Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_128_fma_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
100     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
101     __m128           c6grid_00;
102     __m128           c6grid_10;
103     __m128           c6grid_20;
104     real             *vdwgridparam;
105     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
106     __m128           one_half = _mm_set1_ps(0.5);
107     __m128           minus_one = _mm_set1_ps(-1.0);
108     __m128i          ewitab;
109     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
111     real             *ewtab;
112     __m128           dummy_mask,cutoff_mask;
113     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
114     __m128           one     = _mm_set1_ps(1.0);
115     __m128           two     = _mm_set1_ps(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm_set1_ps(fr->ic->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132     vdwgridparam     = fr->ljpme_c6grid;
133     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
134     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
135     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
136
137     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
138     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
139     beta2            = _mm_mul_ps(beta,beta);
140     beta3            = _mm_mul_ps(beta,beta2);
141     ewtab            = fr->ic->tabq_coul_FDV0;
142     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
143     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
144
145     /* Setup water-specific parameters */
146     inr              = nlist->iinr[0];
147     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
148     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
149     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
150     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
153     rcutoff_scalar   = fr->ic->rcoulomb;
154     rcutoff          = _mm_set1_ps(rcutoff_scalar);
155     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
156
157     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
158     rvdw             = _mm_set1_ps(fr->ic->rvdw);
159
160     /* Avoid stupid compiler warnings */
161     jnrA = jnrB = jnrC = jnrD = 0;
162     j_coord_offsetA = 0;
163     j_coord_offsetB = 0;
164     j_coord_offsetC = 0;
165     j_coord_offsetD = 0;
166
167     outeriter        = 0;
168     inneriter        = 0;
169
170     for(iidx=0;iidx<4*DIM;iidx++)
171     {
172         scratch[iidx] = 0.0;
173     }
174
175     /* Start outer loop over neighborlists */
176     for(iidx=0; iidx<nri; iidx++)
177     {
178         /* Load shift vector for this list */
179         i_shift_offset   = DIM*shiftidx[iidx];
180
181         /* Load limits for loop over neighbors */
182         j_index_start    = jindex[iidx];
183         j_index_end      = jindex[iidx+1];
184
185         /* Get outer coordinate index */
186         inr              = iinr[iidx];
187         i_coord_offset   = DIM*inr;
188
189         /* Load i particle coords and add shift vector */
190         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
191                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
192
193         fix0             = _mm_setzero_ps();
194         fiy0             = _mm_setzero_ps();
195         fiz0             = _mm_setzero_ps();
196         fix1             = _mm_setzero_ps();
197         fiy1             = _mm_setzero_ps();
198         fiz1             = _mm_setzero_ps();
199         fix2             = _mm_setzero_ps();
200         fiy2             = _mm_setzero_ps();
201         fiz2             = _mm_setzero_ps();
202
203         /* Reset potential sums */
204         velecsum         = _mm_setzero_ps();
205         vvdwsum          = _mm_setzero_ps();
206
207         /* Start inner kernel loop */
208         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
209         {
210
211             /* Get j neighbor index, and coordinate index */
212             jnrA             = jjnr[jidx];
213             jnrB             = jjnr[jidx+1];
214             jnrC             = jjnr[jidx+2];
215             jnrD             = jjnr[jidx+3];
216             j_coord_offsetA  = DIM*jnrA;
217             j_coord_offsetB  = DIM*jnrB;
218             j_coord_offsetC  = DIM*jnrC;
219             j_coord_offsetD  = DIM*jnrD;
220
221             /* load j atom coordinates */
222             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
223                                               x+j_coord_offsetC,x+j_coord_offsetD,
224                                               &jx0,&jy0,&jz0);
225
226             /* Calculate displacement vector */
227             dx00             = _mm_sub_ps(ix0,jx0);
228             dy00             = _mm_sub_ps(iy0,jy0);
229             dz00             = _mm_sub_ps(iz0,jz0);
230             dx10             = _mm_sub_ps(ix1,jx0);
231             dy10             = _mm_sub_ps(iy1,jy0);
232             dz10             = _mm_sub_ps(iz1,jz0);
233             dx20             = _mm_sub_ps(ix2,jx0);
234             dy20             = _mm_sub_ps(iy2,jy0);
235             dz20             = _mm_sub_ps(iz2,jz0);
236
237             /* Calculate squared distance and things based on it */
238             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
239             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
240             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
241
242             rinv00           = avx128fma_invsqrt_f(rsq00);
243             rinv10           = avx128fma_invsqrt_f(rsq10);
244             rinv20           = avx128fma_invsqrt_f(rsq20);
245
246             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
247             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
248             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
249
250             /* Load parameters for j particles */
251             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
252                                                               charge+jnrC+0,charge+jnrD+0);
253             vdwjidx0A        = 2*vdwtype[jnrA+0];
254             vdwjidx0B        = 2*vdwtype[jnrB+0];
255             vdwjidx0C        = 2*vdwtype[jnrC+0];
256             vdwjidx0D        = 2*vdwtype[jnrD+0];
257
258             fjx0             = _mm_setzero_ps();
259             fjy0             = _mm_setzero_ps();
260             fjz0             = _mm_setzero_ps();
261
262             /**************************
263              * CALCULATE INTERACTIONS *
264              **************************/
265
266             if (gmx_mm_any_lt(rsq00,rcutoff2))
267             {
268
269             r00              = _mm_mul_ps(rsq00,rinv00);
270
271             /* Compute parameters for interactions between i and j atoms */
272             qq00             = _mm_mul_ps(iq0,jq0);
273             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
274                                          vdwparam+vdwioffset0+vdwjidx0B,
