Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_avx_128_fma_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_128_fma_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
94     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
95     __m128           c6grid_00;
96     real             *vdwgridparam;
97     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
98     __m128           one_half = _mm_set1_ps(0.5);
99     __m128           minus_one = _mm_set1_ps(-1.0);
100     __m128i          ewitab;
101     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
103     real             *ewtab;
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->ic->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124     vdwgridparam     = fr->ljpme_c6grid;
125     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
126     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
127     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
128
129     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
130     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
131     beta2            = _mm_mul_ps(beta,beta);
132     beta3            = _mm_mul_ps(beta,beta2);
133     ewtab            = fr->ic->tabq_coul_FDV0;
134     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
135     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
136
137     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
138     rcutoff_scalar   = fr->ic->rcoulomb;
139     rcutoff          = _mm_set1_ps(rcutoff_scalar);
140     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
141
142     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
143     rvdw             = _mm_set1_ps(fr->ic->rvdw);
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = jnrC = jnrD = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149     j_coord_offsetC = 0;
150     j_coord_offsetD = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
176
177         fix0             = _mm_setzero_ps();
178         fiy0             = _mm_setzero_ps();
179         fiz0             = _mm_setzero_ps();
180
181         /* Load parameters for i particles */
182         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
183         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
184
185         /* Reset potential sums */
186         velecsum         = _mm_setzero_ps();
187         vvdwsum          = _mm_setzero_ps();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             jnrC             = jjnr[jidx+2];
197             jnrD             = jjnr[jidx+3];
198             j_coord_offsetA  = DIM*jnrA;
199             j_coord_offsetB  = DIM*jnrB;
200             j_coord_offsetC  = DIM*jnrC;
201             j_coord_offsetD  = DIM*jnrD;
202
203             /* load j atom coordinates */
204             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
205                                               x+j_coord_offsetC,x+j_coord_offsetD,
206                                               &jx0,&jy0,&jz0);
207
208             /* Calculate displacement vector */
209             dx00             = _mm_sub_ps(ix0,jx0);
210             dy00             = _mm_sub_ps(iy0,jy0);
211             dz00             = _mm_sub_ps(iz0,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
215
216             rinv00           = avx128fma_invsqrt_f(rsq00);
217
218             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
219
220             /* Load parameters for j particles */
221             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
222                                                               charge+jnrC+0,charge+jnrD+0);
223             vdwjidx0A        = 2*vdwtype[jnrA+0];
224             vdwjidx0B        = 2*vdwtype[jnrB+0];
225             vdwjidx0C        = 2*vdwtype[jnrC+0];
226             vdwjidx0D        = 2*vdwtype[jnrD+0];
227
228             /**************************
229              * CALCULATE INTERACTIONS *
230              **************************/
231
232             if (gmx_mm_any_lt(rsq00,rcutoff2))
233             {
234
235             r00              = _mm_mul_ps(rsq00,rinv00);
236
237             /* Compute parameters for interactions between i and j atoms */
238             qq00             = _mm_mul_ps(iq0,jq0);
239             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
240                                          vdwparam+vdwioffset0+vdwjidx0B,
241                                          vdwparam+vdwioffset0+vdwjidx0C,
242                                          vdwparam+vdwioffset0+vdwjidx0D,
243                                          &c6_00,&c12_00);
244
245             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
246                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
247                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
248                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
249
250             /* EWALD ELECTROSTATICS */
251
252             /* Analytical PME correction */
253             zeta2            = _mm_mul_ps(beta2,rsq00);
254             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
255             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
256             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
257             felec            = _mm_mul_ps(qq00,felec);
258             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
259             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv00,sh_ewald));
260             velec            = _mm_mul_ps(qq00,velec);
261
262             /* Analytical LJ-PME */
263             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
264             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
265             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
266             exponent         = avx128fma_exp_f(ewcljrsq);
267             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
268             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
269             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
270             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
271             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
272             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
273                                           _mm_mul_ps(_mm_sub_ps(vvdw6,_mm_macc_ps(c6grid_00,sh_lj_ewald,_mm_mul_ps(c6_00,sh_vdw_invrcut6))),one_sixth));
274             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
275             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
276
277             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             velec            = _mm_and_ps(velec,cutoff_mask);
281             velecsum         = _mm_add_ps(velecsum,velec);
282             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
283             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
284
285             fscal            = _mm_add_ps(felec,fvdw);
286
287             fscal            = _mm_and_ps(fscal,cutoff_mask);
288
289              /* Update vectorial force */
290             fix0             = _mm_macc_ps(dx00,fscal,fix0);
291             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
292             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
293
294             fjptrA             = f+j_coord_offsetA;
295             fjptrB             = f+j_coord_offsetB;
296             fjptrC             = f+j_coord_offsetC;
297             fjptrD             = f+j_coord_offsetD;
298             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
299                                                    _mm_mul_ps(dx00,fscal),
300                                                    _mm_mul_ps(dy00,fscal),
301                                                    _mm_mul_ps(dz00,fscal));
302
303             }
304
305             /* Inner loop uses 63 flops */
306         }
307
308         if(jidx<j_index_end)
309         {
310
311             /* Get j neighbor index, and coordinate index */
312             jnrlistA         = jjnr[jidx];
313             jnrlistB         = jjnr[jidx+1];
314             jnrlistC         = jjnr[jidx+2];
315             jnrlistD         = jjnr[jidx+3];
316             /* Sign of each element will be negative for non-real atoms.
