps(velec,cutoff_mask);
216             velecsum         = _mm_add_ps(velecsum,velec);
217
218             fscal            = felec;
219
220             fscal            = _mm_and_ps(fscal,cutoff_mask);
221
222              /* Update vectorial force */
223             fix0             = _mm_macc_ps(dx00,fscal,fix0);
224             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
225             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
226
227             fjptrA             = f+j_coord_offsetA;
228             fjptrB             = f+j_coord_offsetB;
229             fjptrC             = f+j_coord_offsetC;
230             fjptrD             = f+j_coord_offsetD;
231             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
232                                                    _mm_mul_ps(dx00,fscal),
233                                                    _mm_mul_ps(dy00,fscal),
234                                                    _mm_mul_ps(dz00,fscal));
235
236             }
237
238             /* Inner loop uses 33 flops */
239         }
240
241         if(jidx<j_index_end)
242         {
243
244             /* Get j neighbor index, and coordinate index */
245             jnrlistA         = jjnr[jidx];
246             jnrlistB         = jjnr[jidx+1];
247             jnrlistC         = jjnr[jidx+2];
248             jnrlistD         = jjnr[jidx+3];
249             /* Sign of each element will be negative for non-real atoms.
250              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
251              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
252              */
253             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
254             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
255             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
256             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
257             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
258             j_coord_offsetA  = DIM*jnrA;
259             j_coord_offsetB  = DIM*jnrB;
260             j_coord_offsetC  = DIM*jnrC;
261             j_coord_offsetD  = DIM*jnrD;
262
263             /* load j atom coordinates */
264             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
265                                               x+j_coord_offsetC,x+j_coord_offsetD,
266                                               &jx0,&jy0,&jz0);
267
268             /* Calculate displacement vector */
269             dx00             = _mm_sub_ps(ix0,jx0);
270             dy00             = _mm_sub_ps(iy0,jy0);
271             dz00             = _mm_sub_ps(iz0,jz0);
272
273             /* Calculate squared distance and things based on it */
274             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
275
276             rinv00           = gmx_mm_invsqrt_ps(rsq00);
277
278             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
279
280             /* Load parameters for j particles */
281             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
282                                                               charge+jnrC+0,charge+jnrD+0);
283
284             /**************************
285              * CALCULATE INTERACTIONS *
286              **************************/
287
288             if (gmx_mm_any_lt(rsq00,rcutoff2))
289             {
290
291             r00              = _mm_mul_ps(rsq00,rinv00);
292             r00              = _mm_andnot_ps(dummy_mask,r00);
293
294             /* Compute parameters for interactions between i and j atoms */
295             qq00             = _mm_mul_ps(iq0,jq0);
296
297             /* EWALD ELECTROSTATICS */
298
299             /* Analytical PME correction */
300             zeta2            = _mm_mul_ps(beta2,rsq00);
301             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
302             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
303             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
304             felec            = _mm_mul_ps(qq00,felec);
305             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
306             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv00,sh_ewald));
307             velec            = _mm_mul_ps(qq00,velec);
308
309             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
310
311             /* Update potential sum for this i atom from the interaction with this j atom. */
312             velec            = _mm_and_ps(velec,cutoff_mask);
313             velec            = _mm_andnot_ps(dummy_mask,velec);
314             velecsum         = _mm_add_ps(velecsum,velec);
315
316             fscal            = felec;
317
318             fscal            = _mm_and_ps(fscal,cutoff_mask);
319
320             fscal            = _mm_andnot_ps(dummy_mask,fscal);
321
322              /* Update vectorial force */
323             fix0             = _mm_macc_ps(dx00,fscal,fix0);
324             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
325             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
326
327             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
328             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
329             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
330             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
331             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
332                                                    _mm_mul_ps(dx00,fscal),
333                                                    _mm_mul_ps(dy00,fscal),
334                                                    _mm_mul_ps(dz00,fscal));
335
336             }
337
338             /* Inner loop uses 34 flops */
339         }
340
341         /* End of innermost loop */
342
343         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
344                                               f+i_coord_offset,fshift+i_shift_offset);
345
346         ggid                        = gid[iidx];
347         /* Update potential energies */
348         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
349
350         /* Increment number of inner iterations */
351         inneriter                  += j_index_end - j_index_start;
352
353         /* Outer loop uses 8 flops */
354     }
355
356     /* Increment number of outer iterations */
357     outeriter        += nri;
358
359     /* Update outer/inner flops */
360
361     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*34);
362 }
363 /*
364  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_avx_128_fma_single
365  * Electrostatics interaction: Ewald
366  * VdW interaction:            None
367  * Geometry:                   Particle-Particle
368  * Calculate force/pot:        Force
369  */
370 void
371 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_avx_128_fma_single
372                     (t_nblist * gmx_restrict                nlist,
373                      rvec * gmx_restrict                    xx,
374                      rvec * gmx_restrict                    ff,
375                      t_forcerec * gmx_restrict              fr,
376                      t_mdatoms * gmx_restrict               mdatoms,
377                      nb_kernel_data_t * gmx_restrict        kernel_data,
378                      t_nrnb * gmx_restrict                  nrnb)
379 {
380     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
381      * just 0 for non-waters.
