4d4e3303b696aa8a95a7caabbb530a5c7fd61f18
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_128_fma_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128           c6grid_00;
103     __m128           c6grid_10;
104     __m128           c6grid_20;
105     real             *vdwgridparam;
106     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
107     __m128           one_half = _mm_set1_ps(0.5);
108     __m128           minus_one = _mm_set1_ps(-1.0);
109     __m128i          ewitab;
110     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
111     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
112     real             *ewtab;
113     __m128           dummy_mask,cutoff_mask;
114     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
115     __m128           one     = _mm_set1_ps(1.0);
116     __m128           two     = _mm_set1_ps(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm_set1_ps(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133     vdwgridparam     = fr->ljpme_c6grid;
134     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
135     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
136     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
137
138     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
139     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
140     beta2            = _mm_mul_ps(beta,beta);
141     beta3            = _mm_mul_ps(beta,beta2);
142     ewtab            = fr->ic->tabq_coul_FDV0;
143     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
144     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
145
146     /* Setup water-specific parameters */
147     inr              = nlist->iinr[0];
148     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
149     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
150     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
151     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
152
153     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
154     rcutoff_scalar   = fr->rcoulomb;
155     rcutoff          = _mm_set1_ps(rcutoff_scalar);
156     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
157
158     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
159     rvdw             = _mm_set1_ps(fr->rvdw);
160
161     /* Avoid stupid compiler warnings */
162     jnrA = jnrB = jnrC = jnrD = 0;
163     j_coord_offsetA = 0;
164     j_coord_offsetB = 0;
165     j_coord_offsetC = 0;
166     j_coord_offsetD = 0;
167
168     outeriter        = 0;
169     inneriter        = 0;
170
171     for(iidx=0;iidx<4*DIM;iidx++)
172     {
173         scratch[iidx] = 0.0;
174     }
175
176     /* Start outer loop over neighborlists */
177     for(iidx=0; iidx<nri; iidx++)
178     {
179         /* Load shift vector for this list */
180         i_shift_offset   = DIM*shiftidx[iidx];
181
182         /* Load limits for loop over neighbors */
183         j_index_start    = jindex[iidx];
184         j_index_end      = jindex[iidx+1];
185
186         /* Get outer coordinate index */
187         inr              = iinr[iidx];
188         i_coord_offset   = DIM*inr;
189
190         /* Load i particle coords and add shift vector */
191         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
192                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
193
194         fix0             = _mm_setzero_ps();
195         fiy0             = _mm_setzero_ps();
196         fiz0             = _mm_setzero_ps();
197         fix1             = _mm_setzero_ps();
198         fiy1             = _mm_setzero_ps();
199         fiz1             = _mm_setzero_ps();
200         fix2             = _mm_setzero_ps();
201         fiy2             = _mm_setzero_ps();
202         fiz2             = _mm_setzero_ps();
203
204         /* Reset potential sums */
205         velecsum         = _mm_setzero_ps();
206         vvdwsum          = _mm_setzero_ps();
207
208         /* Start inner kernel loop */
209         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
210         {
211
212             /* Get j neighbor index, and coordinate index */
213             jnrA             = jjnr[jidx];
214             jnrB             = jjnr[jidx+1];
215             jnrC             = jjnr[jidx+2];
216             jnrD             = jjnr[jidx+3];
217             j_coord_offsetA  = DIM*jnrA;
218             j_coord_offsetB  = DIM*jnrB;
219             j_coord_offsetC  = DIM*jnrC;
220             j_coord_offsetD  = DIM*jnrD;
221
222             /* load j atom coordinates */
223             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
224                                               x+j_coord_offsetC,x+j_coord_offsetD,
225                                               &jx0,&jy0,&jz0);
226
227             /* Calculate displacement vector */
228             dx00             = _mm_sub_ps(ix0,jx0);
229             dy00             = _mm_sub_ps(iy0,jy0);
230             dz00             = _mm_sub_ps(iz0,jz0);
231             dx10             = _mm_sub_ps(ix1,jx0);
232             dy10             = _mm_sub_ps(iy1,jy0);
233             dz10             = _mm_sub_ps(iz1,jz0);
234             dx20             = _mm_sub_ps(ix2,jx0);
235             dy20             = _mm_sub_ps(iy2,jy0);
236             dz20             = _mm_sub_ps(iz2,jz0);
237
238             /* Calculate squared distance and things based on it */
239             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
240             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
241             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
242
243             rinv00           = gmx_mm_invsqrt_ps(rsq00);
244             rinv10           = gmx_mm_invsqrt_ps(rsq10);
245             rinv20           = gmx_mm_invsqrt_ps(rsq20);
246
247             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
248             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
249             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
250
251             /* Load parameters for j particles */
252             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
253                                                               charge+jnrC+0,charge+jnrD+0);
254             vdwjidx0A        = 2*vdwtype[jnrA+0];
255             vdwjidx0B        = 2*vdwtype[jnrB+0];
256             vdwjidx0C        = 2*vdwtype[jnrC+0];
257             vdwjidx0D        = 2*vdwtype[jnrD+0];
258
259             fjx0             = _mm_setzero_ps();
260             fjy0             = _mm_setzero_ps();
261             fjz0             = _mm_setzero_ps();
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             if (gmx_mm_any_lt(rsq00,rcutoff2))
268             {
269
270             r00              = _mm_mul_ps(rsq00,rinv00);
271
272             /* Compute parameters for interactions between i and j atoms */
273             qq00             = _mm_mul_ps(iq0,jq0);
274             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
275                                          vdwparam+vdwioffset0+vdwjidx0B,
276                                          vdwparam+vdwioffset0+vdwjidx0C,
277                                          vdwparam+vdwioffset0+vdwjidx0D,
278                                          &c6_00,&c12_00);
279
280             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
