Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_128_fma_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
94     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
95     __m128i          ewitab;
96     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
97     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
98     real             *ewtab;
99     __m128           dummy_mask,cutoff_mask;
100     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
101     __m128           one     = _mm_set1_ps(1.0);
102     __m128           two     = _mm_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_ps(fr->ic->epsfac);
115     charge           = mdatoms->chargeA;
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
121     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
122     beta2            = _mm_mul_ps(beta,beta);
123     beta3            = _mm_mul_ps(beta,beta2);
124     ewtab            = fr->ic->tabq_coul_FDV0;
125     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
126     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
127
128     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
129     rcutoff_scalar   = fr->ic->rcoulomb;
130     rcutoff          = _mm_set1_ps(rcutoff_scalar);
131     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
132
133     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
134     rvdw             = _mm_set1_ps(fr->ic->rvdw);
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     for(iidx=0;iidx<4*DIM;iidx++)
147     {
148         scratch[iidx] = 0.0;
149     }
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
167
168         fix0             = _mm_setzero_ps();
169         fiy0             = _mm_setzero_ps();
170         fiz0             = _mm_setzero_ps();
171
172         /* Load parameters for i particles */
173         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
174         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_ps();
178         vvdwsum          = _mm_setzero_ps();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             jnrC             = jjnr[jidx+2];
188             jnrD             = jjnr[jidx+3];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193
194             /* load j atom coordinates */
195             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
196                                               x+j_coord_offsetC,x+j_coord_offsetD,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm_sub_ps(ix0,jx0);
201             dy00             = _mm_sub_ps(iy0,jy0);
202             dz00             = _mm_sub_ps(iz0,jz0);
203
204             /* Calculate squared distance and things based on it */
205             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
206
207             rinv00           = avx128fma_invsqrt_f(rsq00);
208
209             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
210
211             /* Load parameters for j particles */
212             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
213                                                               charge+jnrC+0,charge+jnrD+0);
214             vdwjidx0A        = 2*vdwtype[jnrA+0];
215             vdwjidx0B        = 2*vdwtype[jnrB+0];
216             vdwjidx0C        = 2*vdwtype[jnrC+0];
217             vdwjidx0D        = 2*vdwtype[jnrD+0];
218
219             /**************************
220              * CALCULATE INTERACTIONS *
221              **************************/
222
223             if (gmx_mm_any_lt(rsq00,rcutoff2))
224             {
225
226             r00              = _mm_mul_ps(rsq00,rinv00);
227
228             /* Compute parameters for interactions between i and j atoms */
229             qq00             = _mm_mul_ps(iq0,jq0);
230             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
231                                          vdwparam+vdwioffset0+vdwjidx0B,
232                                          vdwparam+vdwioffset0+vdwjidx0C,
233                                          vdwparam+vdwioffset0+vdwjidx0D,
234                                          &c6_00,&c12_00);
235
236             /* EWALD ELECTROSTATICS */
237
238             /* Analytical PME correction */
239             zeta2            = _mm_mul_ps(beta2,rsq00);
240             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
241             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
242             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
243             felec            = _mm_mul_ps(qq00,felec);
244             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
245             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv00,sh_ewald));
246             velec            = _mm_mul_ps(qq00,velec);
247
248             /* LENNARD-JONES DISPERSION/REPULSION */
249
250             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
251             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
252             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
253             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
254                                           _mm_mul_ps( _mm_nmacc_ps(c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
255             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
256
257             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
258
259             /* Update potential sum for this i atom from the interaction with this j atom. */
260             velec            = _mm_and_ps(velec,cutoff_mask);
261             velecsum         = _mm_add_ps(velecsum,velec);
262             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
263             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
264
265             fscal            = _mm_add_ps(felec,fvdw);
266
267             fscal            = _mm_and_ps(fscal,cutoff_mask);
268
269              /* Update vectorial force */
270             fix0             = _mm_macc_ps(dx00,fscal,fix0);
271             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
272             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
273
274             fjptrA             = f+j_coord_offsetA;
275             fjptrB             = f+j_coord_offsetB;
276             fjptrC             = f+j_coord_offsetC;
277             fjptrD             = f+j_coord_offsetD;
278             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
279                                                    _mm_mul_ps(dx00,fscal),
280                                                    _mm_mul_ps(dy00,fscal),
281                                                    _mm_mul_ps(dz00,fscal));
282
283             }
284
285             /* Inner loop uses 51 flops */
286         }
287
288         if(jidx<j_index_end)
289         {
290
291             /* Get j neighbor index, and coordinate index */
292             jnrlistA         = jjnr[jidx];
293             jnrlistB         = jjnr[jidx+1];
294             jnrlistC         = jjnr[jidx+2];
295             jnrlistD         = jjnr[jidx+3];
296             /* Sign of each element will be negative for non-real atoms.
