a91c2f3458d551d1c0245899b3b3aabfec95e133
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_128_fma_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128i          ewitab;
99     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
101     real             *ewtab;
102     __m128           dummy_mask,cutoff_mask;
103     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104     __m128           one     = _mm_set1_ps(1.0);
105     __m128           two     = _mm_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
124     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
125     beta2            = _mm_mul_ps(beta,beta);
126     beta3            = _mm_mul_ps(beta,beta2);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
130
131     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
132     rcutoff_scalar   = fr->rcoulomb;
133     rcutoff          = _mm_set1_ps(rcutoff_scalar);
134     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
135
136     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
137     rvdw             = _mm_set1_ps(fr->rvdw);
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
170
171         fix0             = _mm_setzero_ps();
172         fiy0             = _mm_setzero_ps();
173         fiz0             = _mm_setzero_ps();
174
175         /* Load parameters for i particles */
176         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
177         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
178
179         /* Reset potential sums */
180         velecsum         = _mm_setzero_ps();
181         vvdwsum          = _mm_setzero_ps();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             jnrC             = jjnr[jidx+2];
191             jnrD             = jjnr[jidx+3];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194             j_coord_offsetC  = DIM*jnrC;
195             j_coord_offsetD  = DIM*jnrD;
196
197             /* load j atom coordinates */
198             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
199                                               x+j_coord_offsetC,x+j_coord_offsetD,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_ps(ix0,jx0);
204             dy00             = _mm_sub_ps(iy0,jy0);
205             dz00             = _mm_sub_ps(iz0,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
209
210             rinv00           = gmx_mm_invsqrt_ps(rsq00);
211
212             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
213
214             /* Load parameters for j particles */
215             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
216                                                               charge+jnrC+0,charge+jnrD+0);
217             vdwjidx0A        = 2*vdwtype[jnrA+0];
218             vdwjidx0B        = 2*vdwtype[jnrB+0];
219             vdwjidx0C        = 2*vdwtype[jnrC+0];
220             vdwjidx0D        = 2*vdwtype[jnrD+0];
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             if (gmx_mm_any_lt(rsq00,rcutoff2))
227             {
228
229             r00              = _mm_mul_ps(rsq00,rinv00);
230
231             /* Compute parameters for interactions between i and j atoms */
232             qq00             = _mm_mul_ps(iq0,jq0);
233             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
234                                          vdwparam+vdwioffset0+vdwjidx0B,
235                                          vdwparam+vdwioffset0+vdwjidx0C,
236                                          vdwparam+vdwioffset0+vdwjidx0D,
237                                          &c6_00,&c12_00);
238
239             /* EWALD ELECTROSTATICS */
240
241             /* Analytical PME correction */
242             zeta2            = _mm_mul_ps(beta2,rsq00);
243             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
244             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
245             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
246             felec            = _mm_mul_ps(qq00,felec);
247             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
248             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv00,sh_ewald));
249             velec            = _mm_mul_ps(qq00,velec);
250
251             /* LENNARD-JONES DISPERSION/REPULSION */
252
253             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
254             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
255             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
256             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
257                                           _mm_mul_ps( _mm_nmacc_ps(c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
258             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
259
260             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             velec            = _mm_and_ps(velec,cutoff_mask);
264             velecsum         = _mm_add_ps(velecsum,velec);
265             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
266             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
267
268             fscal            = _mm_add_ps(felec,fvdw);
269
270             fscal            = _mm_and_ps(fscal,cutoff_mask);
271
272              /* Update vectorial force */
273             fix0             = _mm_macc_ps(dx00,fscal,fix0);
274             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
275             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
276
277             fjptrA             = f+j_coord_offsetA;
278             fjptrB             = f+j_coord_offsetB;
279             fjptrC             = f+j_coord_offsetC;
280             fjptrD             = f+j_coord_offsetD;
281             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
282                                                    _mm_mul_ps(dx00,fscal),
283                                                    _mm_mul_ps(dy00,fscal),
284                                                    _mm_mul_ps(dz00,fscal));
285
286             }
287
288             /* Inner loop uses 51 flops */
289         }
290
291         if(jidx<j_index_end)
292         {
293
294             /* Get j neighbor index, and coordinate index */
295             jnrlistA         = jjnr[jidx];
296             jnrlistB         = jjnr[jidx+1];
297             jnrlistC         = jjnr[jidx+2];
298             jnrlistD         = jjnr[jidx+3];
299             /* Sign of each element will be negative for non-real atoms.
