Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_128_fma_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128           c6grid_00;
105     __m128           c6grid_10;
106     __m128           c6grid_20;
107     real             *vdwgridparam;
108     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
109     __m128           one_half = _mm_set1_ps(0.5);
110     __m128           minus_one = _mm_set1_ps(-1.0);
111     __m128i          ewitab;
112     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
113     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
114     real             *ewtab;
115     __m128           dummy_mask,cutoff_mask;
116     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
117     __m128           one     = _mm_set1_ps(1.0);
118     __m128           two     = _mm_set1_ps(2.0);
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = _mm_set1_ps(fr->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135     vdwgridparam     = fr->ljpme_c6grid;
136     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
137     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
138     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
139
140     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
141     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
142     beta2            = _mm_mul_ps(beta,beta);
143     beta3            = _mm_mul_ps(beta,beta2);
144     ewtab            = fr->ic->tabq_coul_FDV0;
145     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
146     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
147
148     /* Setup water-specific parameters */
149     inr              = nlist->iinr[0];
150     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
151     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
152     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
153     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
154
155     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
156     rcutoff_scalar   = fr->rcoulomb;
157     rcutoff          = _mm_set1_ps(rcutoff_scalar);
158     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
159
160     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
161     rvdw             = _mm_set1_ps(fr->rvdw);
162
163     /* Avoid stupid compiler warnings */
164     jnrA = jnrB = jnrC = jnrD = 0;
165     j_coord_offsetA = 0;
166     j_coord_offsetB = 0;
167     j_coord_offsetC = 0;
168     j_coord_offsetD = 0;
169
170     outeriter        = 0;
171     inneriter        = 0;
172
173     for(iidx=0;iidx<4*DIM;iidx++)
174     {
175         scratch[iidx] = 0.0;
176     }
177
178     /* Start outer loop over neighborlists */
179     for(iidx=0; iidx<nri; iidx++)
180     {
181         /* Load shift vector for this list */
182         i_shift_offset   = DIM*shiftidx[iidx];
183
184         /* Load limits for loop over neighbors */
185         j_index_start    = jindex[iidx];
186         j_index_end      = jindex[iidx+1];
187
188         /* Get outer coordinate index */
189         inr              = iinr[iidx];
190         i_coord_offset   = DIM*inr;
191
192         /* Load i particle coords and add shift vector */
193         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
194                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
195
196         fix0             = _mm_setzero_ps();
197         fiy0             = _mm_setzero_ps();
198         fiz0             = _mm_setzero_ps();
199         fix1             = _mm_setzero_ps();
200         fiy1             = _mm_setzero_ps();
201         fiz1             = _mm_setzero_ps();
202         fix2             = _mm_setzero_ps();
203         fiy2             = _mm_setzero_ps();
204         fiz2             = _mm_setzero_ps();
205
206         /* Reset potential sums */
207         velecsum         = _mm_setzero_ps();
208         vvdwsum          = _mm_setzero_ps();
209
210         /* Start inner kernel loop */
211         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
212         {
213
214             /* Get j neighbor index, and coordinate index */
215             jnrA             = jjnr[jidx];
216             jnrB             = jjnr[jidx+1];
217             jnrC             = jjnr[jidx+2];
218             jnrD             = jjnr[jidx+3];
219             j_coord_offsetA  = DIM*jnrA;
220             j_coord_offsetB  = DIM*jnrB;
221             j_coord_offsetC  = DIM*jnrC;
222             j_coord_offsetD  = DIM*jnrD;
223
224             /* load j atom coordinates */
225             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
226                                               x+j_coord_offsetC,x+j_coord_offsetD,
227                                               &jx0,&jy0,&jz0);
228
229             /* Calculate displacement vector */
230             dx00             = _mm_sub_ps(ix0,jx0);
231             dy00             = _mm_sub_ps(iy0,jy0);
232             dz00             = _mm_sub_ps(iz0,jz0);
233             dx10             = _mm_sub_ps(ix1,jx0);
234             dy10             = _mm_sub_ps(iy1,jy0);
235             dz10             = _mm_sub_ps(iz1,jz0);
236             dx20             = _mm_sub_ps(ix2,jx0);
237             dy20             = _mm_sub_ps(iy2,jy0);
238             dz20             = _mm_sub_ps(iz2,jz0);
239
240             /* Calculate squared distance and things based on it */
241             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
242             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
243             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
244
245             rinv00           = gmx_mm_invsqrt_ps(rsq00);
246             rinv10           = gmx_mm_invsqrt_ps(rsq10);
247             rinv20           = gmx_mm_invsqrt_ps(rsq20);
248
249             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
250             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
251             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
252
253             /* Load parameters for j particles */
254             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
255                                                               charge+jnrC+0,charge+jnrD+0);
256             vdwjidx0A        = 2*vdwtype[jnrA+0];
257             vdwjidx0B        = 2*vdwtype[jnrB+0];
258             vdwjidx0C        = 2*vdwtype[jnrC+0];
259             vdwjidx0D        = 2*vdwtype[jnrD+0];
260
261             fjx0             = _mm_setzero_ps();
262             fjy0             = _mm_setzero_ps();
263             fjz0             = _mm_setzero_ps();
264
265             /**************************
266              * CALCULATE INTERACTIONS *
267              **************************/
268
269             if (gmx_mm_any_lt(rsq00,rcutoff2))
270             {
271
272             r00              = _mm_mul_ps(rsq00,rinv00);
273
274             /* Compute parameters for interactions between i and j atoms */
275             qq00             = _mm_mul_ps(iq0,jq0);
276             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
277                                          vdwparam+vdwioffset0+vdwjidx0B,