275                                          vdwparam+vdwioffset0+vdwjidx0C,
276                                          vdwparam+vdwioffset0+vdwjidx0D,
277                                          &c6_00,&c12_00);
278
279             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
280                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
281                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
282                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
283
284             /* EWALD ELECTROSTATICS */
285
286             /* Analytical PME correction */
287             zeta2            = _mm_mul_ps(beta2,rsq00);
288             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
289             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
290             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
291             felec            = _mm_mul_ps(qq00,felec);
292             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
293             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv00,sh_ewald));
294             velec            = _mm_mul_ps(qq00,velec);
295
296             /* Analytical LJ-PME */
297             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
298             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
299             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
300             exponent         = avx128fma_exp_f(ewcljrsq);
301             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
302             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
303             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
304             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
305             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
306             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
307                                           _mm_mul_ps(_mm_sub_ps(vvdw6,_mm_macc_ps(c6grid_00,sh_lj_ewald,_mm_mul_ps(c6_00,sh_vdw_invrcut6))),one_sixth));
308             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
309             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
310
311             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
312
313             /* Update potential sum for this i atom from the interaction with this j atom. */
314             velec            = _mm_and_ps(velec,cutoff_mask);
315             velecsum         = _mm_add_ps(velecsum,velec);
316             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
317             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
318
319             fscal            = _mm_add_ps(felec,fvdw);
320
321             fscal            = _mm_and_ps(fscal,cutoff_mask);
322
323              /* Update vectorial force */
324             fix0             = _mm_macc_ps(dx00,fscal,fix0);
325             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
326             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
327
328             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
329             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
330             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
331
332             }
333
334             /**************************
335              * CALCULATE INTERACTIONS *
336              **************************/
337
338             if (gmx_mm_any_lt(rsq10,rcutoff2))
339             {
340
341             r10              = _mm_mul_ps(rsq10,rinv10);
342
343             /* Compute parameters for interactions between i and j atoms */
344             qq10             = _mm_mul_ps(iq1,jq0);
345
346             /* EWALD ELECTROSTATICS */
347
348             /* Analytical PME correction */
349             zeta2            = _mm_mul_ps(beta2,rsq10);
350             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
351             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
352             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
353             felec            = _mm_mul_ps(qq10,felec);
354             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
355             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv10,sh_ewald));
356             velec            = _mm_mul_ps(qq10,velec);
357
358             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
359
360             /* Update potential sum for this i atom from the interaction with this j atom. */
361             velec            = _mm_and_ps(velec,cutoff_mask);
362             velecsum         = _mm_add_ps(velecsum,velec);
363
364             fscal            = felec;
365
366             fscal            = _mm_and_ps(fscal,cutoff_mask);
367
368              /* Update vectorial force */
369             fix1             = _mm_macc_ps(dx10,fscal,fix1);
370             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
371             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
372
373             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
374             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
375             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
376
377             }
378
379             /**************************
380              * CALCULATE INTERACTIONS *
381              **************************/
382
383             if (gmx_mm_any_lt(rsq20,rcutoff2))
384             {
385
386             r20              = _mm_mul_ps(rsq20,rinv20);
387
388             /* Compute parameters for interactions between i and j atoms */
389             qq20             = _mm_mul_ps(iq2,jq0);
390
391             /* EWALD ELECTROSTATICS */
392
393             /* Analytical PME correction */
394             zeta2            = _mm_mul_ps(beta2,rsq20);
395             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
396             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
397             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
398             felec            = _mm_mul_ps(qq20,felec);
399             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
400             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv20,sh_ewald));
401             velec            = _mm_mul_ps(qq20,velec);
402
403             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
404
405             /* Update potential sum for this i atom from the interaction with this j atom. */
406             velec            = _mm_and_ps(velec,cutoff_mask);
407             velecsum         = _mm_add_ps(velecsum,velec);
408
409             fscal            = felec;
410
411             fscal            = _mm_and_ps(fscal,cutoff_mask);
412
413              /* Update vectorial force */
414             fix2             = _mm_macc_ps(dx20,fscal,fix2);
415             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
416             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
417
418             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
419             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
420             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
421