300              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
301              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
302              */
303             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
304             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
305             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
306             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
307             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
308             j_coord_offsetA  = DIM*jnrA;
309             j_coord_offsetB  = DIM*jnrB;
310             j_coord_offsetC  = DIM*jnrC;
311             j_coord_offsetD  = DIM*jnrD;
312
313             /* load j atom coordinates */
314             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
315                                               x+j_coord_offsetC,x+j_coord_offsetD,
316                                               &jx0,&jy0,&jz0);
317
318             /* Calculate displacement vector */
319             dx00             = _mm_sub_ps(ix0,jx0);
320             dy00             = _mm_sub_ps(iy0,jy0);
321             dz00             = _mm_sub_ps(iz0,jz0);
322
323             /* Calculate squared distance and things based on it */
324             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
325
326             rinv00           = gmx_mm_invsqrt_ps(rsq00);
327
328             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
329
330             /* Load parameters for j particles */
331             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
332                                                               charge+jnrC+0,charge+jnrD+0);
333             vdwjidx0A        = 2*vdwtype[jnrA+0];
334             vdwjidx0B        = 2*vdwtype[jnrB+0];
335             vdwjidx0C        = 2*vdwtype[jnrC+0];
336             vdwjidx0D        = 2*vdwtype[jnrD+0];
337
338             /**************************
339              * CALCULATE INTERACTIONS *
340              **************************/
341
342             if (gmx_mm_any_lt(rsq00,rcutoff2))
343             {
344
345             r00              = _mm_mul_ps(rsq00,rinv00);
346             r00              = _mm_andnot_ps(dummy_mask,r00);
347
348             /* Compute parameters for interactions between i and j atoms */
349             qq00             = _mm_mul_ps(iq0,jq0);
350             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
351                                          vdwparam+vdwioffset0+vdwjidx0B,
352                                          vdwparam+vdwioffset0+vdwjidx0C,
353                                          vdwparam+vdwioffset0+vdwjidx0D,
354                                          &c6_00,&c12_00);
355
356             /* EWALD ELECTROSTATICS */
357
358             /* Analytical PME correction */
359             zeta2            = _mm_mul_ps(beta2,rsq00);
360             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
361             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
362             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
363             felec            = _mm_mul_ps(qq00,felec);
364             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
365             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv00,sh_ewald));
366             velec            = _mm_mul_ps(qq00,velec);
367
368             /* LENNARD-JONES DISPERSION/REPULSION */
369
370             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
371             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
372             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
373             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
374                                           _mm_mul_ps( _mm_nmacc_ps(c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
375             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
376
377             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
378
379             /* Update potential sum for this i atom from the interaction with this j atom. */
380             velec            = _mm_and_ps(velec,cutoff_mask);
381             velec            = _mm_andnot_ps(dummy_mask,velec);
382             velecsum         = _mm_add_ps(velecsum,velec);
383             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
384             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
385             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
386
387             fscal            = _mm_add_ps(felec,fvdw);
388
389             fscal            = _mm_and_ps(fscal,cutoff_mask);
390
391             fscal            = _mm_andnot_ps(dummy_mask,fscal);
392
393              /* Update vectorial force */
394             fix0             = _mm_macc_ps(dx00,fscal,fix0);
395             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
396             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
397
398             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
399             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
400             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
401             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
402             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
403                                                    _mm_mul_ps(dx00,fscal),
404                                                    _mm_mul_ps(dy00,fscal),
405                                                    _mm_mul_ps(dz00,fscal));
