Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_128_fma_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128           c6grid_00;
99     real             *vdwgridparam;
100     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
101     __m128           one_half = _mm_set1_ps(0.5);
102     __m128           minus_one = _mm_set1_ps(-1.0);
103     __m128i          ewitab;
104     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
105     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
106     real             *ewtab;
107     __m128           dummy_mask,cutoff_mask;
108     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
109     __m128           one     = _mm_set1_ps(1.0);
110     __m128           two     = _mm_set1_ps(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm_set1_ps(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127     vdwgridparam     = fr->ljpme_c6grid;
128     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
129     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
130     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
131
132     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
133     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
134     beta2            = _mm_mul_ps(beta,beta);
135     beta3            = _mm_mul_ps(beta,beta2);
136     ewtab            = fr->ic->tabq_coul_FDV0;
137     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
138     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
139
140     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
141     rcutoff_scalar   = fr->rcoulomb;
142     rcutoff          = _mm_set1_ps(rcutoff_scalar);
143     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
144
145     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
146     rvdw             = _mm_set1_ps(fr->rvdw);
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = jnrC = jnrD = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152     j_coord_offsetC = 0;
153     j_coord_offsetD = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
179
180         fix0             = _mm_setzero_ps();
181         fiy0             = _mm_setzero_ps();
182         fiz0             = _mm_setzero_ps();
183
184         /* Load parameters for i particles */
185         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
186         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
187
188         /* Reset potential sums */
189         velecsum         = _mm_setzero_ps();
190         vvdwsum          = _mm_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203             j_coord_offsetC  = DIM*jnrC;
204             j_coord_offsetD  = DIM*jnrD;
205
206             /* load j atom coordinates */
207             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               x+j_coord_offsetC,x+j_coord_offsetD,
209                                               &jx0,&jy0,&jz0);
210
211             /* Calculate displacement vector */
212             dx00             = _mm_sub_ps(ix0,jx0);
213             dy00             = _mm_sub_ps(iy0,jy0);
214             dz00             = _mm_sub_ps(iz0,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
218
219             rinv00           = gmx_mm_invsqrt_ps(rsq00);
220
221             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
222
223             /* Load parameters for j particles */
224             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
225                                                               charge+jnrC+0,charge+jnrD+0);
226             vdwjidx0A        = 2*vdwtype[jnrA+0];
227             vdwjidx0B        = 2*vdwtype[jnrB+0];
228             vdwjidx0C        = 2*vdwtype[jnrC+0];
229             vdwjidx0D        = 2*vdwtype[jnrD+0];
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             if (gmx_mm_any_lt(rsq00,rcutoff2))
236             {
237
238             r00              = _mm_mul_ps(rsq00,rinv00);
239
240             /* Compute parameters for interactions between i and j atoms */
241             qq00             = _mm_mul_ps(iq0,jq0);
242             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
243                                          vdwparam+vdwioffset0+vdwjidx0B,
244                                          vdwparam+vdwioffset0+vdwjidx0C,
245                                          vdwparam+vdwioffset0+vdwjidx0D,
246                                          &c6_00,&c12_00);
247
248             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
249                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
250                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
251                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
252
253             /* EWALD ELECTROSTATICS */
254
255             /* Analytical PME correction */
256             zeta2            = _mm_mul_ps(beta2,rsq00);
257             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
258             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
259             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
260             felec            = _mm_mul_ps(qq00,felec);
261             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
262             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv00,sh_ewald));
263             velec            = _mm_mul_ps(qq00,velec);
264
265             /* Analytical LJ-PME */
266             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
267             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
268             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
269             exponent         = gmx_simd_exp_r(ewcljrsq);
270             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
271             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
272             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
273             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
274             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
275             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
276                                           _mm_mul_ps(_mm_sub_ps(vvdw6,_mm_macc_ps(c6grid_00,sh_lj_ewald,_mm_mul_ps(c6_00,sh_vdw_invrcut6))),one_sixth));
277             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
278             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
279
280             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             velec            = _mm_and_ps(velec,cutoff_mask);
284             velecsum         = _mm_add_ps(velecsum,velec);
285             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
286             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
287
288             fscal            = _mm_add_ps(felec,fvdw);
289
290             fscal            = _mm_and_ps(fscal,cutoff_mask);
291
292              /* Update vectorial force */
293             fix0             = _mm_macc_ps(dx00,fscal,fix0);
294             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
295             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
296
297             fjptrA             = f+j_coord_offsetA;
298             fjptrB             = f+j_coord_offsetB;
299             fjptrC             = f+j_coord_offsetC;
300             fjptrD             = f+j_coord_offsetD;
301             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
302                                                    _mm_mul_ps(dx00,fscal),
303                                                    _mm_mul_ps(dy00,fscal),
304                                                    _mm_mul_ps(dz00,fscal));
305
306             }
307
308             /* Inner loop uses 63 flops */
309         }
310
311         if(jidx<j_index_end)
312         {
313
314             /* Get j neighbor index, and coordinate index */
315             jnrlistA         = jjnr[jidx];
316             jnrlistB         = jjnr[jidx+1];
317             jnrlistC         = jjnr[jidx+2];
318             jnrlistD         = jjnr[jidx+3];
319             /* Sign of each element will be negative for non-real atoms.