422             }
423
424             fjptrA             = f+j_coord_offsetA;
425             fjptrB             = f+j_coord_offsetB;
426             fjptrC             = f+j_coord_offsetC;
427             fjptrD             = f+j_coord_offsetD;
428
429             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
430
431             /* Inner loop uses 129 flops */
432         }
433
434         if(jidx<j_index_end)
435         {
436
437             /* Get j neighbor index, and coordinate index */
438             jnrlistA         = jjnr[jidx];
439             jnrlistB         = jjnr[jidx+1];
440             jnrlistC         = jjnr[jidx+2];
441             jnrlistD         = jjnr[jidx+3];
442             /* Sign of each element will be negative for non-real atoms.
443              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
444              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
445              */
446             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
447             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
448             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
449             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
450             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
451             j_coord_offsetA  = DIM*jnrA;
452             j_coord_offsetB  = DIM*jnrB;
453             j_coord_offsetC  = DIM*jnrC;
454             j_coord_offsetD  = DIM*jnrD;
455
456             /* load j atom coordinates */
457             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
458                                               x+j_coord_offsetC,x+j_coord_offsetD,
459                                               &jx0,&jy0,&jz0);
460
461             /* Calculate displacement vector */
462             dx00             = _mm_sub_ps(ix0,jx0);
463             dy00             = _mm_sub_ps(iy0,jy0);
464             dz00             = _mm_sub_ps(iz0,jz0);
465             dx10             = _mm_sub_ps(ix1,jx0);
466             dy10             = _mm_sub_ps(iy1,jy0);
467             dz10             = _mm_sub_ps(iz1,jz0);
468             dx20             = _mm_sub_ps(ix2,jx0);
469             dy20             = _mm_sub_ps(iy2,jy0);
470             dz20             = _mm_sub_ps(iz2,jz0);
471
472             /* Calculate squared distance and things based on it */
473             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
474             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
475             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
476
477             rinv00           = avx128fma_invsqrt_f(rsq00);
478             rinv10           = avx128fma_invsqrt_f(rsq10);
479             rinv20           = avx128fma_invsqrt_f(rsq20);
480
481             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
482             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
483             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
484
485             /* Load parameters for j particles */
486             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
487                                                               charge+jnrC+0,charge+jnrD+0);
488             vdwjidx0A        = 2*vdwtype[jnrA+0];
489             vdwjidx0B        = 2*vdwtype[jnrB+0];
490             vdwjidx0C        = 2*vdwtype[jnrC+0];
491             vdwjidx0D        = 2*vdwtype[jnrD+0];
492
493             fjx0             = _mm_setzero_ps();
494             fjy0             = _mm_setzero_ps();
495             fjz0             = _mm_setzero_ps();
496
497             /**************************
498              * CALCULATE INTERACTIONS *
499              **************************/
500
501             if (gmx_mm_any_lt(rsq00,rcutoff2))
502             {
503
504             r00              = _mm_mul_ps(rsq00,rinv00);
505             r00              = _mm_andnot_ps(dummy_mask,r00);
506
507             /* Compute parameters for interactions between i and j atoms */
508             qq00             = _mm_mul_ps(iq0,jq0);
509             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
510                                          vdwparam+vdwioffset0+vdwjidx0B,
511                                          vdwparam+vdwioffset0+vdwjidx0C,
512                                          vdwparam+vdwioffset0+vdwjidx0D,
513                                          &c6_00,&c12_00);
514
515             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
516                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
517                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
518                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
519
520             /* EWALD ELECTROSTATICS */
521
522             /* Analytical PME correction */
523             zeta2            = _mm_mul_ps(beta2,rsq00);
524             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
525             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
526             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
527             felec            = _mm_mul_ps(qq00,felec);
528             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
529             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv00,sh_ewald));
530             velec            = _mm_mul_ps(qq00,velec);
531
532             /* Analytical LJ-PME */
533             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
534             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
535             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
536             exponent         = avx128fma_exp_f(ewcljrsq);
537             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
538             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
539             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
540             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
541             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
542             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
543                                           _mm_mul_ps(_mm_sub_ps(vvdw6,_mm_macc_ps(c6grid_00,sh_lj_ewald,_mm_mul_ps(c6_00,sh_vdw_invrcut6))),one_sixth));
544             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
545             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
546
547             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
548
549             /* Update potential sum for this i atom from the interaction with this j atom. */
550             velec            = _mm_and_ps(velec,cutoff_mask);
551             velec            = _mm_andnot_ps(dummy_mask,velec);
552             velecsum         = _mm_add_ps(velecsum,velec);
553             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
554             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
555             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
556
557             fscal            = _mm_add_ps(felec,fvdw);
558
559             fscal            = _mm_and_ps(fscal,cutoff_mask);
560