406
407             }
408
409             /* Inner loop uses 52 flops */
410         }
411
412         /* End of innermost loop */
413
414         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
415                                               f+i_coord_offset,fshift+i_shift_offset);
416
417         ggid                        = gid[iidx];
418         /* Update potential energies */
419         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
420         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
421
422         /* Increment number of inner iterations */
423         inneriter                  += j_index_end - j_index_start;
424
425         /* Outer loop uses 9 flops */
426     }
427
428     /* Increment number of outer iterations */
429     outeriter        += nri;
430
431     /* Update outer/inner flops */
432
433     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*52);
434 }
435 /*
436  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_128_fma_single
437  * Electrostatics interaction: Ewald
438  * VdW interaction:            LennardJones
439  * Geometry:                   Particle-Particle
440  * Calculate force/pot:        Force
441  */
442 void
443 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_128_fma_single
444                     (t_nblist                    * gmx_restrict       nlist,
445                      rvec                        * gmx_restrict          xx,
446                      rvec                        * gmx_restrict          ff,
447                      t_forcerec                  * gmx_restrict          fr,
448                      t_mdatoms                   * gmx_restrict     mdatoms,
449                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
450                      t_nrnb                      * gmx_restrict        nrnb)
451 {
452     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
453      * just 0 for non-waters.
454      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
455      * jnr indices corresponding to data put in the four positions in the SIMD register.
456      */
457     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
458     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
459     int              jnrA,jnrB,jnrC,jnrD;
460     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
461     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
462     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
463     real             rcutoff_scalar;
464     real             *shiftvec,*fshift,*x,*f;
465     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
466     real             scratch[4*DIM];
467     __m128           fscal,rcutoff,rcutoff2,jidxall;
468     int              vdwioffset0;
469     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
470     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
471     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
472     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
473     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
474     real             *charge;
475     int              nvdwtype;
476     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
477     int              *vdwtype;
478     real             *vdwparam;
479     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
480     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
481     __m128i          ewitab;
482     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
483     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
484     real             *ewtab;
485     __m128           dummy_mask,cutoff_mask;
486     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
487     __m128           one     = _mm_set1_ps(1.0);
488     __m128           two     = _mm_set1_ps(2.0);
489     x                = xx[0];
490     f                = ff[0];
491
492     nri              = nlist->nri;
493     iinr             = nlist->iinr;
494     jindex           = nlist->jindex;
495     jjnr             = nlist->jjnr;
496     shiftidx         = nlist->shift;
497     gid              = nlist->gid;
498     shiftvec         = fr->shift_vec[0];
499     fshift           = fr->fshift[0];
500     facel            = _mm_set1_ps(fr->epsfac);
501     charge           = mdatoms->chargeA;
502     nvdwtype         = fr->ntype;
503     vdwparam         = fr->nbfp;
504     vdwtype          = mdatoms->typeA;
505
506     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
507     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
508     beta2            = _mm_mul_ps(beta,beta);
509     beta3            = _mm_mul_ps(beta,beta2);
510     ewtab            = fr->ic->tabq_coul_F;
511     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
512     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
513
514     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
515     rcutoff_scalar   = fr->rcoulomb;
516     rcutoff          = _mm_set1_ps(rcutoff_scalar);
517     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
518
519     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
520     rvdw             = _mm_set1_ps(fr->rvdw);
521
522     /* Avoid stupid compiler warnings */
523     jnrA = jnrB = jnrC = jnrD = 0;
524     j_coord_offsetA = 0;
525     j_coord_offsetB = 0;
526     j_coord_offsetC = 0;
527     j_coord_offsetD = 0;
528
529     outeriter        = 0;
530     inneriter        = 0;
531
532     for(iidx=0;iidx<4*DIM;iidx++)
533     {
534         scratch[iidx] = 0.0;
535     }
536
537     /* Start outer loop over neighborlists */