382      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
383      * jnr indices corresponding to data put in the four positions in the SIMD register.
384      */
385     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
386     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
387     int              jnrA,jnrB,jnrC,jnrD;
388     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
389     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
390     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
391     real             rcutoff_scalar;
392     real             *shiftvec,*fshift,*x,*f;
393     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
394     real             scratch[4*DIM];
395     __m128           fscal,rcutoff,rcutoff2,jidxall;
396     int              vdwioffset0;
397     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
398     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
399     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
400     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
401     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
402     real             *charge;
403     __m128i          ewitab;
404     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
405     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
406     real             *ewtab;
407     __m128           dummy_mask,cutoff_mask;
408     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
409     __m128           one     = _mm_set1_ps(1.0);
410     __m128           two     = _mm_set1_ps(2.0);
411     x                = xx[0];
412     f                = ff[0];
413
414     nri              = nlist->nri;
415     iinr             = nlist->iinr;
416     jindex           = nlist->jindex;
417     jjnr             = nlist->jjnr;
418     shiftidx         = nlist->shift;
419     gid              = nlist->gid;
420     shiftvec         = fr->shift_vec[0];
421     fshift           = fr->fshift[0];
422     facel            = _mm_set1_ps(fr->epsfac);
423     charge           = mdatoms->chargeA;
424
425     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
426     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
427     beta2            = _mm_mul_ps(beta,beta);
428     beta3            = _mm_mul_ps(beta,beta2);
429     ewtab            = fr->ic->tabq_coul_F;
430     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
431     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
432
433     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
434     rcutoff_scalar   = fr->rcoulomb;
435     rcutoff          = _mm_set1_ps(rcutoff_scalar);
436     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
437
438     /* Avoid stupid compiler warnings */
439     jnrA = jnrB = jnrC = jnrD = 0;
440     j_coord_offsetA = 0;
441     j_coord_offsetB = 0;
442     j_coord_offsetC = 0;
443     j_coord_offsetD = 0;
444
445     outeriter        = 0;
446     inneriter        = 0;
447
448     for(iidx=0;iidx<4*DIM;iidx++)
449     {
450         scratch[iidx] = 0.0;
451     }
452
453     /* Start outer loop over neighborlists */
454     for(iidx=0; iidx<nri; iidx++)
455     {
456         /* Load shift vector for this list */
457         i_shift_offset   = DIM*shiftidx[iidx];
458
459         /* Load limits for loop over neighbors */
460         j_index_start    = jindex[iidx];
461         j_index_end      = jindex[iidx+1];
462
463         /* Get outer coordinate index */
464         inr              = iinr[iidx];
465         i_coord_offset   = DIM*inr;
466
467         /* Load i particle coords and add shift vector */
468         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
469
470         fix0             = _mm_setzero_ps();
471         fiy0             = _mm_setzero_ps();
472         fiz0             = _mm_setzero_ps();
473
474         /* Load parameters for i particles */
475         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
476
477         /* Start inner kernel loop */
478         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
479         {
480
481             /* Get j neighbor index, and coordinate index */
482             jnrA             = jjnr[jidx];
483             jnrB             = jjnr[jidx+1];
484             jnrC             = jjnr[jidx+2];
485             jnrD             = jjnr[jidx+3];
486             j_coord_offsetA  = DIM*jnrA;
487             j_coord_offsetB  = DIM*jnrB;
488             j_coord_offsetC  = DIM*jnrC;
489             j_coord_offsetD  = DIM*jnrD;
490
491             /* load j atom coordinates */
492             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
493                                               x+j_coord_offsetC,x+j_coord_offsetD,
494                                               &jx0,&jy0,&jz0);
495
496             /* Calculate displacement vector */
497             dx00             = _mm_sub_ps(ix0,jx0);
498             dy00             = _mm_sub_ps(iy0,jy0);
499             dz00             = _mm_sub_ps(iz0,jz0);
500
501             /* Calculate squared distance and things based on it */
502             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
503
504             rinv00           = gmx_mm_invsqrt_ps(rsq00);
505
506             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
507
508             /* Load parameters for j particles */
509             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
510                                                               charge+jnrC+0,charge+jnrD+0);
511
512             /**************************
513              * CALCULATE INTERACTIONS *
514              **************************/
515
516             if (gmx_mm_any_lt(rsq00,rcutoff2))
517             {
518
519             r00              = _mm_mul_ps(rsq00,rinv00);
520
521             /* Compute parameters for interactions between i and j atoms */
522             qq00             = _mm_mul_ps(iq0,jq0);
523
524             /* EWALD ELECTROSTATICS */
525
526             /* Analytical PME correction */
527             zeta2            = _mm_mul_ps(beta2,rsq00);