278                                          vdwparam+vdwioffset0+vdwjidx0C,
279                                          vdwparam+vdwioffset0+vdwjidx0D,
280                                          &c6_00,&c12_00);
281
282             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
283                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
284                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
285                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
286
287             /* EWALD ELECTROSTATICS */
288
289             /* Analytical PME correction */
290             zeta2            = _mm_mul_ps(beta2,rsq00);
291             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
292             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
293             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
294             felec            = _mm_mul_ps(qq00,felec);
295             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
296             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv00,sh_ewald));
297             velec            = _mm_mul_ps(qq00,velec);
298
299             /* Analytical LJ-PME */
300             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
301             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
302             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
303             exponent         = gmx_simd_exp_r(ewcljrsq);
304             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
305             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
306             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
307             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
308             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
309             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
310                                           _mm_mul_ps(_mm_sub_ps(vvdw6,_mm_macc_ps(c6grid_00,sh_lj_ewald,_mm_mul_ps(c6_00,sh_vdw_invrcut6))),one_sixth));
311             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
312             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
313
314             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
315
316             /* Update potential sum for this i atom from the interaction with this j atom. */
317             velec            = _mm_and_ps(velec,cutoff_mask);
318             velecsum         = _mm_add_ps(velecsum,velec);
319             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
320             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
321
322             fscal            = _mm_add_ps(felec,fvdw);
323
324             fscal            = _mm_and_ps(fscal,cutoff_mask);
325
326              /* Update vectorial force */
327             fix0             = _mm_macc_ps(dx00,fscal,fix0);
328             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
329             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
330
331             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
332             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
333             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
334
335             }
336
337             /**************************
338              * CALCULATE INTERACTIONS *
339              **************************/
340
341             if (gmx_mm_any_lt(rsq10,rcutoff2))
342             {
343
344             r10              = _mm_mul_ps(rsq10,rinv10);
345
346             /* Compute parameters for interactions between i and j atoms */
347             qq10             = _mm_mul_ps(iq1,jq0);
348
349             /* EWALD ELECTROSTATICS */
350
351             /* Analytical PME correction */
352             zeta2            = _mm_mul_ps(beta2,rsq10);
353             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
354             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
355             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
356             felec            = _mm_mul_ps(qq10,felec);
357             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
358             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv10,sh_ewald));
359             velec            = _mm_mul_ps(qq10,velec);
360
361             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
362
363             /* Update potential sum for this i atom from the interaction with this j atom. */
364             velec            = _mm_and_ps(velec,cutoff_mask);
365             velecsum         = _mm_add_ps(velecsum,velec);
366
367             fscal            = felec;
368
369             fscal            = _mm_and_ps(fscal,cutoff_mask);
370
371              /* Update vectorial force */
372             fix1             = _mm_macc_ps(dx10,fscal,fix1);
373             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
374             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
375
376             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
377             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
378             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
379
380             }
381
382             /**************************
383              * CALCULATE INTERACTIONS *
384              **************************/
385
386             if (gmx_mm_any_lt(rsq20,rcutoff2))
387             {
388
389             r20              = _mm_mul_ps(rsq20,rinv20);
390
391             /* Compute parameters for interactions between i and j atoms */
392             qq20             = _mm_mul_ps(iq2,jq0);
393
394             /* EWALD ELECTROSTATICS */
395
396             /* Analytical PME correction */
397             zeta2            = _mm_mul_ps(beta2,rsq20);
398             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
399             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
400             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
401             felec            = _mm_mul_ps(qq20,felec);
402             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
403             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv20,sh_ewald));
404             velec            = _mm_mul_ps(qq20,velec);
405
406             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
407
408             /* Update potential sum for this i atom from the interaction with this j atom. */
409             velec            = _mm_and_ps(velec,cutoff_mask);
410             velecsum         = _mm_add_ps(velecsum,velec);
411
412             fscal            = felec;
413
414             fscal            = _mm_and_ps(fscal,cutoff_mask);
415
416              /* Update vectorial force */
417             fix2             = _mm_macc_ps(dx20,fscal,fix2);
418             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
419             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
420
421             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
422             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
423             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