538     for(iidx=0; iidx<nri; iidx++)
539     {
540         /* Load shift vector for this list */
541         i_shift_offset   = DIM*shiftidx[iidx];
542
543         /* Load limits for loop over neighbors */
544         j_index_start    = jindex[iidx];
545         j_index_end      = jindex[iidx+1];
546
547         /* Get outer coordinate index */
548         inr              = iinr[iidx];
549         i_coord_offset   = DIM*inr;
550
551         /* Load i particle coords and add shift vector */
552         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
553
554         fix0             = _mm_setzero_ps();
555         fiy0             = _mm_setzero_ps();
556         fiz0             = _mm_setzero_ps();
557
558         /* Load parameters for i particles */
559         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
560         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
561
562         /* Start inner kernel loop */
563         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
564         {
565
566             /* Get j neighbor index, and coordinate index */
567             jnrA             = jjnr[jidx];
568             jnrB             = jjnr[jidx+1];
569             jnrC             = jjnr[jidx+2];
570             jnrD             = jjnr[jidx+3];
571             j_coord_offsetA  = DIM*jnrA;
572             j_coord_offsetB  = DIM*jnrB;
573             j_coord_offsetC  = DIM*jnrC;
574             j_coord_offsetD  = DIM*jnrD;
575
576             /* load j atom coordinates */
577             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
578                                               x+j_coord_offsetC,x+j_coord_offsetD,
579                                               &jx0,&jy0,&jz0);
580
581             /* Calculate displacement vector */
582             dx00             = _mm_sub_ps(ix0,jx0);
583             dy00             = _mm_sub_ps(iy0,jy0);
584             dz00             = _mm_sub_ps(iz0,jz0);
585
586             /* Calculate squared distance and things based on it */
587             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
588
589             rinv00           = gmx_mm_invsqrt_ps(rsq00);
590
591             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
592
593             /* Load parameters for j particles */
594             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
595                                                               charge+jnrC+0,charge+jnrD+0);
596             vdwjidx0A        = 2*vdwtype[jnrA+0];
597             vdwjidx0B        = 2*vdwtype[jnrB+0];
598             vdwjidx0C        = 2*vdwtype[jnrC+0];
599             vdwjidx0D        = 2*vdwtype[jnrD+0];
600
601             /**************************
602              * CALCULATE INTERACTIONS *
603              **************************/
604
605             if (gmx_mm_any_lt(rsq00,rcutoff2))
606             {
607
608             r00              = _mm_mul_ps(rsq00,rinv00);
609
610             /* Compute parameters for interactions between i and j atoms */
611             qq00             = _mm_mul_ps(iq0,jq0);
612             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
613                                          vdwparam+vdwioffset0+vdwjidx0B,
614                                          vdwparam+vdwioffset0+vdwjidx0C,
615                                          vdwparam+vdwioffset0+vdwjidx0D,
616                                          &c6_00,&c12_00);
617
618             /* EWALD ELECTROSTATICS */
619
620             /* Analytical PME correction */
621             zeta2            = _mm_mul_ps(beta2,rsq00);
622             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
623             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
624             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
625             felec            = _mm_mul_ps(qq00,felec);
626
627             /* LENNARD-JONES DISPERSION/REPULSION */
628
629             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
630             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
631
632             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
633
634             fscal            = _mm_add_ps(felec,fvdw);
635
636             fscal            = _mm_and_ps(fscal,cutoff_mask);
637
638              /* Update vectorial force */
639             fix0             = _mm_macc_ps(dx00,fscal,fix0);
640             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
641             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
642
643             fjptrA             = f+j_coord_offsetA;
644             fjptrB             = f+j_coord_offsetB;
645             fjptrC             = f+j_coord_offsetC;
646             fjptrD             = f+j_coord_offsetD;
647             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
648                                                    _mm_mul_ps(dx00,fscal),
649                                                    _mm_mul_ps(dy00,fscal),
650                                                    _mm_mul_ps(dz00,fscal));
651
652             }
653
654             /* Inner loop uses 38 flops */
655         }
656
657         if(jidx<j_index_end)
658         {
659
660             /* Get j neighbor index, and coordinate index */
661             jnrlistA         = jjnr[jidx];
662             jnrlistB         = jjnr[jidx+1];
663             jnrlistC         = jjnr[jidx+2];
664             jnrlistD         = jjnr[jidx+3];
665             /* Sign of each element will be negative for non-real atoms.