561             fscal            = _mm_andnot_ps(dummy_mask,fscal);
562
563              /* Update vectorial force */
564             fix0             = _mm_macc_ps(dx00,fscal,fix0);
565             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
566             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
567
568             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
569             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
570             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
571
572             }
573
574             /**************************
575              * CALCULATE INTERACTIONS *
576              **************************/
577
578             if (gmx_mm_any_lt(rsq10,rcutoff2))
579             {
580
581             r10              = _mm_mul_ps(rsq10,rinv10);
582             r10              = _mm_andnot_ps(dummy_mask,r10);
583
584             /* Compute parameters for interactions between i and j atoms */
585             qq10             = _mm_mul_ps(iq1,jq0);
586
587             /* EWALD ELECTROSTATICS */
588
589             /* Analytical PME correction */
590             zeta2            = _mm_mul_ps(beta2,rsq10);
591             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
592             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
593             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
594             felec            = _mm_mul_ps(qq10,felec);
595             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
596             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv10,sh_ewald));
597             velec            = _mm_mul_ps(qq10,velec);
598
599             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
600
601             /* Update potential sum for this i atom from the interaction with this j atom. */
602             velec            = _mm_and_ps(velec,cutoff_mask);
603             velec            = _mm_andnot_ps(dummy_mask,velec);
604             velecsum         = _mm_add_ps(velecsum,velec);
605
606             fscal            = felec;
607
608             fscal            = _mm_and_ps(fscal,cutoff_mask);
609
610             fscal            = _mm_andnot_ps(dummy_mask,fscal);
611
612              /* Update vectorial force */
613             fix1             = _mm_macc_ps(dx10,fscal,fix1);
614             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
615             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
616
617             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
618             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
619             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
620
621             }
622
623             /**************************
624              * CALCULATE INTERACTIONS *
625              **************************/
626
627             if (gmx_mm_any_lt(rsq20,rcutoff2))
628             {
629
630             r20              = _mm_mul_ps(rsq20,rinv20);
631             r20              = _mm_andnot_ps(dummy_mask,r20);
632
633             /* Compute parameters for interactions between i and j atoms */
634             qq20             = _mm_mul_ps(iq2,jq0);
635
636             /* EWALD ELECTROSTATICS */
637
638             /* Analytical PME correction */
639             zeta2            = _mm_mul_ps(beta2,rsq20);
640             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
641             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
642             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
643             felec            = _mm_mul_ps(qq20,felec);
644             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
645             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv20,sh_ewald));
646             velec            = _mm_mul_ps(qq20,velec);
647
648             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
649
650             /* Update potential sum for this i atom from the interaction with this j atom. */
651             velec            = _mm_and_ps(velec,cutoff_mask);
652             velec            = _mm_andnot_ps(dummy_mask,velec);
653             velecsum         = _mm_add_ps(velecsum,velec);
654
655             fscal            = felec;
656
657             fscal            = _mm_and_ps(fscal,cutoff_mask);
658
659             fscal            = _mm_andnot_ps(dummy_mask,fscal);
660
661              /* Update vectorial force */
662             fix2             = _mm_macc_ps(dx20,fscal,fix2);
663             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
664             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
665
666             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
667             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
668             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
669
670             }
671
672             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
673             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
674             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
675             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
676
677             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
678
679             /* Inner loop uses 132 flops */
680         }
681
682         /* End of innermost loop */
683
684         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
685                                               f+i_coord_offset,fshift+i_shift_offset);
686
687         ggid                        = gid[iidx];
688         /* Update potential energies */
689         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
690         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
691
692         /* Increment number of inner iterations */
693         inneriter                  += j_index_end - j_index_start;
694
695         /* Outer loop uses 20 flops */
696     }
697
698     /* Increment number of outer iterations */
699     outeriter        += nri;
700
701     /* Update outer/inner flops */
702
703     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*132);
704 }
705 /*
706  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_128_fma_single
707  * Electrostatics interaction: Ewald
708  * VdW interaction:            LJEwald
709  * Geometry:                   Water3-Particle
710  * Calculate force/pot:        Force
711  */
712 void
713 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_128_fma_single
714                     (t_nblist                    * gmx_restrict       nlist,
715                      rvec                        * gmx_restrict          xx,
716                      rvec                        * gmx_restrict          ff,
717                      struct t_forcerec           * gmx_restrict          fr,
718                      t_mdatoms                   * gmx_restrict     mdatoms,
719                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
720                      t_nrnb                      * gmx_restrict        nrnb)
721 {
722     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
723      * just 0 for non-waters.