320              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
321              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
322              */
323             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
324             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
325             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
326             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
327             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
328             j_coord_offsetA  = DIM*jnrA;
329             j_coord_offsetB  = DIM*jnrB;
330             j_coord_offsetC  = DIM*jnrC;
331             j_coord_offsetD  = DIM*jnrD;
332
333             /* load j atom coordinates */
334             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
335                                               x+j_coord_offsetC,x+j_coord_offsetD,
336                                               &jx0,&jy0,&jz0);
337
338             /* Calculate displacement vector */
339             dx00             = _mm_sub_ps(ix0,jx0);
340             dy00             = _mm_sub_ps(iy0,jy0);
341             dz00             = _mm_sub_ps(iz0,jz0);
342
343             /* Calculate squared distance and things based on it */
344             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
345
346             rinv00           = gmx_mm_invsqrt_ps(rsq00);
347
348             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
349
350             /* Load parameters for j particles */
351             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
352                                                               charge+jnrC+0,charge+jnrD+0);
353             vdwjidx0A        = 2*vdwtype[jnrA+0];
354             vdwjidx0B        = 2*vdwtype[jnrB+0];
355             vdwjidx0C        = 2*vdwtype[jnrC+0];
356             vdwjidx0D        = 2*vdwtype[jnrD+0];
357
358             /**************************
359              * CALCULATE INTERACTIONS *
360              **************************/
361
362             if (gmx_mm_any_lt(rsq00,rcutoff2))
363             {
364
365             r00              = _mm_mul_ps(rsq00,rinv00);
366             r00              = _mm_andnot_ps(dummy_mask,r00);
367
368             /* Compute parameters for interactions between i and j atoms */
369             qq00             = _mm_mul_ps(iq0,jq0);
370             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
371                                          vdwparam+vdwioffset0+vdwjidx0B,
372                                          vdwparam+vdwioffset0+vdwjidx0C,
373                                          vdwparam+vdwioffset0+vdwjidx0D,
374                                          &c6_00,&c12_00);
375
376             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
377                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
378                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
379                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
380
381             /* EWALD ELECTROSTATICS */
382
383             /* Analytical PME correction */
384             zeta2            = _mm_mul_ps(beta2,rsq00);
385             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
386             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
387             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
388             felec            = _mm_mul_ps(qq00,felec);
389             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
390             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv00,sh_ewald));
391             velec            = _mm_mul_ps(qq00,velec);
392
393             /* Analytical LJ-PME */
394             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
395             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
396             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
397             exponent         = gmx_simd_exp_r(ewcljrsq);
398             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
399             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
400             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
401             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
402             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
403             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
404                                           _mm_mul_ps(_mm_sub_ps(vvdw6,_mm_macc_ps(c6grid_00,sh_lj_ewald,_mm_mul_ps(c6_00,sh_vdw_invrcut6))),one_sixth));
405             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
406             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
407
408             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
409
410             /* Update potential sum for this i atom from the interaction with this j atom. */
411             velec            = _mm_and_ps(velec,cutoff_mask);
412             velec            = _mm_andnot_ps(dummy_mask,velec);
413             velecsum         = _mm_add_ps(velecsum,velec);
414             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
415             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
416             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
417
418             fscal            = _mm_add_ps(felec,fvdw);
419
420             fscal            = _mm_and_ps(fscal,cutoff_mask);
421
422             fscal            = _mm_andnot_ps(dummy_mask,fscal);
423
424              /* Update vectorial force */
425             fix0             = _mm_macc_ps(dx00,fscal,fix0);
426             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
427             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
428
429             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
430             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
431             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
432             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
433             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
434                                                    _mm_mul_ps(dx00,fscal),
435                                                    _mm_mul_ps(dy00,fscal),