281                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
282                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
283                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
284
285             /* EWALD ELECTROSTATICS */
286
287             /* Analytical PME correction */
288             zeta2            = _mm_mul_ps(beta2,rsq00);
289             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
290             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
291             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
292             felec            = _mm_mul_ps(qq00,felec);
293             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
294             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv00,sh_ewald));
295             velec            = _mm_mul_ps(qq00,velec);
296
297             /* Analytical LJ-PME */
298             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
299             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
300             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
301             exponent         = gmx_simd_exp_r(ewcljrsq);
302             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
303             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
304             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
305             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
306             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
307             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
308                                           _mm_mul_ps(_mm_sub_ps(vvdw6,_mm_macc_ps(c6grid_00,sh_lj_ewald,_mm_mul_ps(c6_00,sh_vdw_invrcut6))),one_sixth));
309             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
310             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
311
312             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velec            = _mm_and_ps(velec,cutoff_mask);
316             velecsum         = _mm_add_ps(velecsum,velec);
317             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
318             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
319
320             fscal            = _mm_add_ps(felec,fvdw);
321
322             fscal            = _mm_and_ps(fscal,cutoff_mask);
323
324              /* Update vectorial force */
325             fix0             = _mm_macc_ps(dx00,fscal,fix0);
326             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
327             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
328
329             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
330             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
331             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
332
333             }
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             if (gmx_mm_any_lt(rsq10,rcutoff2))
340             {
341
342             r10              = _mm_mul_ps(rsq10,rinv10);
343
344             /* Compute parameters for interactions between i and j atoms */
345             qq10             = _mm_mul_ps(iq1,jq0);
346
347             /* EWALD ELECTROSTATICS */
348
349             /* Analytical PME correction */
350             zeta2            = _mm_mul_ps(beta2,rsq10);
351             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
352             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
353             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
354             felec            = _mm_mul_ps(qq10,felec);
355             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
356             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv10,sh_ewald));
357             velec            = _mm_mul_ps(qq10,velec);
358
359             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
360
361             /* Update potential sum for this i atom from the interaction with this j atom. */
362             velec            = _mm_and_ps(velec,cutoff_mask);
363             velecsum         = _mm_add_ps(velecsum,velec);
364
365             fscal            = felec;
366
367             fscal            = _mm_and_ps(fscal,cutoff_mask);
368
369              /* Update vectorial force */
370             fix1             = _mm_macc_ps(dx10,fscal,fix1);
371             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
372             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
373
374             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
375             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
376             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
377
378             }
379
380             /**************************
381              * CALCULATE INTERACTIONS *
382              **************************/
383
384             if (gmx_mm_any_lt(rsq20,rcutoff2))
385             {
386
387             r20              = _mm_mul_ps(rsq20,rinv20);
388
389             /* Compute parameters for interactions between i and j atoms */
390             qq20             = _mm_mul_ps(iq2,jq0);
391
392             /* EWALD ELECTROSTATICS */
393
394             /* Analytical PME correction */
395             zeta2            = _mm_mul_ps(beta2,rsq20);
396             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
397             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
398             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
399             felec            = _mm_mul_ps(qq20,felec);
400             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
401             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv20,sh_ewald));
402             velec            = _mm_mul_ps(qq20,velec);
403
404             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
405
406             /* Update potential sum for this i atom from the interaction with this j atom. */
407             velec            = _mm_and_ps(velec,cutoff_mask);
408             velecsum         = _mm_add_ps(velecsum,velec);
409
410             fscal            = felec;
411
412             fscal            = _mm_and_ps(fscal,cutoff_mask);
413
414              /* Update vectorial force */
415             fix2             = _mm_macc_ps(dx20,fscal,fix2);
416             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
417             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
418
419             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
420             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
421             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
422
423             }
424
425             fjptrA             = f+j_coord_offsetA;
426             fjptrB             = f+j_coord_offsetB;
427             fjptrC             = f+j_coord_offsetC;
428             fjptrD             = f+j_coord_offsetD;
429
430             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
431
432             /* Inner loop uses 129 flops */
433         }
434
435         if(jidx<j_index_end)
436         {
437
438             /* Get j neighbor index, and coordinate index */
439             jnrlistA         = jjnr[jidx];
440             jnrlistB         = jjnr[jidx+1];
441             jnrlistC         = jjnr[jidx+2];
442             jnrlistD         = jjnr[jidx+3];
443             /* Sign of each element will be negative for non-real atoms.