297              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
298              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
299              */
300             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
301             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
302             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
303             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
304             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
305             j_coord_offsetA  = DIM*jnrA;
306             j_coord_offsetB  = DIM*jnrB;
307             j_coord_offsetC  = DIM*jnrC;
308             j_coord_offsetD  = DIM*jnrD;
309
310             /* load j atom coordinates */
311             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
312                                               x+j_coord_offsetC,x+j_coord_offsetD,
313                                               &jx0,&jy0,&jz0);
314
315             /* Calculate displacement vector */
316             dx00             = _mm_sub_ps(ix0,jx0);
317             dy00             = _mm_sub_ps(iy0,jy0);
318             dz00             = _mm_sub_ps(iz0,jz0);
319
320             /* Calculate squared distance and things based on it */
321             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
322
323             rinv00           = avx128fma_invsqrt_f(rsq00);
324
325             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
326
327             /* Load parameters for j particles */
328             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
329                                                               charge+jnrC+0,charge+jnrD+0);
330             vdwjidx0A        = 2*vdwtype[jnrA+0];
331             vdwjidx0B        = 2*vdwtype[jnrB+0];
332             vdwjidx0C        = 2*vdwtype[jnrC+0];
333             vdwjidx0D        = 2*vdwtype[jnrD+0];
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             if (gmx_mm_any_lt(rsq00,rcutoff2))
340             {
341
342             r00              = _mm_mul_ps(rsq00,rinv00);
343             r00              = _mm_andnot_ps(dummy_mask,r00);
344
345             /* Compute parameters for interactions between i and j atoms */
346             qq00             = _mm_mul_ps(iq0,jq0);
347             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
348                                          vdwparam+vdwioffset0+vdwjidx0B,
349                                          vdwparam+vdwioffset0+vdwjidx0C,
350                                          vdwparam+vdwioffset0+vdwjidx0D,
351                                          &c6_00,&c12_00);
352
353             /* EWALD ELECTROSTATICS */
354
355             /* Analytical PME correction */
356             zeta2            = _mm_mul_ps(beta2,rsq00);
357             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
358             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
359             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
360             felec            = _mm_mul_ps(qq00,felec);
361             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
362             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv00,sh_ewald));
363             velec            = _mm_mul_ps(qq00,velec);
364
365             /* LENNARD-JONES DISPERSION/REPULSION */
366
367             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
368             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
369             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
370             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
371                                           _mm_mul_ps( _mm_nmacc_ps(c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
372             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
373
374             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
375
376             /* Update potential sum for this i atom from the interaction with this j atom. */
377             velec            = _mm_and_ps(velec,cutoff_mask);
378             velec            = _mm_andnot_ps(dummy_mask,velec);
379             velecsum         = _mm_add_ps(velecsum,velec);
380             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
381             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
382             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
383
384             fscal            = _mm_add_ps(felec,fvdw);
385
386             fscal            = _mm_and_ps(fscal,cutoff_mask);
387
388             fscal            = _mm_andnot_ps(dummy_mask,fscal);
389
390              /* Update vectorial force */
391             fix0             = _mm_macc_ps(dx00,fscal,fix0);
392             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
393             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
394
395             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
396             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
397             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
398             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
399             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
400                                                    _mm_mul_ps(dx00,fscal),
401                                                    _mm_mul_ps(dy00,fscal),
402                                                    _mm_mul_ps(dz00,fscal));
403
404             }
405
406             /* Inner loop uses 52 flops */