666              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
667              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
668              */
669             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
670             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
671             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
672             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
673             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
674             j_coord_offsetA  = DIM*jnrA;
675             j_coord_offsetB  = DIM*jnrB;
676             j_coord_offsetC  = DIM*jnrC;
677             j_coord_offsetD  = DIM*jnrD;
678
679             /* load j atom coordinates */
680             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
681                                               x+j_coord_offsetC,x+j_coord_offsetD,
682                                               &jx0,&jy0,&jz0);
683
684             /* Calculate displacement vector */
685             dx00             = _mm_sub_ps(ix0,jx0);
686             dy00             = _mm_sub_ps(iy0,jy0);
687             dz00             = _mm_sub_ps(iz0,jz0);
688
689             /* Calculate squared distance and things based on it */
690             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
691
692             rinv00           = gmx_mm_invsqrt_ps(rsq00);
693
694             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
695
696             /* Load parameters for j particles */
697             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
698                                                               charge+jnrC+0,charge+jnrD+0);
699             vdwjidx0A        = 2*vdwtype[jnrA+0];
700             vdwjidx0B        = 2*vdwtype[jnrB+0];
701             vdwjidx0C        = 2*vdwtype[jnrC+0];
702             vdwjidx0D        = 2*vdwtype[jnrD+0];
703
704             /**************************
705              * CALCULATE INTERACTIONS *
706              **************************/
707
708             if (gmx_mm_any_lt(rsq00,rcutoff2))
709             {
710
711             r00              = _mm_mul_ps(rsq00,rinv00);
712             r00              = _mm_andnot_ps(dummy_mask,r00);
713
714             /* Compute parameters for interactions between i and j atoms */
715             qq00             = _mm_mul_ps(iq0,jq0);
716             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
717                                          vdwparam+vdwioffset0+vdwjidx0B,
718                                          vdwparam+vdwioffset0+vdwjidx0C,
719                                          vdwparam+vdwioffset0+vdwjidx0D,
720                                          &c6_00,&c12_00);
721
722             /* EWALD ELECTROSTATICS */
723
724             /* Analytical PME correction */
725             zeta2            = _mm_mul_ps(beta2,rsq00);
726             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
727             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
728             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
729             felec            = _mm_mul_ps(qq00,felec);
730
731             /* LENNARD-JONES DISPERSION/REPULSION */
732
733             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
734             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
735
736             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
737
738             fscal            = _mm_add_ps(felec,fvdw);
739
740             fscal            = _mm_and_ps(fscal,cutoff_mask);
741
742             fscal            = _mm_andnot_ps(dummy_mask,fscal);
743
744              /* Update vectorial force */
745             fix0             = _mm_macc_ps(dx00,fscal,fix0);
746             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
747             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
748
749             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
750             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
751             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
752             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
753             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
754                                                    _mm_mul_ps(dx00,fscal),
755                                                    _mm_mul_ps(dy00,fscal),
756                                                    _mm_mul_ps(dz00,fscal));
757
758             }
759
760             /* Inner loop uses 39 flops */
761         }
762
763         /* End of innermost loop */
764
765         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
766                                               f+i_coord_offset,fshift+i_shift_offset);
767
768         /* Increment number of inner iterations */
769         inneriter                  += j_index_end - j_index_start;
770
771         /* Outer loop uses 7 flops */
772     }
773
774     /* Increment number of outer iterations */
775     outeriter        += nri;
776
777     /* Update outer/inner flops */
778
779     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*39);
780 }