424
425             }
426
427             fjptrA             = f+j_coord_offsetA;
428             fjptrB             = f+j_coord_offsetB;
429             fjptrC             = f+j_coord_offsetC;
430             fjptrD             = f+j_coord_offsetD;
431
432             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
433
434             /* Inner loop uses 129 flops */
435         }
436
437         if(jidx<j_index_end)
438         {
439
440             /* Get j neighbor index, and coordinate index */
441             jnrlistA         = jjnr[jidx];
442             jnrlistB         = jjnr[jidx+1];
443             jnrlistC         = jjnr[jidx+2];
444             jnrlistD         = jjnr[jidx+3];
445             /* Sign of each element will be negative for non-real atoms.
446              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
447              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
448              */
449             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
450             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
451             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
452             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
453             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
454             j_coord_offsetA  = DIM*jnrA;
455             j_coord_offsetB  = DIM*jnrB;
456             j_coord_offsetC  = DIM*jnrC;
457             j_coord_offsetD  = DIM*jnrD;
458
459             /* load j atom coordinates */
460             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
461                                               x+j_coord_offsetC,x+j_coord_offsetD,
462                                               &jx0,&jy0,&jz0);
463
464             /* Calculate displacement vector */
465             dx00             = _mm_sub_ps(ix0,jx0);
466             dy00             = _mm_sub_ps(iy0,jy0);
467             dz00             = _mm_sub_ps(iz0,jz0);
468             dx10             = _mm_sub_ps(ix1,jx0);
469             dy10             = _mm_sub_ps(iy1,jy0);
470             dz10             = _mm_sub_ps(iz1,jz0);
471             dx20             = _mm_sub_ps(ix2,jx0);
472             dy20             = _mm_sub_ps(iy2,jy0);
473             dz20             = _mm_sub_ps(iz2,jz0);
474
475             /* Calculate squared distance and things based on it */
476             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
477             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
478             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
479
480             rinv00           = gmx_mm_invsqrt_ps(rsq00);
481             rinv10           = gmx_mm_invsqrt_ps(rsq10);
482             rinv20           = gmx_mm_invsqrt_ps(rsq20);
483
484             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
485             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
486             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
487
488             /* Load parameters for j particles */
489             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
490                                                               charge+jnrC+0,charge+jnrD+0);
491             vdwjidx0A        = 2*vdwtype[jnrA+0];
492             vdwjidx0B        = 2*vdwtype[jnrB+0];
493             vdwjidx0C        = 2*vdwtype[jnrC+0];
494             vdwjidx0D        = 2*vdwtype[jnrD+0];
495
496             fjx0             = _mm_setzero_ps();
497             fjy0             = _mm_setzero_ps();
498             fjz0             = _mm_setzero_ps();
499
500             /**************************
501              * CALCULATE INTERACTIONS *
502              **************************/
503
504             if (gmx_mm_any_lt(rsq00,rcutoff2))
505             {
506
507             r00              = _mm_mul_ps(rsq00,rinv00);
508             r00              = _mm_andnot_ps(dummy_mask,r00);
509
510             /* Compute parameters for interactions between i and j atoms */
511             qq00             = _mm_mul_ps(iq0,jq0);
512             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
513                                          vdwparam+vdwioffset0+vdwjidx0B,
514                                          vdwparam+vdwioffset0+vdwjidx0C,
515                                          vdwparam+vdwioffset0+vdwjidx0D,
516                                          &c6_00,&c12_00);
517
518             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
519                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
520                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
521                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
522
523             /* EWALD ELECTROSTATICS */
524
525             /* Analytical PME correction */
526             zeta2            = _mm_mul_ps(beta2,rsq00);
527             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
528             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
529             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
530             felec            = _mm_mul_ps(qq00,felec);
531             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
532             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv00,sh_ewald));
533             velec            = _mm_mul_ps(qq00,velec);
534
535             /* Analytical LJ-PME */
536             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
537             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
538             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
539             exponent         = gmx_simd_exp_r(ewcljrsq);
540             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
541             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
542             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
543             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
544             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
545             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
546                                           _mm_mul_ps(_mm_sub_ps(vvdw6,_mm_macc_ps(c6grid_00,sh_lj_ewald,_mm_mul_ps(c6_00,sh_vdw_invrcut6))),one_sixth));
547             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
548             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
549
550             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
551
552             /* Update potential sum for this i atom from the interaction with this j atom. */
553             velec            = _mm_and_ps(velec,cutoff_mask);
554             velec            = _mm_andnot_ps(dummy_mask,velec);
555             velecsum         = _mm_add_ps(velecsum,velec);
556             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
557             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
558             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
559
560             fscal            = _mm_add_ps(felec,fvdw);
561
562             fscal            = _mm_and_ps(fscal,cutoff_mask);
563