724      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
725      * jnr indices corresponding to data put in the four positions in the SIMD register.
726      */
727     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
728     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
729     int              jnrA,jnrB,jnrC,jnrD;
730     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
731     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
732     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
733     real             rcutoff_scalar;
734     real             *shiftvec,*fshift,*x,*f;
735     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
736     real             scratch[4*DIM];
737     __m128           fscal,rcutoff,rcutoff2,jidxall;
738     int              vdwioffset0;
739     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
740     int              vdwioffset1;
741     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
742     int              vdwioffset2;
743     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
744     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
745     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
746     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
747     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
748     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
749     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
750     real             *charge;
751     int              nvdwtype;
752     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
753     int              *vdwtype;
754     real             *vdwparam;
755     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
756     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
757     __m128           c6grid_00;
758     __m128           c6grid_10;
759     __m128           c6grid_20;
760     real             *vdwgridparam;
761     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
762     __m128           one_half = _mm_set1_ps(0.5);
763     __m128           minus_one = _mm_set1_ps(-1.0);
764     __m128i          ewitab;
765     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
766     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
767     real             *ewtab;
768     __m128           dummy_mask,cutoff_mask;
769     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
770     __m128           one     = _mm_set1_ps(1.0);
771     __m128           two     = _mm_set1_ps(2.0);
772     x                = xx[0];
773     f                = ff[0];
774
775     nri              = nlist->nri;
776     iinr             = nlist->iinr;
777     jindex           = nlist->jindex;
778     jjnr             = nlist->jjnr;
779     shiftidx         = nlist->shift;
780     gid              = nlist->gid;
781     shiftvec         = fr->shift_vec[0];
782     fshift           = fr->fshift[0];
783     facel            = _mm_set1_ps(fr->ic->epsfac);
784     charge           = mdatoms->chargeA;
785     nvdwtype         = fr->ntype;
786     vdwparam         = fr->nbfp;
787     vdwtype          = mdatoms->typeA;
788     vdwgridparam     = fr->ljpme_c6grid;
789     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
790     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
791     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
792
793     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
794     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
795     beta2            = _mm_mul_ps(beta,beta);
796     beta3            = _mm_mul_ps(beta,beta2);
797     ewtab            = fr->ic->tabq_coul_F;
798     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
799     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
800
801     /* Setup water-specific parameters */
802     inr              = nlist->iinr[0];
803     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
804     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
805     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
806     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
807
808     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
809     rcutoff_scalar   = fr->ic->rcoulomb;
810     rcutoff          = _mm_set1_ps(rcutoff_scalar);
811     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
812
813     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
814     rvdw             = _mm_set1_ps(fr->ic->rvdw);
815
816     /* Avoid stupid compiler warnings */
817     jnrA = jnrB = jnrC = jnrD = 0;
818     j_coord_offsetA = 0;
819     j_coord_offsetB = 0;
820     j_coord_offsetC = 0;
821     j_coord_offsetD = 0;
822
823     outeriter        = 0;
824     inneriter        = 0;
825
826     for(iidx=0;iidx<4*DIM;iidx++)
827     {
828         scratch[iidx] = 0.0;
829     }
830
831     /* Start outer loop over neighborlists */
832     for(iidx=0; iidx<nri; iidx++)
833     {
834         /* Load shift vector for this list */
835         i_shift_offset   = DIM*shiftidx[iidx];
836
837         /* Load limits for loop over neighbors */
838         j_index_start    = jindex[iidx];
839         j_index_end      = jindex[iidx+1];
840
841         /* Get outer coordinate index */
842         inr              = iinr[iidx];
843         i_coord_offset   = DIM*inr;
844
845         /* Load i particle coords and add shift vector */
846         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
847                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
848
849         fix0             = _mm_setzero_ps();
850         fiy0             = _mm_setzero_ps();
851         fiz0             = _mm_setzero_ps();
852         fix1             = _mm_setzero_ps();
853         fiy1             = _mm_setzero_ps();
854         fiz1             = _mm_setzero_ps();
855         fix2             = _mm_setzero_ps();
856         fiy2             = _mm_setzero_ps();
857         fiz2             = _mm_setzero_ps();
858
859         /* Start inner kernel loop */
860         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
861         {
862
863             /* Get j neighbor index, and coordinate index */
864             jnrA             = jjnr[jidx];
865             jnrB             = jjnr[jidx+1];
866             jnrC             = jjnr[jidx+2];
867             jnrD             = jjnr[jidx+3];
868             j_coord_offsetA  = DIM*jnrA;
869             j_coord_offsetB  = DIM*jnrB;
870             j_coord_offsetC  = DIM*jnrC;
871             j_coord_offsetD  = DIM*jnrD;
872