317              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
318              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
319              */
320             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
321             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
322             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
323             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
324             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
325             j_coord_offsetA  = DIM*jnrA;
326             j_coord_offsetB  = DIM*jnrB;
327             j_coord_offsetC  = DIM*jnrC;
328             j_coord_offsetD  = DIM*jnrD;
329
330             /* load j atom coordinates */
331             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
332                                               x+j_coord_offsetC,x+j_coord_offsetD,
333                                               &jx0,&jy0,&jz0);
334
335             /* Calculate displacement vector */
336             dx00             = _mm_sub_ps(ix0,jx0);
337             dy00             = _mm_sub_ps(iy0,jy0);
338             dz00             = _mm_sub_ps(iz0,jz0);
339
340             /* Calculate squared distance and things based on it */
341             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
342
343             rinv00           = avx128fma_invsqrt_f(rsq00);
344
345             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
346
347             /* Load parameters for j particles */
348             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
349                                                               charge+jnrC+0,charge+jnrD+0);
350             vdwjidx0A        = 2*vdwtype[jnrA+0];
351             vdwjidx0B        = 2*vdwtype[jnrB+0];
352             vdwjidx0C        = 2*vdwtype[jnrC+0];
353             vdwjidx0D        = 2*vdwtype[jnrD+0];
354
355             /**************************
356              * CALCULATE INTERACTIONS *
357              **************************/
358
359             if (gmx_mm_any_lt(rsq00,rcutoff2))
360             {
361
362             r00              = _mm_mul_ps(rsq00,rinv00);
363             r00              = _mm_andnot_ps(dummy_mask,r00);
364
365             /* Compute parameters for interactions between i and j atoms */
366             qq00             = _mm_mul_ps(iq0,jq0);
367             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
368                                          vdwparam+vdwioffset0+vdwjidx0B,
369                                          vdwparam+vdwioffset0+vdwjidx0C,
370                                          vdwparam+vdwioffset0+vdwjidx0D,
371                                          &c6_00,&c12_00);
372
373             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
374                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
375                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
376                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
377
378             /* EWALD ELECTROSTATICS */
379
380             /* Analytical PME correction */
381             zeta2            = _mm_mul_ps(beta2,rsq00);
382             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
383             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
384             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
385             felec            = _mm_mul_ps(qq00,felec);
386             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
387             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv00,sh_ewald));
388             velec            = _mm_mul_ps(qq00,velec);
389
390             /* Analytical LJ-PME */
391             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
392             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
393             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
394             exponent         = avx128fma_exp_f(ewcljrsq);
395             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
396             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
397             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
398             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
399             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
400             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
401                                           _mm_mul_ps(_mm_sub_ps(vvdw6,_mm_macc_ps(c6grid_00,sh_lj_ewald,_mm_mul_ps(c6_00,sh_vdw_invrcut6))),one_sixth));
402             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
403             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
404
405             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
406
407             /* Update potential sum for this i atom from the interaction with this j atom. */
408             velec            = _mm_and_ps(velec,cutoff_mask);
409             velec            = _mm_andnot_ps(dummy_mask,velec);
410             velecsum         = _mm_add_ps(velecsum,velec);
411             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
412             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
413             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
414
415             fscal            = _mm_add_ps(felec,fvdw);
416
417             fscal            = _mm_and_ps(fscal,cutoff_mask);
418
419             fscal            = _mm_andnot_ps(dummy_mask,fscal);
420
421              /* Update vectorial force */
422             fix0             = _mm_macc_ps(dx00,fscal,fix0);
423             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
424             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
425
426             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
427             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
428             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
429             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
430             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
431                                                    _mm_mul_ps(dx00,fscal),
432                                                    _mm_mul_ps(dy00,fscal),