407         }
408
409         /* End of innermost loop */
410
411         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
412                                               f+i_coord_offset,fshift+i_shift_offset);
413
414         ggid                        = gid[iidx];
415         /* Update potential energies */
416         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
417         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
418
419         /* Increment number of inner iterations */
420         inneriter                  += j_index_end - j_index_start;
421
422         /* Outer loop uses 9 flops */
423     }
424
425     /* Increment number of outer iterations */
426     outeriter        += nri;
427
428     /* Update outer/inner flops */
429
430     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*52);
431 }
432 /*
433  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_128_fma_single
434  * Electrostatics interaction: Ewald
435  * VdW interaction:            LennardJones
436  * Geometry:                   Particle-Particle
437  * Calculate force/pot:        Force
438  */
439 void
440 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_128_fma_single
441                     (t_nblist                    * gmx_restrict       nlist,
442                      rvec                        * gmx_restrict          xx,
443                      rvec                        * gmx_restrict          ff,
444                      struct t_forcerec           * gmx_restrict          fr,
445                      t_mdatoms                   * gmx_restrict     mdatoms,
446                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
447                      t_nrnb                      * gmx_restrict        nrnb)
448 {
449     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
450      * just 0 for non-waters.
451      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
452      * jnr indices corresponding to data put in the four positions in the SIMD register.
453      */
454     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
455     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
456     int              jnrA,jnrB,jnrC,jnrD;
457     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
458     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
459     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
460     real             rcutoff_scalar;
461     real             *shiftvec,*fshift,*x,*f;
462     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
463     real             scratch[4*DIM];
464     __m128           fscal,rcutoff,rcutoff2,jidxall;
465     int              vdwioffset0;
466     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
467     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
468     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
469     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
470     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
471     real             *charge;
472     int              nvdwtype;
473     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
474     int              *vdwtype;
475     real             *vdwparam;
476     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
477     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
478     __m128i          ewitab;
479     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
480     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
481     real             *ewtab;
482     __m128           dummy_mask,cutoff_mask;
483     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
484     __m128           one     = _mm_set1_ps(1.0);
485     __m128           two     = _mm_set1_ps(2.0);
486     x                = xx[0];
487     f                = ff[0];
488
489     nri              = nlist->nri;
490     iinr             = nlist->iinr;
491     jindex           = nlist->jindex;
492     jjnr             = nlist->jjnr;
493     shiftidx         = nlist->shift;
494     gid              = nlist->gid;
495     shiftvec         = fr->shift_vec[0];
496     fshift           = fr->fshift[0];
497     facel            = _mm_set1_ps(fr->ic->epsfac);
498     charge           = mdatoms->chargeA;
499     nvdwtype         = fr->ntype;
500     vdwparam         = fr->nbfp;
501     vdwtype          = mdatoms->typeA;
502
503     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
504     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
505     beta2            = _mm_mul_ps(beta,beta);
506     beta3            = _mm_mul_ps(beta,beta2);
507     ewtab            = fr->ic->tabq_coul_F;
508     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
509     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
510
511     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
512     rcutoff_scalar   = fr->ic->rcoulomb;
513     rcutoff          = _mm_set1_ps(rcutoff_scalar);
514     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
515
516     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
517     rvdw             = _mm_set1_ps(fr->ic->rvdw);
518
519     /* Avoid stupid compiler warnings */
520     jnrA = jnrB = jnrC = jnrD = 0;
521     j_coord_offsetA = 0;
522     j_coord_offsetB = 0;
523     j_coord_offsetC = 0;
524     j_coord_offsetD = 0;
525
526     outeriter        = 0;
527     inneriter        = 0;
528
529     for(iidx=0;iidx<4*DIM;iidx++)
530     {
531         scratch[iidx] = 0.0;
532     }
533
534     /* Start outer loop over neighborlists */
535     for(iidx=0; iidx<nri; iidx++)