873             /* load j atom coordinates */
874             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
875                                               x+j_coord_offsetC,x+j_coord_offsetD,
876                                               &jx0,&jy0,&jz0);
877
878             /* Calculate displacement vector */
879             dx00             = _mm_sub_ps(ix0,jx0);
880             dy00             = _mm_sub_ps(iy0,jy0);
881             dz00             = _mm_sub_ps(iz0,jz0);
882             dx10             = _mm_sub_ps(ix1,jx0);
883             dy10             = _mm_sub_ps(iy1,jy0);
884             dz10             = _mm_sub_ps(iz1,jz0);
885             dx20             = _mm_sub_ps(ix2,jx0);
886             dy20             = _mm_sub_ps(iy2,jy0);
887             dz20             = _mm_sub_ps(iz2,jz0);
888
889             /* Calculate squared distance and things based on it */
890             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
891             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
892             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
893
894             rinv00           = avx128fma_invsqrt_f(rsq00);
895             rinv10           = avx128fma_invsqrt_f(rsq10);
896             rinv20           = avx128fma_invsqrt_f(rsq20);
897
898             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
899             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
900             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
901
902             /* Load parameters for j particles */
903             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
904                                                               charge+jnrC+0,charge+jnrD+0);
905             vdwjidx0A        = 2*vdwtype[jnrA+0];
906             vdwjidx0B        = 2*vdwtype[jnrB+0];
907             vdwjidx0C        = 2*vdwtype[jnrC+0];
908             vdwjidx0D        = 2*vdwtype[jnrD+0];
909
910             fjx0             = _mm_setzero_ps();
911             fjy0             = _mm_setzero_ps();
912             fjz0             = _mm_setzero_ps();
913
914             /**************************
915              * CALCULATE INTERACTIONS *
916              **************************/
917
918             if (gmx_mm_any_lt(rsq00,rcutoff2))
919             {
920
921             r00              = _mm_mul_ps(rsq00,rinv00);
922
923             /* Compute parameters for interactions between i and j atoms */
924             qq00             = _mm_mul_ps(iq0,jq0);
925             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
926                                          vdwparam+vdwioffset0+vdwjidx0B,
927                                          vdwparam+vdwioffset0+vdwjidx0C,
928                                          vdwparam+vdwioffset0+vdwjidx0D,
929                                          &c6_00,&c12_00);
930
931             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
932                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
933                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
934                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
935
936             /* EWALD ELECTROSTATICS */
937
938             /* Analytical PME correction */
939             zeta2            = _mm_mul_ps(beta2,rsq00);
940             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
941             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
942             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
943             felec            = _mm_mul_ps(qq00,felec);
944
945             /* Analytical LJ-PME */
946             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
947             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
948             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
949             exponent         = avx128fma_exp_f(ewcljrsq);
950             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
951             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
952             /* f6A = 6 * C6grid * (1 - poly) */
953             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
954             /* f6B = C6grid * exponent * beta^6 */
955             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
956             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
957             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
958
959             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
960
961             fscal            = _mm_add_ps(felec,fvdw);
962
963             fscal            = _mm_and_ps(fscal,cutoff_mask);
964
965              /* Update vectorial force */
966             fix0             = _mm_macc_ps(dx00,fscal,fix0);
967             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
968             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
969
970             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
971             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
972             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
973
974             }
975
976             /**************************
977              * CALCULATE INTERACTIONS *
978              **************************/
979
980             if (gmx_mm_any_lt(rsq10,rcutoff2))
981             {
982
983             r10              = _mm_mul_ps(rsq10,rinv10);
984
985             /* Compute parameters for interactions between i and j atoms */
986             qq10             = _mm_mul_ps(iq1,jq0);
987
988             /* EWALD ELECTROSTATICS */
989
990             /* Analytical PME correction */
991             zeta2            = _mm_mul_ps(beta2,rsq10);
992             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
993             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
994             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
995             felec            = _mm_mul_ps(qq10,felec);
996
997             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
998
999             fscal            = felec;
1000
1001             fscal            = _mm_and_ps(fscal,cutoff_mask);
1002
1003              /* Update vectorial force */
1004             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1005             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1006             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1007