436                                                    _mm_mul_ps(dz00,fscal));
437
438             }
439
440             /* Inner loop uses 64 flops */
441         }
442
443         /* End of innermost loop */
444
445         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
446                                               f+i_coord_offset,fshift+i_shift_offset);
447
448         ggid                        = gid[iidx];
449         /* Update potential energies */
450         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
451         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
452
453         /* Increment number of inner iterations */
454         inneriter                  += j_index_end - j_index_start;
455
456         /* Outer loop uses 9 flops */
457     }
458
459     /* Increment number of outer iterations */
460     outeriter        += nri;
461
462     /* Update outer/inner flops */
463
464     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*64);
465 }
466 /*
467  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_128_fma_single
468  * Electrostatics interaction: Ewald
469  * VdW interaction:            LJEwald
470  * Geometry:                   Particle-Particle
471  * Calculate force/pot:        Force
472  */
473 void
474 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_128_fma_single
475                     (t_nblist                    * gmx_restrict       nlist,
476                      rvec                        * gmx_restrict          xx,
477                      rvec                        * gmx_restrict          ff,
478                      t_forcerec                  * gmx_restrict          fr,
479                      t_mdatoms                   * gmx_restrict     mdatoms,
480                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
481                      t_nrnb                      * gmx_restrict        nrnb)
482 {
483     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
484      * just 0 for non-waters.
485      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
486      * jnr indices corresponding to data put in the four positions in the SIMD register.
487      */
488     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
489     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
490     int              jnrA,jnrB,jnrC,jnrD;
491     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
492     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
493     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
494     real             rcutoff_scalar;
495     real             *shiftvec,*fshift,*x,*f;
496     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
497     real             scratch[4*DIM];
498     __m128           fscal,rcutoff,rcutoff2,jidxall;
499     int              vdwioffset0;
500     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
501     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
502     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
503     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
504     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
505     real             *charge;
506     int              nvdwtype;
507     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
508     int              *vdwtype;
509     real             *vdwparam;
510     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
511     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
512     __m128           c6grid_00;
513     real             *vdwgridparam;
514     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
515     __m128           one_half = _mm_set1_ps(0.5);
516     __m128           minus_one = _mm_set1_ps(-1.0);
517     __m128i          ewitab;
518     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
519     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
520     real             *ewtab;
521     __m128           dummy_mask,cutoff_mask;
522     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
523     __m128           one     = _mm_set1_ps(1.0);
524     __m128           two     = _mm_set1_ps(2.0);
525     x                = xx[0];
526     f                = ff[0];
527
528     nri              = nlist->nri;
529     iinr             = nlist->iinr;
530     jindex           = nlist->jindex;
531     jjnr             = nlist->jjnr;
532     shiftidx         = nlist->shift;
533     gid              = nlist->gid;
534     shiftvec         = fr->shift_vec[0];
535     fshift           = fr->fshift[0];
536     facel            = _mm_set1_ps(fr->epsfac);
537     charge           = mdatoms->chargeA;
538     nvdwtype         = fr->ntype;
539     vdwparam         = fr->nbfp;
540     vdwtype          = mdatoms->typeA;
541     vdwgridparam     = fr->ljpme_c6grid;
542     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
543     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
544     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
545
546     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
547     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
548     beta2            = _mm_mul_ps(beta,beta);
549     beta3            = _mm_mul_ps(beta,beta2);
550     ewtab            = fr->ic->tabq_coul_F;
551     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
552     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
553
554     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
555     rcutoff_scalar   = fr->rcoulomb;
556     rcutoff          = _mm_set1_ps(rcutoff_scalar);
557     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
558
559     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
560     rvdw             = _mm_set1_ps(fr->rvdw);
561
562     /* Avoid stupid compiler warnings */
563     jnrA = jnrB = jnrC = jnrD = 0;
564     j_coord_offsetA = 0;
565     j_coord_offsetB = 0;
566     j_coord_offsetC = 0;
567     j_coord_offsetD = 0;
568
569     outeriter        = 0;
570     inneriter        = 0;
571
572     for(iidx=0;iidx<4*DIM;iidx++)
573     {
574         scratch[iidx] = 0.0;
575     }
576
577     /* Start outer loop over neighborlists */
578     for(iidx=0; iidx<nri; iidx++)
579     {
580         /* Load shift vector for this list */
581         i_shift_offset   = DIM*shiftidx[iidx];
582
583         /* Load limits for loop over neighbors */