536     {
537         /* Load shift vector for this list */
538         i_shift_offset   = DIM*shiftidx[iidx];
539
540         /* Load limits for loop over neighbors */
541         j_index_start    = jindex[iidx];
542         j_index_end      = jindex[iidx+1];
543
544         /* Get outer coordinate index */
545         inr              = iinr[iidx];
546         i_coord_offset   = DIM*inr;
547
548         /* Load i particle coords and add shift vector */
549         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
550
551         fix0             = _mm_setzero_ps();
552         fiy0             = _mm_setzero_ps();
553         fiz0             = _mm_setzero_ps();
554
555         /* Load parameters for i particles */
556         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
557         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
558
559         /* Start inner kernel loop */
560         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
561         {
562
563             /* Get j neighbor index, and coordinate index */
564             jnrA             = jjnr[jidx];
565             jnrB             = jjnr[jidx+1];
566             jnrC             = jjnr[jidx+2];
567             jnrD             = jjnr[jidx+3];
568             j_coord_offsetA  = DIM*jnrA;
569             j_coord_offsetB  = DIM*jnrB;
570             j_coord_offsetC  = DIM*jnrC;
571             j_coord_offsetD  = DIM*jnrD;
572
573             /* load j atom coordinates */
574             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
575                                               x+j_coord_offsetC,x+j_coord_offsetD,
576                                               &jx0,&jy0,&jz0);
577
578             /* Calculate displacement vector */
579             dx00             = _mm_sub_ps(ix0,jx0);
580             dy00             = _mm_sub_ps(iy0,jy0);
581             dz00             = _mm_sub_ps(iz0,jz0);
582
583             /* Calculate squared distance and things based on it */
584             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
585
586             rinv00           = avx128fma_invsqrt_f(rsq00);
587
588             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
589
590             /* Load parameters for j particles */
591             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
592                                                               charge+jnrC+0,charge+jnrD+0);
593             vdwjidx0A        = 2*vdwtype[jnrA+0];
594             vdwjidx0B        = 2*vdwtype[jnrB+0];
595             vdwjidx0C        = 2*vdwtype[jnrC+0];
596             vdwjidx0D        = 2*vdwtype[jnrD+0];
597
598             /**************************
599              * CALCULATE INTERACTIONS *
600              **************************/
601
602             if (gmx_mm_any_lt(rsq00,rcutoff2))
603             {
604
605             r00              = _mm_mul_ps(rsq00,rinv00);
606
607             /* Compute parameters for interactions between i and j atoms */
608             qq00             = _mm_mul_ps(iq0,jq0);
609             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
610                                          vdwparam+vdwioffset0+vdwjidx0B,
611                                          vdwparam+vdwioffset0+vdwjidx0C,
612                                          vdwparam+vdwioffset0+vdwjidx0D,
613                                          &c6_00,&c12_00);
614
615             /* EWALD ELECTROSTATICS */
616
617             /* Analytical PME correction */
618             zeta2            = _mm_mul_ps(beta2,rsq00);
619             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
620             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
621             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
622             felec            = _mm_mul_ps(qq00,felec);
623
624             /* LENNARD-JONES DISPERSION/REPULSION */
625
626             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
627             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
628
629             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
630
631             fscal            = _mm_add_ps(felec,fvdw);
632
633             fscal            = _mm_and_ps(fscal,cutoff_mask);
634
635              /* Update vectorial force */
636             fix0             = _mm_macc_ps(dx00,fscal,fix0);
637             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
638             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
639
640             fjptrA             = f+j_coord_offsetA;
641             fjptrB             = f+j_coord_offsetB;
642             fjptrC             = f+j_coord_offsetC;
643             fjptrD             = f+j_coord_offsetD;
644             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
645                                                    _mm_mul_ps(dx00,fscal),
646                                                    _mm_mul_ps(dy00,fscal),
647                                                    _mm_mul_ps(dz00,fscal));
648
649             }
650
651             /* Inner loop uses 38 flops */
652         }
653
654         if(jidx<j_index_end)
655         {
656
657             /* Get j neighbor index, and coordinate index */
658             jnrlistA         = jjnr[jidx];
659             jnrlistB         = jjnr[jidx+1];
660             jnrlistC         = jjnr[jidx+2];
661             jnrlistD         = jjnr[jidx+3];
662             /* Sign of each element will be negative for non-real atoms.