564             fscal            = _mm_andnot_ps(dummy_mask,fscal);
565
566              /* Update vectorial force */
567             fix0             = _mm_macc_ps(dx00,fscal,fix0);
568             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
569             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
570
571             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
572             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
573             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
574
575             }
576
577             /**************************
578              * CALCULATE INTERACTIONS *
579              **************************/
580
581             if (gmx_mm_any_lt(rsq10,rcutoff2))
582             {
583
584             r10              = _mm_mul_ps(rsq10,rinv10);
585             r10              = _mm_andnot_ps(dummy_mask,r10);
586
587             /* Compute parameters for interactions between i and j atoms */
588             qq10             = _mm_mul_ps(iq1,jq0);
589
590             /* EWALD ELECTROSTATICS */
591
592             /* Analytical PME correction */
593             zeta2            = _mm_mul_ps(beta2,rsq10);
594             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
595             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
596             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
597             felec            = _mm_mul_ps(qq10,felec);
598             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
599             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv10,sh_ewald));
600             velec            = _mm_mul_ps(qq10,velec);
601
602             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
603
604             /* Update potential sum for this i atom from the interaction with this j atom. */
605             velec            = _mm_and_ps(velec,cutoff_mask);
606             velec            = _mm_andnot_ps(dummy_mask,velec);
607             velecsum         = _mm_add_ps(velecsum,velec);
608
609             fscal            = felec;
610
611             fscal            = _mm_and_ps(fscal,cutoff_mask);
612
613             fscal            = _mm_andnot_ps(dummy_mask,fscal);
614
615              /* Update vectorial force */
616             fix1             = _mm_macc_ps(dx10,fscal,fix1);
617             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
618             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
619
620             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
621             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
622             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
623
624             }
625
626             /**************************
627              * CALCULATE INTERACTIONS *
628              **************************/
629
630             if (gmx_mm_any_lt(rsq20,rcutoff2))
631             {
632
633             r20              = _mm_mul_ps(rsq20,rinv20);
634             r20              = _mm_andnot_ps(dummy_mask,r20);
635
636             /* Compute parameters for interactions between i and j atoms */
637             qq20             = _mm_mul_ps(iq2,jq0);
638
639             /* EWALD ELECTROSTATICS */
640
641             /* Analytical PME correction */
642             zeta2            = _mm_mul_ps(beta2,rsq20);
643             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
644             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
645             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
646             felec            = _mm_mul_ps(qq20,felec);
647             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
648             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv20,sh_ewald));
649             velec            = _mm_mul_ps(qq20,velec);
650
651             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
652
653             /* Update potential sum for this i atom from the interaction with this j atom. */
654             velec            = _mm_and_ps(velec,cutoff_mask);
655             velec            = _mm_andnot_ps(dummy_mask,velec);
656             velecsum         = _mm_add_ps(velecsum,velec);
657
658             fscal            = felec;
659
660             fscal            = _mm_and_ps(fscal,cutoff_mask);
661
662             fscal            = _mm_andnot_ps(dummy_mask,fscal);
663
664              /* Update vectorial force */
665             fix2             = _mm_macc_ps(dx20,fscal,fix2);
666             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
667             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
668
669             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
670             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
671             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
672
673             }
674
675             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
676             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
677             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
678             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
679
680             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
681
682             /* Inner loop uses 132 flops */
683         }
684
685         /* End of innermost loop */
686
687         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
688                                               f+i_coord_offset,fshift+i_shift_offset);
689
690         ggid                        = gid[iidx];
691         /* Update potential energies */
692         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
693         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
694
695         /* Increment number of inner iterations */
696         inneriter                  += j_index_end - j_index_start;
697
698         /* Outer loop uses 20 flops */
699     }
700
701     /* Increment number of outer iterations */
702     outeriter        += nri;
703
704     /* Update outer/inner flops */
705
706     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*132);
707 }
708 /*
709  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_128_fma_single
710  * Electrostatics interaction: Ewald
711  * VdW interaction:            LJEwald
712  * Geometry:                   Water3-Particle
713  * Calculate force/pot:        Force
714  */
715 void
716 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_128_fma_single
717                     (t_nblist                    * gmx_restrict       nlist,
718                      rvec                        * gmx_restrict          xx,
719                      rvec                        * gmx_restrict          ff,
720                      t_forcerec                  * gmx_restrict          fr,
721                      t_mdatoms                   * gmx_restrict     mdatoms,
722                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
723                      t_nrnb                      * gmx_restrict        nrnb)
724 {
725     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
726      * just 0 for non-waters.