1008             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1009             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1010             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1011
1012             }
1013
1014             /**************************
1015              * CALCULATE INTERACTIONS *
1016              **************************/
1017
1018             if (gmx_mm_any_lt(rsq20,rcutoff2))
1019             {
1020
1021             r20              = _mm_mul_ps(rsq20,rinv20);
1022
1023             /* Compute parameters for interactions between i and j atoms */
1024             qq20             = _mm_mul_ps(iq2,jq0);
1025
1026             /* EWALD ELECTROSTATICS */
1027
1028             /* Analytical PME correction */
1029             zeta2            = _mm_mul_ps(beta2,rsq20);
1030             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1031             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1032             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1033             felec            = _mm_mul_ps(qq20,felec);
1034
1035             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1036
1037             fscal            = felec;
1038
1039             fscal            = _mm_and_ps(fscal,cutoff_mask);
1040
1041              /* Update vectorial force */
1042             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1043             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1044             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1045
1046             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1047             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1048             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1049
1050             }
1051
1052             fjptrA             = f+j_coord_offsetA;
1053             fjptrB             = f+j_coord_offsetB;
1054             fjptrC             = f+j_coord_offsetC;
1055             fjptrD             = f+j_coord_offsetD;
1056
1057             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1058
1059             /* Inner loop uses 114 flops */
1060         }
1061
1062         if(jidx<j_index_end)
1063         {
1064
1065             /* Get j neighbor index, and coordinate index */
1066             jnrlistA         = jjnr[jidx];
1067             jnrlistB         = jjnr[jidx+1];
1068             jnrlistC         = jjnr[jidx+2];
1069             jnrlistD         = jjnr[jidx+3];
1070             /* Sign of each element will be negative for non-real atoms.
1071              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1072              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1073              */
1074             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1075             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1076             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1077             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1078             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1079             j_coord_offsetA  = DIM*jnrA;
1080             j_coord_offsetB  = DIM*jnrB;
1081             j_coord_offsetC  = DIM*jnrC;
1082             j_coord_offsetD  = DIM*jnrD;
1083
1084             /* load j atom coordinates */
1085             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1086                                               x+j_coord_offsetC,x+j_coord_offsetD,
1087                                               &jx0,&jy0,&jz0);
1088
1089             /* Calculate displacement vector */
1090             dx00             = _mm_sub_ps(ix0,jx0);
1091             dy00             = _mm_sub_ps(iy0,jy0);
1092             dz00             = _mm_sub_ps(iz0,jz0);
1093             dx10             = _mm_sub_ps(ix1,jx0);
1094             dy10             = _mm_sub_ps(iy1,jy0);
1095             dz10             = _mm_sub_ps(iz1,jz0);
1096             dx20             = _mm_sub_ps(ix2,jx0);
1097             dy20             = _mm_sub_ps(iy2,jy0);
1098             dz20             = _mm_sub_ps(iz2,jz0);
1099
1100             /* Calculate squared distance and things based on it */
1101             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1102             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1103             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1104
1105             rinv00           = avx128fma_invsqrt_f(rsq00);
1106             rinv10           = avx128fma_invsqrt_f(rsq10);
1107             rinv20           = avx128fma_invsqrt_f(rsq20);
1108
1109             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1110             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1111             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1112
1113             /* Load parameters for j particles */
1114             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1115                                                               charge+jnrC+0,charge+jnrD+0);
1116             vdwjidx0A        = 2*vdwtype[jnrA+0];
1117             vdwjidx0B        = 2*vdwtype[jnrB+0];
1118             vdwjidx0C        = 2*vdwtype[jnrC+0];
1119             vdwjidx0D        = 2*vdwtype[jnrD+0];
1120
1121             fjx0             = _mm_setzero_ps();
1122             fjy0             = _mm_setzero_ps();
1123             fjz0             = _mm_setzero_ps();
1124
1125             /**************************
1126              * CALCULATE INTERACTIONS *
1127              **************************/
1128
1129             if (gmx_mm_any_lt(rsq00,rcutoff2))
1130             {
1131
1132             r00              = _mm_mul_ps(rsq00,rinv00);
1133             r00              = _mm_andnot_ps(dummy_mask,r00);
1134
1135             /* Compute parameters for interactions between i and j atoms */
1136             qq00             = _mm_mul_ps(iq0,jq0);
1137             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1138                                          vdwparam+vdwioffset0+vdwjidx0B,
1139                                          vdwparam+vdwioffset0+vdwjidx0C,
1140                                          vdwparam+vdwioffset0+vdwjidx0D,
1141                                          &c6_00,&c12_00);
1142
1143             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1144                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1145                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1146                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1147