444              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
445              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
446              */
447             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
448             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
449             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
450             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
451             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
452             j_coord_offsetA  = DIM*jnrA;
453             j_coord_offsetB  = DIM*jnrB;
454             j_coord_offsetC  = DIM*jnrC;
455             j_coord_offsetD  = DIM*jnrD;
456
457             /* load j atom coordinates */
458             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
459                                               x+j_coord_offsetC,x+j_coord_offsetD,
460                                               &jx0,&jy0,&jz0);
461
462             /* Calculate displacement vector */
463             dx00             = _mm_sub_ps(ix0,jx0);
464             dy00             = _mm_sub_ps(iy0,jy0);
465             dz00             = _mm_sub_ps(iz0,jz0);
466             dx10             = _mm_sub_ps(ix1,jx0);
467             dy10             = _mm_sub_ps(iy1,jy0);
468             dz10             = _mm_sub_ps(iz1,jz0);
469             dx20             = _mm_sub_ps(ix2,jx0);
470             dy20             = _mm_sub_ps(iy2,jy0);
471             dz20             = _mm_sub_ps(iz2,jz0);
472
473             /* Calculate squared distance and things based on it */
474             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
475             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
476             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
477
478             rinv00           = gmx_mm_invsqrt_ps(rsq00);
479             rinv10           = gmx_mm_invsqrt_ps(rsq10);
480             rinv20           = gmx_mm_invsqrt_ps(rsq20);
481
482             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
483             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
484             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
485
486             /* Load parameters for j particles */
487             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
488                                                               charge+jnrC+0,charge+jnrD+0);
489             vdwjidx0A        = 2*vdwtype[jnrA+0];
490             vdwjidx0B        = 2*vdwtype[jnrB+0];
491             vdwjidx0C        = 2*vdwtype[jnrC+0];
492             vdwjidx0D        = 2*vdwtype[jnrD+0];
493
494             fjx0             = _mm_setzero_ps();
495             fjy0             = _mm_setzero_ps();
496             fjz0             = _mm_setzero_ps();
497
498             /**************************
499              * CALCULATE INTERACTIONS *
500              **************************/
501
502             if (gmx_mm_any_lt(rsq00,rcutoff2))
503             {
504
505             r00              = _mm_mul_ps(rsq00,rinv00);
506             r00              = _mm_andnot_ps(dummy_mask,r00);
507
508             /* Compute parameters for interactions between i and j atoms */
509             qq00             = _mm_mul_ps(iq0,jq0);
510             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
511                                          vdwparam+vdwioffset0+vdwjidx0B,
512                                          vdwparam+vdwioffset0+vdwjidx0C,
513                                          vdwparam+vdwioffset0+vdwjidx0D,
514                                          &c6_00,&c12_00);
515
516             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
517                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
518                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
519                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
520
521             /* EWALD ELECTROSTATICS */
522
523             /* Analytical PME correction */
524             zeta2            = _mm_mul_ps(beta2,rsq00);
525             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
526             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
527             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
528             felec            = _mm_mul_ps(qq00,felec);
529             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
530             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv00,sh_ewald));
531             velec            = _mm_mul_ps(qq00,velec);
532
533             /* Analytical LJ-PME */
534             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
535             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
536             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
537             exponent         = gmx_simd_exp_r(ewcljrsq);
538             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
539             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
540             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
541             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
542             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
543             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
544                                           _mm_mul_ps(_mm_sub_ps(vvdw6,_mm_macc_ps(c6grid_00,sh_lj_ewald,_mm_mul_ps(c6_00,sh_vdw_invrcut6))),one_sixth));
545             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
546             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
547
548             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
549
550             /* Update potential sum for this i atom from the interaction with this j atom. */
551             velec            = _mm_and_ps(velec,cutoff_mask);
552             velec            = _mm_andnot_ps(dummy_mask,velec);
553             velecsum         = _mm_add_ps(velecsum,velec);
554             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
555             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
556             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
557
558             fscal            = _mm_add_ps(felec,fvdw);
559
560             fscal            = _mm_and_ps(fscal,cutoff_mask);
561
562             fscal            = _mm_andnot_ps(dummy_mask,fscal);
563
564              /* Update vectorial force */
565             fix0             = _mm_macc_ps(dx00,fscal,fix0);
566             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
567             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
568
569             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