433                                                    _mm_mul_ps(dz00,fscal));
434
435             }
436
437             /* Inner loop uses 64 flops */
438         }
439
440         /* End of innermost loop */
441
442         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
443                                               f+i_coord_offset,fshift+i_shift_offset);
444
445         ggid                        = gid[iidx];
446         /* Update potential energies */
447         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
448         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
449
450         /* Increment number of inner iterations */
451         inneriter                  += j_index_end - j_index_start;
452
453         /* Outer loop uses 9 flops */
454     }
455
456     /* Increment number of outer iterations */
457     outeriter        += nri;
458
459     /* Update outer/inner flops */
460
461     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*64);
462 }
463 /*
464  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_128_fma_single
465  * Electrostatics interaction: Ewald
466  * VdW interaction:            LJEwald
467  * Geometry:                   Particle-Particle
468  * Calculate force/pot:        Force
469  */
470 void
471 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_128_fma_single
472                     (t_nblist                    * gmx_restrict       nlist,
473                      rvec                        * gmx_restrict          xx,
474                      rvec                        * gmx_restrict          ff,
475                      struct t_forcerec           * gmx_restrict          fr,
476                      t_mdatoms                   * gmx_restrict     mdatoms,
477                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
478                      t_nrnb                      * gmx_restrict        nrnb)
479 {
480     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
481      * just 0 for non-waters.
482      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
483      * jnr indices corresponding to data put in the four positions in the SIMD register.
484      */
485     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
486     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
487     int              jnrA,jnrB,jnrC,jnrD;
488     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
489     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
490     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
491     real             rcutoff_scalar;
492     real             *shiftvec,*fshift,*x,*f;
493     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
494     real             scratch[4*DIM];
495     __m128           fscal,rcutoff,rcutoff2,jidxall;
496     int              vdwioffset0;
497     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
498     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
499     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
500     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
501     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
502     real             *charge;
503     int              nvdwtype;
504     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
505     int              *vdwtype;
506     real             *vdwparam;
507     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
508     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
509     __m128           c6grid_00;
510     real             *vdwgridparam;
511     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
512     __m128           one_half = _mm_set1_ps(0.5);
513     __m128           minus_one = _mm_set1_ps(-1.0);
514     __m128i          ewitab;
515     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
516     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
517     real             *ewtab;
518     __m128           dummy_mask,cutoff_mask;
519     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
520     __m128           one     = _mm_set1_ps(1.0);
521     __m128           two     = _mm_set1_ps(2.0);
522     x                = xx[0];
523     f                = ff[0];
524
525     nri              = nlist->nri;
526     iinr             = nlist->iinr;
527     jindex           = nlist->jindex;
528     jjnr             = nlist->jjnr;
529     shiftidx         = nlist->shift;
530     gid              = nlist->gid;
531     shiftvec         = fr->shift_vec[0];
532     fshift           = fr->fshift[0];
533     facel            = _mm_set1_ps(fr->ic->epsfac);
534     charge           = mdatoms->chargeA;
535     nvdwtype         = fr->ntype;
536     vdwparam         = fr->nbfp;
537     vdwtype          = mdatoms->typeA;
538     vdwgridparam     = fr->ljpme_c6grid;
539     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
540     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
541     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
542
543     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
544     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
545     beta2            = _mm_mul_ps(beta,beta);
546     beta3            = _mm_mul_ps(beta,beta2);
547     ewtab            = fr->ic->tabq_coul_F;
548     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
549     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
550
551     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
552     rcutoff_scalar   = fr->ic->rcoulomb;
553     rcutoff          = _mm_set1_ps(rcutoff_scalar);
554     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
555
556     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
557     rvdw             = _mm_set1_ps(fr->ic->rvdw);
558
559     /* Avoid stupid compiler warnings */
560     jnrA = jnrB = jnrC = jnrD = 0;
561     j_coord_offsetA = 0;
562     j_coord_offsetB = 0;
563     j_coord_offsetC = 0;
564     j_coord_offsetD = 0;
565
566     outeriter        = 0;
567     inneriter        = 0;
568
569     for(iidx=0;iidx<4*DIM;iidx++)
570     {
571         scratch[iidx] = 0.0;
572     }
573
574     /* Start outer loop over neighborlists */
575     for(iidx=0; iidx<nri; iidx++)
576     {
577         /* Load shift vector for this list */
578         i_shift_offset   = DIM*shiftidx[iidx];
579
580         /* Load limits for loop over neighbors */