584         j_index_start    = jindex[iidx];
585         j_index_end      = jindex[iidx+1];
586
587         /* Get outer coordinate index */
588         inr              = iinr[iidx];
589         i_coord_offset   = DIM*inr;
590
591         /* Load i particle coords and add shift vector */
592         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
593
594         fix0             = _mm_setzero_ps();
595         fiy0             = _mm_setzero_ps();
596         fiz0             = _mm_setzero_ps();
597
598         /* Load parameters for i particles */
599         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
600         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
601
602         /* Start inner kernel loop */
603         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
604         {
605
606             /* Get j neighbor index, and coordinate index */
607             jnrA             = jjnr[jidx];
608             jnrB             = jjnr[jidx+1];
609             jnrC             = jjnr[jidx+2];
610             jnrD             = jjnr[jidx+3];
611             j_coord_offsetA  = DIM*jnrA;
612             j_coord_offsetB  = DIM*jnrB;
613             j_coord_offsetC  = DIM*jnrC;
614             j_coord_offsetD  = DIM*jnrD;
615
616             /* load j atom coordinates */
617             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
618                                               x+j_coord_offsetC,x+j_coord_offsetD,
619                                               &jx0,&jy0,&jz0);
620
621             /* Calculate displacement vector */
622             dx00             = _mm_sub_ps(ix0,jx0);
623             dy00             = _mm_sub_ps(iy0,jy0);
624             dz00             = _mm_sub_ps(iz0,jz0);
625
626             /* Calculate squared distance and things based on it */
627             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
628
629             rinv00           = gmx_mm_invsqrt_ps(rsq00);
630
631             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
632
633             /* Load parameters for j particles */
634             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
635                                                               charge+jnrC+0,charge+jnrD+0);
636             vdwjidx0A        = 2*vdwtype[jnrA+0];
637             vdwjidx0B        = 2*vdwtype[jnrB+0];
638             vdwjidx0C        = 2*vdwtype[jnrC+0];
639             vdwjidx0D        = 2*vdwtype[jnrD+0];
640
641             /**************************
642              * CALCULATE INTERACTIONS *
643              **************************/
644
645             if (gmx_mm_any_lt(rsq00,rcutoff2))
646             {
647
648             r00              = _mm_mul_ps(rsq00,rinv00);
649
650             /* Compute parameters for interactions between i and j atoms */
651             qq00             = _mm_mul_ps(iq0,jq0);
652             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
653                                          vdwparam+vdwioffset0+vdwjidx0B,
654                                          vdwparam+vdwioffset0+vdwjidx0C,
655                                          vdwparam+vdwioffset0+vdwjidx0D,
656                                          &c6_00,&c12_00);
657
658             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
659                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
660                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
661                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
662
663             /* EWALD ELECTROSTATICS */
664
665             /* Analytical PME correction */
666             zeta2            = _mm_mul_ps(beta2,rsq00);
667             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
668             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
669             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
670             felec            = _mm_mul_ps(qq00,felec);
671
672             /* Analytical LJ-PME */
673             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
674             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
675             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
676             exponent         = gmx_simd_exp_r(ewcljrsq);
677             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
678             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
679             /* f6A = 6 * C6grid * (1 - poly) */
680             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
681             /* f6B = C6grid * exponent * beta^6 */
682             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
683             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
684             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
685
686             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
687
688             fscal            = _mm_add_ps(felec,fvdw);
689
690             fscal            = _mm_and_ps(fscal,cutoff_mask);
691
692              /* Update vectorial force */
693             fix0             = _mm_macc_ps(dx00,fscal,fix0);
694             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
695             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
696
697             fjptrA             = f+j_coord_offsetA;
698             fjptrB             = f+j_coord_offsetB;
699             fjptrC             = f+j_coord_offsetC;
700             fjptrD             = f+j_coord_offsetD;
701             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
702                                                    _mm_mul_ps(dx00,fscal),
703                                                    _mm_mul_ps(dy00,fscal),
704                                                    _mm_mul_ps(dz00,fscal));
705
706             }
707
708             /* Inner loop uses 52 flops */
709         }
710
711         if(jidx<j_index_end)
712         {
713
714             /* Get j neighbor index, and coordinate index */
715             jnrlistA         = jjnr[jidx];
716             jnrlistB         = jjnr[jidx+1];
717             jnrlistC         = jjnr[jidx+2];
718             jnrlistD         = jjnr[jidx+3];
719             /* Sign of each element will be negative for non-real atoms.