570             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
571             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
572
573             }
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             if (gmx_mm_any_lt(rsq10,rcutoff2))
580             {
581
582             r10              = _mm_mul_ps(rsq10,rinv10);
583             r10              = _mm_andnot_ps(dummy_mask,r10);
584
585             /* Compute parameters for interactions between i and j atoms */
586             qq10             = _mm_mul_ps(iq1,jq0);
587
588             /* EWALD ELECTROSTATICS */
589
590             /* Analytical PME correction */
591             zeta2            = _mm_mul_ps(beta2,rsq10);
592             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
593             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
594             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
595             felec            = _mm_mul_ps(qq10,felec);
596             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
597             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv10,sh_ewald));
598             velec            = _mm_mul_ps(qq10,velec);
599
600             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
601
602             /* Update potential sum for this i atom from the interaction with this j atom. */
603             velec            = _mm_and_ps(velec,cutoff_mask);
604             velec            = _mm_andnot_ps(dummy_mask,velec);
605             velecsum         = _mm_add_ps(velecsum,velec);
606
607             fscal            = felec;
608
609             fscal            = _mm_and_ps(fscal,cutoff_mask);
610
611             fscal            = _mm_andnot_ps(dummy_mask,fscal);
612
613              /* Update vectorial force */
614             fix1             = _mm_macc_ps(dx10,fscal,fix1);
615             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
616             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
617
618             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
619             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
620             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
621
622             }
623
624             /**************************
625              * CALCULATE INTERACTIONS *
626              **************************/
627
628             if (gmx_mm_any_lt(rsq20,rcutoff2))
629             {
630
631             r20              = _mm_mul_ps(rsq20,rinv20);
632             r20              = _mm_andnot_ps(dummy_mask,r20);
633
634             /* Compute parameters for interactions between i and j atoms */
635             qq20             = _mm_mul_ps(iq2,jq0);
636
637             /* EWALD ELECTROSTATICS */
638
639             /* Analytical PME correction */
640             zeta2            = _mm_mul_ps(beta2,rsq20);
641             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
642             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
643             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
644             felec            = _mm_mul_ps(qq20,felec);
645             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
646             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv20,sh_ewald));
647             velec            = _mm_mul_ps(qq20,velec);
648
649             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
650
651             /* Update potential sum for this i atom from the interaction with this j atom. */
652             velec            = _mm_and_ps(velec,cutoff_mask);
653             velec            = _mm_andnot_ps(dummy_mask,velec);
654             velecsum         = _mm_add_ps(velecsum,velec);
655
656             fscal            = felec;
657
658             fscal            = _mm_and_ps(fscal,cutoff_mask);
659
660             fscal            = _mm_andnot_ps(dummy_mask,fscal);
661
662              /* Update vectorial force */
663             fix2             = _mm_macc_ps(dx20,fscal,fix2);
664             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
665             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
666
667             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
668             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
669             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
670
671             }
672
673             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
674             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
675             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
676             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
677
678             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
679
680             /* Inner loop uses 132 flops */
681         }
682
683         /* End of innermost loop */
684
685         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
686                                               f+i_coord_offset,fshift+i_shift_offset);
687
688         ggid                        = gid[iidx];
689         /* Update potential energies */
690         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
691         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
692
693         /* Increment number of inner iterations */
694         inneriter                  += j_index_end - j_index_start;
695
696         /* Outer loop uses 20 flops */
697     }
698
699     /* Increment number of outer iterations */
700     outeriter        += nri;
701
702     /* Update outer/inner flops */
703
704     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*132);
705 }
706 /*
707  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_128_fma_single
708  * Electrostatics interaction: Ewald
709  * VdW interaction:            LJEwald
710  * Geometry:                   Water3-Particle
711  * Calculate force/pot:        Force
712  */
713 void
714 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_128_fma_single
715                     (t_nblist                    * gmx_restrict       nlist,
716                      rvec                        * gmx_restrict          xx,
717                      rvec                        * gmx_restrict          ff,
718                      t_forcerec                  * gmx_restrict          fr,
719                      t_mdatoms                   * gmx_restrict     mdatoms,
720                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
721                      t_nrnb                      * gmx_restrict        nrnb)
722 {
723     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
724      * just 0 for non-waters.