727      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
728      * jnr indices corresponding to data put in the four positions in the SIMD register.
729      */
730     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
731     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
732     int              jnrA,jnrB,jnrC,jnrD;
733     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
734     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
735     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
736     real             rcutoff_scalar;
737     real             *shiftvec,*fshift,*x,*f;
738     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
739     real             scratch[4*DIM];
740     __m128           fscal,rcutoff,rcutoff2,jidxall;
741     int              vdwioffset0;
742     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
743     int              vdwioffset1;
744     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
745     int              vdwioffset2;
746     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
747     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
748     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
749     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
750     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
751     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
752     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
753     real             *charge;
754     int              nvdwtype;
755     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
756     int              *vdwtype;
757     real             *vdwparam;
758     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
759     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
760     __m128           c6grid_00;
761     __m128           c6grid_10;
762     __m128           c6grid_20;
763     real             *vdwgridparam;
764     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
765     __m128           one_half = _mm_set1_ps(0.5);
766     __m128           minus_one = _mm_set1_ps(-1.0);
767     __m128i          ewitab;
768     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
769     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
770     real             *ewtab;
771     __m128           dummy_mask,cutoff_mask;
772     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
773     __m128           one     = _mm_set1_ps(1.0);
774     __m128           two     = _mm_set1_ps(2.0);
775     x                = xx[0];
776     f                = ff[0];
777
778     nri              = nlist->nri;
779     iinr             = nlist->iinr;
780     jindex           = nlist->jindex;
781     jjnr             = nlist->jjnr;
782     shiftidx         = nlist->shift;
783     gid              = nlist->gid;
784     shiftvec         = fr->shift_vec[0];
785     fshift           = fr->fshift[0];
786     facel            = _mm_set1_ps(fr->epsfac);
787     charge           = mdatoms->chargeA;
788     nvdwtype         = fr->ntype;
789     vdwparam         = fr->nbfp;
790     vdwtype          = mdatoms->typeA;
791     vdwgridparam     = fr->ljpme_c6grid;
792     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
793     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
794     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
795
796     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
797     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
798     beta2            = _mm_mul_ps(beta,beta);
799     beta3            = _mm_mul_ps(beta,beta2);
800     ewtab            = fr->ic->tabq_coul_F;
801     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
802     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
803
804     /* Setup water-specific parameters */
805     inr              = nlist->iinr[0];
806     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
807     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
808     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
809     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
810
811     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
812     rcutoff_scalar   = fr->rcoulomb;
813     rcutoff          = _mm_set1_ps(rcutoff_scalar);
814     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
815
816     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
817     rvdw             = _mm_set1_ps(fr->rvdw);
818
819     /* Avoid stupid compiler warnings */
820     jnrA = jnrB = jnrC = jnrD = 0;
821     j_coord_offsetA = 0;
822     j_coord_offsetB = 0;
823     j_coord_offsetC = 0;
824     j_coord_offsetD = 0;
825
826     outeriter        = 0;
827     inneriter        = 0;
828
829     for(iidx=0;iidx<4*DIM;iidx++)
830     {
831         scratch[iidx] = 0.0;
832     }
833
834     /* Start outer loop over neighborlists */
835     for(iidx=0; iidx<nri; iidx++)
836     {
837         /* Load shift vector for this list */
838         i_shift_offset   = DIM*shiftidx[iidx];
839
840         /* Load limits for loop over neighbors */
841         j_index_start    = jindex[iidx];
842         j_index_end      = jindex[iidx+1];
843
844         /* Get outer coordinate index */
845         inr              = iinr[iidx];
846         i_coord_offset   = DIM*inr;
847
848         /* Load i particle coords and add shift vector */
849         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
850                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
851
852         fix0             = _mm_setzero_ps();
853         fiy0             = _mm_setzero_ps();
854         fiz0             = _mm_setzero_ps();
855         fix1             = _mm_setzero_ps();
856         fiy1             = _mm_setzero_ps();
857         fiz1             = _mm_setzero_ps();
858         fix2             = _mm_setzero_ps();
859         fiy2             = _mm_setzero_ps();
860         fiz2             = _mm_setzero_ps();
861
862         /* Start inner kernel loop */
863         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
864         {
865
866             /* Get j neighbor index, and coordinate index */
867             jnrA             = jjnr[jidx];
868             jnrB             = jjnr[jidx+1];
869             jnrC             = jjnr[jidx+2];
870             jnrD             = jjnr[jidx+3];
871             j_coord_offsetA  = DIM*jnrA;
872             j_coord_offsetB  = DIM*jnrB;
873             j_coord_offsetC  = DIM*jnrC;
874             j_coord_offsetD  = DIM*jnrD;
875