663              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
664              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
665              */
666             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
667             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
668             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
669             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
670             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
671             j_coord_offsetA  = DIM*jnrA;
672             j_coord_offsetB  = DIM*jnrB;
673             j_coord_offsetC  = DIM*jnrC;
674             j_coord_offsetD  = DIM*jnrD;
675
676             /* load j atom coordinates */
677             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
678                                               x+j_coord_offsetC,x+j_coord_offsetD,
679                                               &jx0,&jy0,&jz0);
680
681             /* Calculate displacement vector */
682             dx00             = _mm_sub_ps(ix0,jx0);
683             dy00             = _mm_sub_ps(iy0,jy0);
684             dz00             = _mm_sub_ps(iz0,jz0);
685
686             /* Calculate squared distance and things based on it */
687             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
688
689             rinv00           = avx128fma_invsqrt_f(rsq00);
690
691             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
692
693             /* Load parameters for j particles */
694             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
695                                                               charge+jnrC+0,charge+jnrD+0);
696             vdwjidx0A        = 2*vdwtype[jnrA+0];
697             vdwjidx0B        = 2*vdwtype[jnrB+0];
698             vdwjidx0C        = 2*vdwtype[jnrC+0];
699             vdwjidx0D        = 2*vdwtype[jnrD+0];
700
701             /**************************
702              * CALCULATE INTERACTIONS *
703              **************************/
704
705             if (gmx_mm_any_lt(rsq00,rcutoff2))
706             {
707
708             r00              = _mm_mul_ps(rsq00,rinv00);
709             r00              = _mm_andnot_ps(dummy_mask,r00);
710
711             /* Compute parameters for interactions between i and j atoms */
712             qq00             = _mm_mul_ps(iq0,jq0);
713             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
714                                          vdwparam+vdwioffset0+vdwjidx0B,
715                                          vdwparam+vdwioffset0+vdwjidx0C,
716                                          vdwparam+vdwioffset0+vdwjidx0D,
717                                          &c6_00,&c12_00);
718
719             /* EWALD ELECTROSTATICS */
720
721             /* Analytical PME correction */
722             zeta2            = _mm_mul_ps(beta2,rsq00);
723             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
724             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
725             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
726             felec            = _mm_mul_ps(qq00,felec);
727
728             /* LENNARD-JONES DISPERSION/REPULSION */
729
730             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
731             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
732
733             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
734
735             fscal            = _mm_add_ps(felec,fvdw);
736
737             fscal            = _mm_and_ps(fscal,cutoff_mask);
738
739             fscal            = _mm_andnot_ps(dummy_mask,fscal);
740
741              /* Update vectorial force */
742             fix0             = _mm_macc_ps(dx00,fscal,fix0);
743             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
744             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
745
746             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
747             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
748             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
749             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
750             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
751                                                    _mm_mul_ps(dx00,fscal),
752                                                    _mm_mul_ps(dy00,fscal),
753                                                    _mm_mul_ps(dz00,fscal));
754
755             }
756
757             /* Inner loop uses 39 flops */
758         }
759
760         /* End of innermost loop */
761
762         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
763                                               f+i_coord_offset,fshift+i_shift_offset);
764
765         /* Increment number of inner iterations */
766         inneriter                  += j_index_end - j_index_start;
767
768         /* Outer loop uses 7 flops */
769     }
770
771     /* Increment number of outer iterations */
772     outeriter        += nri;
773
774     /* Update outer/inner flops */
775
776     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*39);
777 }