725      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
726      * jnr indices corresponding to data put in the four positions in the SIMD register.
727      */
728     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
729     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
730     int              jnrA,jnrB,jnrC,jnrD;
731     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
732     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
733     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
734     real             rcutoff_scalar;
735     real             *shiftvec,*fshift,*x,*f;
736     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
737     real             scratch[4*DIM];
738     __m128           fscal,rcutoff,rcutoff2,jidxall;
739     int              vdwioffset0;
740     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
741     int              vdwioffset1;
742     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
743     int              vdwioffset2;
744     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
745     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
746     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
747     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
748     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
749     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
750     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
751     real             *charge;
752     int              nvdwtype;
753     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
754     int              *vdwtype;
755     real             *vdwparam;
756     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
757     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
758     __m128           c6grid_00;
759     __m128           c6grid_10;
760     __m128           c6grid_20;
761     real             *vdwgridparam;
762     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
763     __m128           one_half = _mm_set1_ps(0.5);
764     __m128           minus_one = _mm_set1_ps(-1.0);
765     __m128i          ewitab;
766     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
767     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
768     real             *ewtab;
769     __m128           dummy_mask,cutoff_mask;
770     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
771     __m128           one     = _mm_set1_ps(1.0);
772     __m128           two     = _mm_set1_ps(2.0);
773     x                = xx[0];
774     f                = ff[0];
775
776     nri              = nlist->nri;
777     iinr             = nlist->iinr;
778     jindex           = nlist->jindex;
779     jjnr             = nlist->jjnr;
780     shiftidx         = nlist->shift;
781     gid              = nlist->gid;
782     shiftvec         = fr->shift_vec[0];
783     fshift           = fr->fshift[0];
784     facel            = _mm_set1_ps(fr->epsfac);
785     charge           = mdatoms->chargeA;
786     nvdwtype         = fr->ntype;
787     vdwparam         = fr->nbfp;
788     vdwtype          = mdatoms->typeA;
789     vdwgridparam     = fr->ljpme_c6grid;
790     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
791     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
792     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
793
794     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
795     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
796     beta2            = _mm_mul_ps(beta,beta);
797     beta3            = _mm_mul_ps(beta,beta2);
798     ewtab            = fr->ic->tabq_coul_F;
799     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
800     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
801
802     /* Setup water-specific parameters */
803     inr              = nlist->iinr[0];
804     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
805     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
806     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
807     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
808
809     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
810     rcutoff_scalar   = fr->rcoulomb;
811     rcutoff          = _mm_set1_ps(rcutoff_scalar);
812     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
813
814     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
815     rvdw             = _mm_set1_ps(fr->rvdw);
816
817     /* Avoid stupid compiler warnings */
818     jnrA = jnrB = jnrC = jnrD = 0;
819     j_coord_offsetA = 0;
820     j_coord_offsetB = 0;
821     j_coord_offsetC = 0;
822     j_coord_offsetD = 0;
823
824     outeriter        = 0;
825     inneriter        = 0;
826
827     for(iidx=0;iidx<4*DIM;iidx++)
828     {
829         scratch[iidx] = 0.0;
830     }
831
832     /* Start outer loop over neighborlists */
833     for(iidx=0; iidx<nri; iidx++)
834     {
835         /* Load shift vector for this list */
836         i_shift_offset   = DIM*shiftidx[iidx];
837
838         /* Load limits for loop over neighbors */
839         j_index_start    = jindex[iidx];
840         j_index_end      = jindex[iidx+1];
841
842         /* Get outer coordinate index */
843         inr              = iinr[iidx];
844         i_coord_offset   = DIM*inr;
845
846         /* Load i particle coords and add shift vector */
847         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
848                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
849
850         fix0             = _mm_setzero_ps();
851         fiy0             = _mm_setzero_ps();
852         fiz0             = _mm_setzero_ps();
853         fix1             = _mm_setzero_ps();
854         fiy1             = _mm_setzero_ps();
855         fiz1             = _mm_setzero_ps();
856         fix2             = _mm_setzero_ps();
857         fiy2             = _mm_setzero_ps();
858         fiz2             = _mm_setzero_ps();
859
860         /* Start inner kernel loop */
861         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
862         {
863
864             /* Get j neighbor index, and coordinate index */
865             jnrA             = jjnr[jidx];
866             jnrB             = jjnr[jidx+1];
867             jnrC             = jjnr[jidx+2];
868             jnrD             = jjnr[jidx+3];
869             j_coord_offsetA  = DIM*jnrA;
870             j_coord_offsetB  = DIM*jnrB;
871             j_coord_offsetC  = DIM*jnrC;
872             j_coord_offsetD  = DIM*jnrD;
873