876             /* load j atom coordinates */
877             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
878                                               x+j_coord_offsetC,x+j_coord_offsetD,
879                                               &jx0,&jy0,&jz0);
880
881             /* Calculate displacement vector */
882             dx00             = _mm_sub_ps(ix0,jx0);
883             dy00             = _mm_sub_ps(iy0,jy0);
884             dz00             = _mm_sub_ps(iz0,jz0);
885             dx10             = _mm_sub_ps(ix1,jx0);
886             dy10             = _mm_sub_ps(iy1,jy0);
887             dz10             = _mm_sub_ps(iz1,jz0);
888             dx20             = _mm_sub_ps(ix2,jx0);
889             dy20             = _mm_sub_ps(iy2,jy0);
890             dz20             = _mm_sub_ps(iz2,jz0);
891
892             /* Calculate squared distance and things based on it */
893             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
894             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
895             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
896
897             rinv00           = gmx_mm_invsqrt_ps(rsq00);
898             rinv10           = gmx_mm_invsqrt_ps(rsq10);
899             rinv20           = gmx_mm_invsqrt_ps(rsq20);
900
901             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
902             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
903             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
904
905             /* Load parameters for j particles */
906             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
907                                                               charge+jnrC+0,charge+jnrD+0);
908             vdwjidx0A        = 2*vdwtype[jnrA+0];
909             vdwjidx0B        = 2*vdwtype[jnrB+0];
910             vdwjidx0C        = 2*vdwtype[jnrC+0];
911             vdwjidx0D        = 2*vdwtype[jnrD+0];
912
913             fjx0             = _mm_setzero_ps();
914             fjy0             = _mm_setzero_ps();
915             fjz0             = _mm_setzero_ps();
916
917             /**************************
918              * CALCULATE INTERACTIONS *
919              **************************/
920
921             if (gmx_mm_any_lt(rsq00,rcutoff2))
922             {
923
924             r00              = _mm_mul_ps(rsq00,rinv00);
925
926             /* Compute parameters for interactions between i and j atoms */
927             qq00             = _mm_mul_ps(iq0,jq0);
928             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
929                                          vdwparam+vdwioffset0+vdwjidx0B,
930                                          vdwparam+vdwioffset0+vdwjidx0C,
931                                          vdwparam+vdwioffset0+vdwjidx0D,
932                                          &c6_00,&c12_00);
933
934             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
935                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
936                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
937                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
938
939             /* EWALD ELECTROSTATICS */
940
941             /* Analytical PME correction */
942             zeta2            = _mm_mul_ps(beta2,rsq00);
943             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
944             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
945             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
946             felec            = _mm_mul_ps(qq00,felec);
947
948             /* Analytical LJ-PME */
949             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
950             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
951             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
952             exponent         = gmx_simd_exp_r(ewcljrsq);
953             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
954             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
955             /* f6A = 6 * C6grid * (1 - poly) */
956             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
957             /* f6B = C6grid * exponent * beta^6 */
958             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
959             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
960             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
961
962             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
963
964             fscal            = _mm_add_ps(felec,fvdw);
965
966             fscal            = _mm_and_ps(fscal,cutoff_mask);
967
968              /* Update vectorial force */
969             fix0             = _mm_macc_ps(dx00,fscal,fix0);
970             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
971             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
972
973             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
974             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
975             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
976
977             }
978
979             /**************************
980              * CALCULATE INTERACTIONS *
981              **************************/
982
983             if (gmx_mm_any_lt(rsq10,rcutoff2))
984             {
985
986             r10              = _mm_mul_ps(rsq10,rinv10);
987
988             /* Compute parameters for interactions between i and j atoms */
989             qq10             = _mm_mul_ps(iq1,jq0);
990
991             /* EWALD ELECTROSTATICS */
992
993             /* Analytical PME correction */
994             zeta2            = _mm_mul_ps(beta2,rsq10);
995             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
996             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
997             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
998             felec            = _mm_mul_ps(qq10,felec);
999
1000             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1001
1002             fscal            = felec;
1003
1004             fscal            = _mm_and_ps(fscal,cutoff_mask);
1005
1006              /* Update vectorial force */
1007             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1008             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1009             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1010