528             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
529             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
530             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
531             felec            = _mm_mul_ps(qq00,felec);
532
533             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
534
535             fscal            = felec;
536
537             fscal            = _mm_and_ps(fscal,cutoff_mask);
538
539              /* Update vectorial force */
540             fix0             = _mm_macc_ps(dx00,fscal,fix0);
541             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
542             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
543
544             fjptrA             = f+j_coord_offsetA;
545             fjptrB             = f+j_coord_offsetB;
546             fjptrC             = f+j_coord_offsetC;
547             fjptrD             = f+j_coord_offsetD;
548             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
549                                                    _mm_mul_ps(dx00,fscal),
550                                                    _mm_mul_ps(dy00,fscal),
551                                                    _mm_mul_ps(dz00,fscal));
552
553             }
554
555             /* Inner loop uses 31 flops */
556         }
557
558         if(jidx<j_index_end)
559         {
560
561             /* Get j neighbor index, and coordinate index */
562             jnrlistA         = jjnr[jidx];
563             jnrlistB         = jjnr[jidx+1];
564             jnrlistC         = jjnr[jidx+2];
565             jnrlistD         = jjnr[jidx+3];
566             /* Sign of each element will be negative for non-real atoms.
567              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
568              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
569              */
570             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
571             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
572             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
573             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
574             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
575             j_coord_offsetA  = DIM*jnrA;
576             j_coord_offsetB  = DIM*jnrB;
577             j_coord_offsetC  = DIM*jnrC;
578             j_coord_offsetD  = DIM*jnrD;
579
580             /* load j atom coordinates */
581             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
582                                               x+j_coord_offsetC,x+j_coord_offsetD,
583                                               &jx0,&jy0,&jz0);
584
585             /* Calculate displacement vector */
586             dx00             = _mm_sub_ps(ix0,jx0);
587             dy00             = _mm_sub_ps(iy0,jy0);
588             dz00             = _mm_sub_ps(iz0,jz0);
589
590             /* Calculate squared distance and things based on it */
591             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
592
593             rinv00           = gmx_mm_invsqrt_ps(rsq00);
594
595             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
596
597             /* Load parameters for j particles */
598             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
599                                                               charge+jnrC+0,charge+jnrD+0);
600
601             /**************************
602              * CALCULATE INTERACTIONS *
603              **************************/
604
605             if (gmx_mm_any_lt(rsq00,rcutoff2))
606             {
607
608             r00              = _mm_mul_ps(rsq00,rinv00);
609             r00              = _mm_andnot_ps(dummy_mask,r00);
610
611             /* Compute parameters for interactions between i and j atoms */
612             qq00             = _mm_mul_ps(iq0,jq0);
613
614             /* EWALD ELECTROSTATICS */
615
616             /* Analytical PME correction */
617             zeta2            = _mm_mul_ps(beta2,rsq00);
618             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
619             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
620             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
621             felec            = _mm_mul_ps(qq00,felec);
622
623             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
624
625             fscal            = felec;
626
627             fscal            = _mm_and_ps(fscal,cutoff_mask);
628
629             fscal            = _mm_andnot_ps(dummy_mask,fscal);
630
631              /* Update vectorial force */
632             fix0             = _mm_macc_ps(dx00,fscal,fix0);
633             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
634             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
635
636             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
637             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
638             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
639             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
640             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
641                                                    _mm_mul_ps(dx00,fscal),
642                                                    _mm_mul_ps(dy00,fscal),
643                                                    _mm_mul_ps(dz00,fscal));
644
645             }
646
647             /* Inner loop uses 32 flops */
648         }
649
650         /* End of innermost loop */
651
652         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
653                                               f+i_coord_offset,fshift+i_shift_offset);
654
655         /* Increment number of inner iterations */
656         inneriter                  += j_index_end - j_index_start;
657
658         /* Outer loop uses 7 flops */
659     }
660
661     /* Increment number of outer iterations */
662     outeriter        += nri;
663
664     /* Update outer/inner flops */
665
666     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*32);
667 }