874             /* load j atom coordinates */
875             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
876                                               x+j_coord_offsetC,x+j_coord_offsetD,
877                                               &jx0,&jy0,&jz0);
878
879             /* Calculate displacement vector */
880             dx00             = _mm_sub_ps(ix0,jx0);
881             dy00             = _mm_sub_ps(iy0,jy0);
882             dz00             = _mm_sub_ps(iz0,jz0);
883             dx10             = _mm_sub_ps(ix1,jx0);
884             dy10             = _mm_sub_ps(iy1,jy0);
885             dz10             = _mm_sub_ps(iz1,jz0);
886             dx20             = _mm_sub_ps(ix2,jx0);
887             dy20             = _mm_sub_ps(iy2,jy0);
888             dz20             = _mm_sub_ps(iz2,jz0);
889
890             /* Calculate squared distance and things based on it */
891             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
892             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
893             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
894
895             rinv00           = gmx_mm_invsqrt_ps(rsq00);
896             rinv10           = gmx_mm_invsqrt_ps(rsq10);
897             rinv20           = gmx_mm_invsqrt_ps(rsq20);
898
899             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
900             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
901             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
902
903             /* Load parameters for j particles */
904             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
905                                                               charge+jnrC+0,charge+jnrD+0);
906             vdwjidx0A        = 2*vdwtype[jnrA+0];
907             vdwjidx0B        = 2*vdwtype[jnrB+0];
908             vdwjidx0C        = 2*vdwtype[jnrC+0];
909             vdwjidx0D        = 2*vdwtype[jnrD+0];
910
911             fjx0             = _mm_setzero_ps();
912             fjy0             = _mm_setzero_ps();
913             fjz0             = _mm_setzero_ps();
914
915             /**************************
916              * CALCULATE INTERACTIONS *
917              **************************/
918
919             if (gmx_mm_any_lt(rsq00,rcutoff2))
920             {
921
922             r00              = _mm_mul_ps(rsq00,rinv00);
923
924             /* Compute parameters for interactions between i and j atoms */
925             qq00             = _mm_mul_ps(iq0,jq0);
926             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
927                                          vdwparam+vdwioffset0+vdwjidx0B,
928                                          vdwparam+vdwioffset0+vdwjidx0C,
929                                          vdwparam+vdwioffset0+vdwjidx0D,
930                                          &c6_00,&c12_00);
931
932             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
933                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
934                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
935                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
936
937             /* EWALD ELECTROSTATICS */
938
939             /* Analytical PME correction */
940             zeta2            = _mm_mul_ps(beta2,rsq00);
941             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
942             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
943             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
944             felec            = _mm_mul_ps(qq00,felec);
945
946             /* Analytical LJ-PME */
947             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
948             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
949             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
950             exponent         = gmx_simd_exp_r(ewcljrsq);
951             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
952             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
953             /* f6A = 6 * C6grid * (1 - poly) */
954             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
955             /* f6B = C6grid * exponent * beta^6 */
956             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
957             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
958             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
959
960             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
961
962             fscal            = _mm_add_ps(felec,fvdw);
963
964             fscal            = _mm_and_ps(fscal,cutoff_mask);
965
966              /* Update vectorial force */
967             fix0             = _mm_macc_ps(dx00,fscal,fix0);
968             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
969             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
970
971             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
972             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
973             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
974
975             }
976
977             /**************************
978              * CALCULATE INTERACTIONS *
979              **************************/
980
981             if (gmx_mm_any_lt(rsq10,rcutoff2))
982             {
983
984             r10              = _mm_mul_ps(rsq10,rinv10);
985
986             /* Compute parameters for interactions between i and j atoms */
987             qq10             = _mm_mul_ps(iq1,jq0);
988
989             /* EWALD ELECTROSTATICS */
990
991             /* Analytical PME correction */
992             zeta2            = _mm_mul_ps(beta2,rsq10);
993             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
994             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
995             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
996             felec            = _mm_mul_ps(qq10,felec);
997
998             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
999
1000             fscal            = felec;
1001
1002             fscal            = _mm_and_ps(fscal,cutoff_mask);
1003
1004              /* Update vectorial force */
1005             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1006             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1007             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1008