1011             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1012             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1013             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1014
1015             }
1016
1017             /**************************
1018              * CALCULATE INTERACTIONS *
1019              **************************/
1020
1021             if (gmx_mm_any_lt(rsq20,rcutoff2))
1022             {
1023
1024             r20              = _mm_mul_ps(rsq20,rinv20);
1025
1026             /* Compute parameters for interactions between i and j atoms */
1027             qq20             = _mm_mul_ps(iq2,jq0);
1028
1029             /* EWALD ELECTROSTATICS */
1030
1031             /* Analytical PME correction */
1032             zeta2            = _mm_mul_ps(beta2,rsq20);
1033             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1034             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1035             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1036             felec            = _mm_mul_ps(qq20,felec);
1037
1038             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1039
1040             fscal            = felec;
1041
1042             fscal            = _mm_and_ps(fscal,cutoff_mask);
1043
1044              /* Update vectorial force */
1045             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1046             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1047             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1048
1049             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1050             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1051             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1052
1053             }
1054
1055             fjptrA             = f+j_coord_offsetA;
1056             fjptrB             = f+j_coord_offsetB;
1057             fjptrC             = f+j_coord_offsetC;
1058             fjptrD             = f+j_coord_offsetD;
1059
1060             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1061
1062             /* Inner loop uses 114 flops */
1063         }
1064
1065         if(jidx<j_index_end)
1066         {
1067
1068             /* Get j neighbor index, and coordinate index */
1069             jnrlistA         = jjnr[jidx];
1070             jnrlistB         = jjnr[jidx+1];
1071             jnrlistC         = jjnr[jidx+2];
1072             jnrlistD         = jjnr[jidx+3];
1073             /* Sign of each element will be negative for non-real atoms.
1074              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1075              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1076              */
1077             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1078             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1079             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1080             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1081             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1082             j_coord_offsetA  = DIM*jnrA;
1083             j_coord_offsetB  = DIM*jnrB;
1084             j_coord_offsetC  = DIM*jnrC;
1085             j_coord_offsetD  = DIM*jnrD;
1086
1087             /* load j atom coordinates */
1088             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1089                                               x+j_coord_offsetC,x+j_coord_offsetD,
1090                                               &jx0,&jy0,&jz0);
1091
1092             /* Calculate displacement vector */
1093             dx00             = _mm_sub_ps(ix0,jx0);
1094             dy00             = _mm_sub_ps(iy0,jy0);
1095             dz00             = _mm_sub_ps(iz0,jz0);
1096             dx10             = _mm_sub_ps(ix1,jx0);
1097             dy10             = _mm_sub_ps(iy1,jy0);
1098             dz10             = _mm_sub_ps(iz1,jz0);
1099             dx20             = _mm_sub_ps(ix2,jx0);
1100             dy20             = _mm_sub_ps(iy2,jy0);
1101             dz20             = _mm_sub_ps(iz2,jz0);
1102
1103             /* Calculate squared distance and things based on it */
1104             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1105             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1106             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1107
1108             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1109             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1110             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1111
1112             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1113             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1114             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1115
1116             /* Load parameters for j particles */
1117             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1118                                                               charge+jnrC+0,charge+jnrD+0);
1119             vdwjidx0A        = 2*vdwtype[jnrA+0];
1120             vdwjidx0B        = 2*vdwtype[jnrB+0];
1121             vdwjidx0C        = 2*vdwtype[jnrC+0];
1122             vdwjidx0D        = 2*vdwtype[jnrD+0];
1123
1124             fjx0             = _mm_setzero_ps();
1125             fjy0             = _mm_setzero_ps();
1126             fjz0             = _mm_setzero_ps();
1127
1128             /**************************
1129              * CALCULATE INTERACTIONS *
1130              **************************/
1131
1132             if (gmx_mm_any_lt(rsq00,rcutoff2))
1133             {
1134
1135             r00              = _mm_mul_ps(rsq00,rinv00);
1136             r00              = _mm_andnot_ps(dummy_mask,r00);
1137
1138             /* Compute parameters for interactions between i and j atoms */
1139             qq00             = _mm_mul_ps(iq0,jq0);
1140             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1141                                          vdwparam+vdwioffset0+vdwjidx0B,
1142                                          vdwparam+vdwioffset0+vdwjidx0C,
1143                                          vdwparam+vdwioffset0+vdwjidx0D,
1144                                          &c6_00,&c12_00);
1145
1146             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1147                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1148                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1149                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1150