581         j_index_start    = jindex[iidx];
582         j_index_end      = jindex[iidx+1];
583
584         /* Get outer coordinate index */
585         inr              = iinr[iidx];
586         i_coord_offset   = DIM*inr;
587
588         /* Load i particle coords and add shift vector */
589         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
590
591         fix0             = _mm_setzero_ps();
592         fiy0             = _mm_setzero_ps();
593         fiz0             = _mm_setzero_ps();
594
595         /* Load parameters for i particles */
596         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
597         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
598
599         /* Start inner kernel loop */
600         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
601         {
602
603             /* Get j neighbor index, and coordinate index */
604             jnrA             = jjnr[jidx];
605             jnrB             = jjnr[jidx+1];
606             jnrC             = jjnr[jidx+2];
607             jnrD             = jjnr[jidx+3];
608             j_coord_offsetA  = DIM*jnrA;
609             j_coord_offsetB  = DIM*jnrB;
610             j_coord_offsetC  = DIM*jnrC;
611             j_coord_offsetD  = DIM*jnrD;
612
613             /* load j atom coordinates */
614             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
615                                               x+j_coord_offsetC,x+j_coord_offsetD,
616                                               &jx0,&jy0,&jz0);
617
618             /* Calculate displacement vector */
619             dx00             = _mm_sub_ps(ix0,jx0);
620             dy00             = _mm_sub_ps(iy0,jy0);
621             dz00             = _mm_sub_ps(iz0,jz0);
622
623             /* Calculate squared distance and things based on it */
624             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
625
626             rinv00           = avx128fma_invsqrt_f(rsq00);
627
628             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
629
630             /* Load parameters for j particles */
631             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
632                                                               charge+jnrC+0,charge+jnrD+0);
633             vdwjidx0A        = 2*vdwtype[jnrA+0];
634             vdwjidx0B        = 2*vdwtype[jnrB+0];
635             vdwjidx0C        = 2*vdwtype[jnrC+0];
636             vdwjidx0D        = 2*vdwtype[jnrD+0];
637
638             /**************************
639              * CALCULATE INTERACTIONS *
640              **************************/
641
642             if (gmx_mm_any_lt(rsq00,rcutoff2))
643             {
644
645             r00              = _mm_mul_ps(rsq00,rinv00);
646
647             /* Compute parameters for interactions between i and j atoms */
648             qq00             = _mm_mul_ps(iq0,jq0);
649             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
650                                          vdwparam+vdwioffset0+vdwjidx0B,
651                                          vdwparam+vdwioffset0+vdwjidx0C,
652                                          vdwparam+vdwioffset0+vdwjidx0D,
653                                          &c6_00,&c12_00);
654
655             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
656                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
657                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
658                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
659
660             /* EWALD ELECTROSTATICS */
661
662             /* Analytical PME correction */
663             zeta2            = _mm_mul_ps(beta2,rsq00);
664             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
665             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
666             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
667             felec            = _mm_mul_ps(qq00,felec);
668
669             /* Analytical LJ-PME */
670             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
671             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
672             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
673             exponent         = avx128fma_exp_f(ewcljrsq);
674             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
675             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
676             /* f6A = 6 * C6grid * (1 - poly) */
677             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
678             /* f6B = C6grid * exponent * beta^6 */
679             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
680             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
681             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
682
683             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
684
685             fscal            = _mm_add_ps(felec,fvdw);
686
687             fscal            = _mm_and_ps(fscal,cutoff_mask);
688
689              /* Update vectorial force */
690             fix0             = _mm_macc_ps(dx00,fscal,fix0);
691             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
692             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
693
694             fjptrA             = f+j_coord_offsetA;
695             fjptrB             = f+j_coord_offsetB;
696             fjptrC             = f+j_coord_offsetC;
697             fjptrD             = f+j_coord_offsetD;
698             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
699                                                    _mm_mul_ps(dx00,fscal),
700                                                    _mm_mul_ps(dy00,fscal),
701                                                    _mm_mul_ps(dz00,fscal));
702
703             }
704
705             /* Inner loop uses 52 flops */
706         }
707
708         if(jidx<j_index_end)
709         {
710
711             /* Get j neighbor index, and coordinate index */
712             jnrlistA         = jjnr[jidx];
713             jnrlistB         = jjnr[jidx+1];
714             jnrlistC         = jjnr[jidx+2];
715             jnrlistD         = jjnr[jidx+3];
716             /* Sign of each element will be negative for non-real atoms.