1009             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1010             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1011             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1012
1013             }
1014
1015             /**************************
1016              * CALCULATE INTERACTIONS *
1017              **************************/
1018
1019             if (gmx_mm_any_lt(rsq20,rcutoff2))
1020             {
1021
1022             r20              = _mm_mul_ps(rsq20,rinv20);
1023
1024             /* Compute parameters for interactions between i and j atoms */
1025             qq20             = _mm_mul_ps(iq2,jq0);
1026
1027             /* EWALD ELECTROSTATICS */
1028
1029             /* Analytical PME correction */
1030             zeta2            = _mm_mul_ps(beta2,rsq20);
1031             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1032             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1033             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1034             felec            = _mm_mul_ps(qq20,felec);
1035
1036             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1037
1038             fscal            = felec;
1039
1040             fscal            = _mm_and_ps(fscal,cutoff_mask);
1041
1042              /* Update vectorial force */
1043             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1044             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1045             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1046
1047             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1048             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1049             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1050
1051             }
1052
1053             fjptrA             = f+j_coord_offsetA;
1054             fjptrB             = f+j_coord_offsetB;
1055             fjptrC             = f+j_coord_offsetC;
1056             fjptrD             = f+j_coord_offsetD;
1057
1058             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1059
1060             /* Inner loop uses 114 flops */
1061         }
1062
1063         if(jidx<j_index_end)
1064         {
1065
1066             /* Get j neighbor index, and coordinate index */
1067             jnrlistA         = jjnr[jidx];
1068             jnrlistB         = jjnr[jidx+1];
1069             jnrlistC         = jjnr[jidx+2];
1070             jnrlistD         = jjnr[jidx+3];
1071             /* Sign of each element will be negative for non-real atoms.
1072              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1073              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1074              */
1075             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1076             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1077             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1078             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1079             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1080             j_coord_offsetA  = DIM*jnrA;
1081             j_coord_offsetB  = DIM*jnrB;
1082             j_coord_offsetC  = DIM*jnrC;
1083             j_coord_offsetD  = DIM*jnrD;
1084
1085             /* load j atom coordinates */
1086             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1087                                               x+j_coord_offsetC,x+j_coord_offsetD,
1088                                               &jx0,&jy0,&jz0);
1089
1090             /* Calculate displacement vector */
1091             dx00             = _mm_sub_ps(ix0,jx0);
1092             dy00             = _mm_sub_ps(iy0,jy0);
1093             dz00             = _mm_sub_ps(iz0,jz0);
1094             dx10             = _mm_sub_ps(ix1,jx0);
1095             dy10             = _mm_sub_ps(iy1,jy0);
1096             dz10             = _mm_sub_ps(iz1,jz0);
1097             dx20             = _mm_sub_ps(ix2,jx0);
1098             dy20             = _mm_sub_ps(iy2,jy0);
1099             dz20             = _mm_sub_ps(iz2,jz0);
1100
1101             /* Calculate squared distance and things based on it */
1102             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1103             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1104             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1105
1106             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1107             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1108             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1109
1110             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1111             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1112             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1113
1114             /* Load parameters for j particles */
1115             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1116                                                               charge+jnrC+0,charge+jnrD+0);
1117             vdwjidx0A        = 2*vdwtype[jnrA+0];
1118             vdwjidx0B        = 2*vdwtype[jnrB+0];
1119             vdwjidx0C        = 2*vdwtype[jnrC+0];
1120             vdwjidx0D        = 2*vdwtype[jnrD+0];
1121
1122             fjx0             = _mm_setzero_ps();
1123             fjy0             = _mm_setzero_ps();
1124             fjz0             = _mm_setzero_ps();
1125
1126             /**************************
1127              * CALCULATE INTERACTIONS *
1128              **************************/
1129
1130             if (gmx_mm_any_lt(rsq00,rcutoff2))
1131             {
1132
1133             r00              = _mm_mul_ps(rsq00,rinv00);
1134             r00              = _mm_andnot_ps(dummy_mask,r00);
1135
1136             /* Compute parameters for interactions between i and j atoms */
1137             qq00             = _mm_mul_ps(iq0,jq0);
1138             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1139                                          vdwparam+vdwioffset0+vdwjidx0B,
1140                                          vdwparam+vdwioffset0+vdwjidx0C,
1141                                          vdwparam+vdwioffset0+vdwjidx0D,
1142                                          &c6_00,&c12_00);
1143
1144             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1145                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1146                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1147                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1148