1151             /* EWALD ELECTROSTATICS */
1152
1153             /* Analytical PME correction */
1154             zeta2            = _mm_mul_ps(beta2,rsq00);
1155             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
1156             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1157             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1158             felec            = _mm_mul_ps(qq00,felec);
1159
1160             /* Analytical LJ-PME */
1161             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1162             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1163             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1164             exponent         = gmx_simd_exp_r(ewcljrsq);
1165             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1166             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
1167             /* f6A = 6 * C6grid * (1 - poly) */
1168             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1169             /* f6B = C6grid * exponent * beta^6 */
1170             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1171             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1172             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1173
1174             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1175
1176             fscal            = _mm_add_ps(felec,fvdw);
1177
1178             fscal            = _mm_and_ps(fscal,cutoff_mask);
1179
1180             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1181
1182              /* Update vectorial force */
1183             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1184             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1185             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1186
1187             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1188             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1189             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1190
1191             }
1192
1193             /**************************
1194              * CALCULATE INTERACTIONS *
1195              **************************/
1196
1197             if (gmx_mm_any_lt(rsq10,rcutoff2))
1198             {
1199
1200             r10              = _mm_mul_ps(rsq10,rinv10);
1201             r10              = _mm_andnot_ps(dummy_mask,r10);
1202
1203             /* Compute parameters for interactions between i and j atoms */
1204             qq10             = _mm_mul_ps(iq1,jq0);
1205
1206             /* EWALD ELECTROSTATICS */
1207
1208             /* Analytical PME correction */
1209             zeta2            = _mm_mul_ps(beta2,rsq10);
1210             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1211             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1212             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1213             felec            = _mm_mul_ps(qq10,felec);
1214
1215             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1216
1217             fscal            = felec;
1218
1219             fscal            = _mm_and_ps(fscal,cutoff_mask);
1220
1221             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1222
1223              /* Update vectorial force */
1224             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1225             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1226             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1227
1228             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1229             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1230             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1231
1232             }
1233
1234             /**************************
1235              * CALCULATE INTERACTIONS *
1236              **************************/
1237
1238             if (gmx_mm_any_lt(rsq20,rcutoff2))
1239             {
1240
1241             r20              = _mm_mul_ps(rsq20,rinv20);
1242             r20              = _mm_andnot_ps(dummy_mask,r20);
1243
1244             /* Compute parameters for interactions between i and j atoms */
1245             qq20             = _mm_mul_ps(iq2,jq0);
1246
1247             /* EWALD ELECTROSTATICS */
1248
1249             /* Analytical PME correction */
1250             zeta2            = _mm_mul_ps(beta2,rsq20);
1251             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1252             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1253             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1254             felec            = _mm_mul_ps(qq20,felec);
1255
1256             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1257
1258             fscal            = felec;
1259
1260             fscal            = _mm_and_ps(fscal,cutoff_mask);
1261
1262             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1263
1264              /* Update vectorial force */
1265             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1266             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1267             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1268
1269             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1270             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1271             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1272
1273             }
1274
1275             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1276             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1277             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1278             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1279
1280             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1281
1282             /* Inner loop uses 117 flops */
1283         }
1284
1285         /* End of innermost loop */
1286
1287         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1288                                               f+i_coord_offset,fshift+i_shift_offset);
1289
1290         /* Increment number of inner iterations */
1291         inneriter                  += j_index_end - j_index_start;
1292
1293         /* Outer loop uses 18 flops */
1294     }
1295
1296     /* Increment number of outer iterations */
1297     outeriter        += nri;
1298
1299     /* Update outer/inner flops */
1300
1301     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*117);
1302 }