1148             /* EWALD ELECTROSTATICS */
1149
1150             /* Analytical PME correction */
1151             zeta2            = _mm_mul_ps(beta2,rsq00);
1152             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
1153             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1154             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1155             felec            = _mm_mul_ps(qq00,felec);
1156
1157             /* Analytical LJ-PME */
1158             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1159             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1160             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1161             exponent         = avx128fma_exp_f(ewcljrsq);
1162             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1163             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
1164             /* f6A = 6 * C6grid * (1 - poly) */
1165             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1166             /* f6B = C6grid * exponent * beta^6 */
1167             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1168             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1169             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1170
1171             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1172
1173             fscal            = _mm_add_ps(felec,fvdw);
1174
1175             fscal            = _mm_and_ps(fscal,cutoff_mask);
1176
1177             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1178
1179              /* Update vectorial force */
1180             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1181             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1182             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1183
1184             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1185             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1186             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1187
1188             }
1189
1190             /**************************
1191              * CALCULATE INTERACTIONS *
1192              **************************/
1193
1194             if (gmx_mm_any_lt(rsq10,rcutoff2))
1195             {
1196
1197             r10              = _mm_mul_ps(rsq10,rinv10);
1198             r10              = _mm_andnot_ps(dummy_mask,r10);
1199
1200             /* Compute parameters for interactions between i and j atoms */
1201             qq10             = _mm_mul_ps(iq1,jq0);
1202
1203             /* EWALD ELECTROSTATICS */
1204
1205             /* Analytical PME correction */
1206             zeta2            = _mm_mul_ps(beta2,rsq10);
1207             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1208             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1209             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1210             felec            = _mm_mul_ps(qq10,felec);
1211
1212             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1213
1214             fscal            = felec;
1215
1216             fscal            = _mm_and_ps(fscal,cutoff_mask);
1217
1218             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1219
1220              /* Update vectorial force */
1221             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1222             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1223             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1224
1225             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1226             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1227             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1228
1229             }
1230
1231             /**************************
1232              * CALCULATE INTERACTIONS *
1233              **************************/
1234
1235             if (gmx_mm_any_lt(rsq20,rcutoff2))
1236             {
1237
1238             r20              = _mm_mul_ps(rsq20,rinv20);
1239             r20              = _mm_andnot_ps(dummy_mask,r20);
1240
1241             /* Compute parameters for interactions between i and j atoms */
1242             qq20             = _mm_mul_ps(iq2,jq0);
1243
1244             /* EWALD ELECTROSTATICS */
1245
1246             /* Analytical PME correction */
1247             zeta2            = _mm_mul_ps(beta2,rsq20);
1248             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1249             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1250             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1251             felec            = _mm_mul_ps(qq20,felec);
1252
1253             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1254
1255             fscal            = felec;
1256
1257             fscal            = _mm_and_ps(fscal,cutoff_mask);
1258
1259             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1260
1261              /* Update vectorial force */
1262             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1263             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1264             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1265
1266             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1267             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1268             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1269
1270             }
1271
1272             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1273             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1274             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1275             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1276
1277             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1278
1279             /* Inner loop uses 117 flops */
1280         }
1281
1282         /* End of innermost loop */
1283
1284         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1285                                               f+i_coord_offset,fshift+i_shift_offset);
1286
1287         /* Increment number of inner iterations */
1288         inneriter                  += j_index_end - j_index_start;
1289
1290         /* Outer loop uses 18 flops */
1291     }
1292
1293     /* Increment number of outer iterations */
1294     outeriter        += nri;
1295
1296     /* Update outer/inner flops */
1297
1298     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*117);
1299 }