1149             /* EWALD ELECTROSTATICS */
1150
1151             /* Analytical PME correction */
1152             zeta2            = _mm_mul_ps(beta2,rsq00);
1153             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
1154             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1155             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1156             felec            = _mm_mul_ps(qq00,felec);
1157
1158             /* Analytical LJ-PME */
1159             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1160             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1161             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1162             exponent         = gmx_simd_exp_r(ewcljrsq);
1163             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1164             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
1165             /* f6A = 6 * C6grid * (1 - poly) */
1166             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1167             /* f6B = C6grid * exponent * beta^6 */
1168             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1169             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1170             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1171
1172             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1173
1174             fscal            = _mm_add_ps(felec,fvdw);
1175
1176             fscal            = _mm_and_ps(fscal,cutoff_mask);
1177
1178             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1179
1180              /* Update vectorial force */
1181             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1182             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1183             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1184
1185             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1186             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1187             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1188
1189             }
1190
1191             /**************************
1192              * CALCULATE INTERACTIONS *
1193              **************************/
1194
1195             if (gmx_mm_any_lt(rsq10,rcutoff2))
1196             {
1197
1198             r10              = _mm_mul_ps(rsq10,rinv10);
1199             r10              = _mm_andnot_ps(dummy_mask,r10);
1200
1201             /* Compute parameters for interactions between i and j atoms */
1202             qq10             = _mm_mul_ps(iq1,jq0);
1203
1204             /* EWALD ELECTROSTATICS */
1205
1206             /* Analytical PME correction */
1207             zeta2            = _mm_mul_ps(beta2,rsq10);
1208             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1209             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1210             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1211             felec            = _mm_mul_ps(qq10,felec);
1212
1213             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1214
1215             fscal            = felec;
1216
1217             fscal            = _mm_and_ps(fscal,cutoff_mask);
1218
1219             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1220
1221              /* Update vectorial force */
1222             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1223             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1224             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1225
1226             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1227             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1228             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1229
1230             }
1231
1232             /**************************
1233              * CALCULATE INTERACTIONS *
1234              **************************/
1235
1236             if (gmx_mm_any_lt(rsq20,rcutoff2))
1237             {
1238
1239             r20              = _mm_mul_ps(rsq20,rinv20);
1240             r20              = _mm_andnot_ps(dummy_mask,r20);
1241
1242             /* Compute parameters for interactions between i and j atoms */
1243             qq20             = _mm_mul_ps(iq2,jq0);
1244
1245             /* EWALD ELECTROSTATICS */
1246
1247             /* Analytical PME correction */
1248             zeta2            = _mm_mul_ps(beta2,rsq20);
1249             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1250             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1251             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1252             felec            = _mm_mul_ps(qq20,felec);
1253
1254             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1255
1256             fscal            = felec;
1257
1258             fscal            = _mm_and_ps(fscal,cutoff_mask);
1259
1260             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1261
1262              /* Update vectorial force */
1263             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1264             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1265             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1266
1267             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1268             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1269             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1270
1271             }
1272
1273             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1274             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1275             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1276             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1277
1278             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1279
1280             /* Inner loop uses 117 flops */
1281         }
1282
1283         /* End of innermost loop */
1284
1285         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1286                                               f+i_coord_offset,fshift+i_shift_offset);
1287
1288         /* Increment number of inner iterations */
1289         inneriter                  += j_index_end - j_index_start;
1290
1291         /* Outer loop uses 18 flops */
1292     }
1293
1294     /* Increment number of outer iterations */
1295     outeriter        += nri;
1296
1297     /* Update outer/inner flops */
1298
1299     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*117);
1300 }