717              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
718              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
719              */
720             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
721             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
722             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
723             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
724             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
725             j_coord_offsetA  = DIM*jnrA;
726             j_coord_offsetB  = DIM*jnrB;
727             j_coord_offsetC  = DIM*jnrC;
728             j_coord_offsetD  = DIM*jnrD;
729
730             /* load j atom coordinates */
731             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
732                                               x+j_coord_offsetC,x+j_coord_offsetD,
733                                               &jx0,&jy0,&jz0);
734
735             /* Calculate displacement vector */
736             dx00             = _mm_sub_ps(ix0,jx0);
737             dy00             = _mm_sub_ps(iy0,jy0);
738             dz00             = _mm_sub_ps(iz0,jz0);
739
740             /* Calculate squared distance and things based on it */
741             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
742
743             rinv00           = avx128fma_invsqrt_f(rsq00);
744
745             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
746
747             /* Load parameters for j particles */
748             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
749                                                               charge+jnrC+0,charge+jnrD+0);
750             vdwjidx0A        = 2*vdwtype[jnrA+0];
751             vdwjidx0B        = 2*vdwtype[jnrB+0];
752             vdwjidx0C        = 2*vdwtype[jnrC+0];
753             vdwjidx0D        = 2*vdwtype[jnrD+0];
754
755             /**************************
756              * CALCULATE INTERACTIONS *
757              **************************/
758
759             if (gmx_mm_any_lt(rsq00,rcutoff2))
760             {
761
762             r00              = _mm_mul_ps(rsq00,rinv00);
763             r00              = _mm_andnot_ps(dummy_mask,r00);
764
765             /* Compute parameters for interactions between i and j atoms */
766             qq00             = _mm_mul_ps(iq0,jq0);
767             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
768                                          vdwparam+vdwioffset0+vdwjidx0B,
769                                          vdwparam+vdwioffset0+vdwjidx0C,
770                                          vdwparam+vdwioffset0+vdwjidx0D,
771                                          &c6_00,&c12_00);
772
773             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
774                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
775                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
776                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
777
778             /* EWALD ELECTROSTATICS */
779
780             /* Analytical PME correction */
781             zeta2            = _mm_mul_ps(beta2,rsq00);
782             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
783             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
784             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
785             felec            = _mm_mul_ps(qq00,felec);
786
787             /* Analytical LJ-PME */
788             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
789             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
790             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
791             exponent         = avx128fma_exp_f(ewcljrsq);
792             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
793             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
794             /* f6A = 6 * C6grid * (1 - poly) */
795             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
796             /* f6B = C6grid * exponent * beta^6 */
797             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
798             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
799             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
800
801             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
802
803             fscal            = _mm_add_ps(felec,fvdw);
804
805             fscal            = _mm_and_ps(fscal,cutoff_mask);
806
807             fscal            = _mm_andnot_ps(dummy_mask,fscal);
808
809              /* Update vectorial force */
810             fix0             = _mm_macc_ps(dx00,fscal,fix0);
811             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
812             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
813
814             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
815             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
816             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
817             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
818             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
819                                                    _mm_mul_ps(dx00,fscal),
820                                                    _mm_mul_ps(dy00,fscal),
821                                                    _mm_mul_ps(dz00,fscal));
822
823             }
824
825             /* Inner loop uses 53 flops */
826         }
827
828         /* End of innermost loop */
829
830         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
831                                               f+i_coord_offset,fshift+i_shift_offset);
832
833         /* Increment number of inner iterations */
834         inneriter                  += j_index_end - j_index_start;
835
836         /* Outer loop uses 7 flops */
837     }
838
839     /* Increment number of outer iterations */
840     outeriter        += nri;
841
842     /* Update outer/inner flops */
843
844     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*53);
845 }