720              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
721              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
722              */
723             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
724             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
725             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
726             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
727             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
728             j_coord_offsetA  = DIM*jnrA;
729             j_coord_offsetB  = DIM*jnrB;
730             j_coord_offsetC  = DIM*jnrC;
731             j_coord_offsetD  = DIM*jnrD;
732
733             /* load j atom coordinates */
734             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
735                                               x+j_coord_offsetC,x+j_coord_offsetD,
736                                               &jx0,&jy0,&jz0);
737
738             /* Calculate displacement vector */
739             dx00             = _mm_sub_ps(ix0,jx0);
740             dy00             = _mm_sub_ps(iy0,jy0);
741             dz00             = _mm_sub_ps(iz0,jz0);
742
743             /* Calculate squared distance and things based on it */
744             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
745
746             rinv00           = gmx_mm_invsqrt_ps(rsq00);
747
748             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
749
750             /* Load parameters for j particles */
751             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
752                                                               charge+jnrC+0,charge+jnrD+0);
753             vdwjidx0A        = 2*vdwtype[jnrA+0];
754             vdwjidx0B        = 2*vdwtype[jnrB+0];
755             vdwjidx0C        = 2*vdwtype[jnrC+0];
756             vdwjidx0D        = 2*vdwtype[jnrD+0];
757
758             /**************************
759              * CALCULATE INTERACTIONS *
760              **************************/
761
762             if (gmx_mm_any_lt(rsq00,rcutoff2))
763             {
764
765             r00              = _mm_mul_ps(rsq00,rinv00);
766             r00              = _mm_andnot_ps(dummy_mask,r00);
767
768             /* Compute parameters for interactions between i and j atoms */
769             qq00             = _mm_mul_ps(iq0,jq0);
770             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
771                                          vdwparam+vdwioffset0+vdwjidx0B,
772                                          vdwparam+vdwioffset0+vdwjidx0C,
773                                          vdwparam+vdwioffset0+vdwjidx0D,
774                                          &c6_00,&c12_00);
775
776             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
777                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
778                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
779                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
780
781             /* EWALD ELECTROSTATICS */
782
783             /* Analytical PME correction */
784             zeta2            = _mm_mul_ps(beta2,rsq00);
785             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
786             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
787             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
788             felec            = _mm_mul_ps(qq00,felec);
789
790             /* Analytical LJ-PME */
791             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
792             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
793             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
794             exponent         = gmx_simd_exp_r(ewcljrsq);
795             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
796             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
797             /* f6A = 6 * C6grid * (1 - poly) */
798             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
799             /* f6B = C6grid * exponent * beta^6 */
800             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
801             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
802             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
803
804             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
805
806             fscal            = _mm_add_ps(felec,fvdw);
807
808             fscal            = _mm_and_ps(fscal,cutoff_mask);
809
810             fscal            = _mm_andnot_ps(dummy_mask,fscal);
811
812              /* Update vectorial force */
813             fix0             = _mm_macc_ps(dx00,fscal,fix0);
814             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
815             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
816
817             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
818             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
819             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
820             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
821             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
822                                                    _mm_mul_ps(dx00,fscal),
823                                                    _mm_mul_ps(dy00,fscal),
824                                                    _mm_mul_ps(dz00,fscal));
825
826             }
827
828             /* Inner loop uses 53 flops */
829         }
830
831         /* End of innermost loop */
832
833         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
834                                               f+i_coord_offset,fshift+i_shift_offset);
835
836         /* Increment number of inner iterations */
837         inneriter                  += j_index_end - j_index_start;
838
839         /* Outer loop uses 7 flops */
840     }
841
842     /* Increment number of outer iterations */
843     outeriter        += nri;
844
845     /* Update outer/inner flops */
846
847     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*53);
848 }