Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_128_fma_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128           c6grid_00;
97     real             *vdwgridparam;
98     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
99     __m128           one_half = _mm_set1_ps(0.5);
100     __m128           minus_one = _mm_set1_ps(-1.0);
101     __m128i          ewitab;
102     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
103     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
104     real             *ewtab;
105     __m128           dummy_mask,cutoff_mask;
106     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
107     __m128           one     = _mm_set1_ps(1.0);
108     __m128           two     = _mm_set1_ps(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_ps(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125     vdwgridparam     = fr->ljpme_c6grid;
126     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
127     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
128     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
129
130     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
131     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
132     beta2            = _mm_mul_ps(beta,beta);
133     beta3            = _mm_mul_ps(beta,beta2);
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
136     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
137
138     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
139     rcutoff_scalar   = fr->rcoulomb;
140     rcutoff          = _mm_set1_ps(rcutoff_scalar);
141     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
142
143     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
144     rvdw             = _mm_set1_ps(fr->rvdw);
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = jnrC = jnrD = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150     j_coord_offsetC = 0;
151     j_coord_offsetD = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     for(iidx=0;iidx<4*DIM;iidx++)
157     {
158         scratch[iidx] = 0.0;
159     }
160
161     /* Start outer loop over neighborlists */
162     for(iidx=0; iidx<nri; iidx++)
163     {
164         /* Load shift vector for this list */
165         i_shift_offset   = DIM*shiftidx[iidx];
166
167         /* Load limits for loop over neighbors */
168         j_index_start    = jindex[iidx];
169         j_index_end      = jindex[iidx+1];
170
171         /* Get outer coordinate index */
172         inr              = iinr[iidx];
173         i_coord_offset   = DIM*inr;
174
175         /* Load i particle coords and add shift vector */
176         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
177
178         fix0             = _mm_setzero_ps();
179         fiy0             = _mm_setzero_ps();
180         fiz0             = _mm_setzero_ps();
181
182         /* Load parameters for i particles */
183         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
184         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
185
186         /* Reset potential sums */
187         velecsum         = _mm_setzero_ps();
188         vvdwsum          = _mm_setzero_ps();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203
204             /* load j atom coordinates */
205             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               x+j_coord_offsetC,x+j_coord_offsetD,
207                                               &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _mm_sub_ps(ix0,jx0);
211             dy00             = _mm_sub_ps(iy0,jy0);
212             dz00             = _mm_sub_ps(iz0,jz0);
213
214             /* Calculate squared distance and things based on it */
215             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
216
217             rinv00           = gmx_mm_invsqrt_ps(rsq00);
218
219             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
220
221             /* Load parameters for j particles */
222             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
223                                                               charge+jnrC+0,charge+jnrD+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226             vdwjidx0C        = 2*vdwtype[jnrC+0];
227             vdwjidx0D        = 2*vdwtype[jnrD+0];
228
229             /**************************
230              * CALCULATE INTERACTIONS *
231              **************************/
232
233             if (gmx_mm_any_lt(rsq00,rcutoff2))
234             {
235
236             r00              = _mm_mul_ps(rsq00,rinv00);
237
238             /* Compute parameters for interactions between i and j atoms */
239             qq00             = _mm_mul_ps(iq0,jq0);
240             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
241                                          vdwparam+vdwioffset0+vdwjidx0B,
242                                          vdwparam+vdwioffset0+vdwjidx0C,
243                                          vdwparam+vdwioffset0+vdwjidx0D,
244                                          &c6_00,&c12_00);
245
246             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
247                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
248                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
249                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
250
251             /* EWALD ELECTROSTATICS */
252
253             /* Analytical PME correction */
254             zeta2            = _mm_mul_ps(beta2,rsq00);
255             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
256             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
257             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
258             felec            = _mm_mul_ps(qq00,felec);
259             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
260             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv00,sh_ewald));
261             velec            = _mm_mul_ps(qq00,velec);
262
263             /* Analytical LJ-PME */
264             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
265             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
266             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
267             exponent         = gmx_simd_exp_r(ewcljrsq);
268             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
269             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
270             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
271             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
272             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
273             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
274                                           _mm_mul_ps(_mm_sub_ps(vvdw6,_mm_macc_ps(c6grid_00,sh_lj_ewald,_mm_mul_ps(c6_00,sh_vdw_invrcut6))),one_sixth));
275             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
276             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
277
278             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velec            = _mm_and_ps(velec,cutoff_mask);
282             velecsum         = _mm_add_ps(velecsum,velec);
283             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
284             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
285
286             fscal            = _mm_add_ps(felec,fvdw);
287
288             fscal            = _mm_and_ps(fscal,cutoff_mask);
289
290              /* Update vectorial force */
291             fix0             = _mm_macc_ps(dx00,fscal,fix0);
292             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
293             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
294
295             fjptrA             = f+j_coord_offsetA;
296             fjptrB             = f+j_coord_offsetB;
297             fjptrC             = f+j_coord_offsetC;
298             fjptrD             = f+j_coord_offsetD;
299             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
300                                                    _mm_mul_ps(dx00,fscal),
301                                                    _mm_mul_ps(dy00,fscal),
302                                                    _mm_mul_ps(dz00,fscal));
303
304             }
305
306             /* Inner loop uses 63 flops */
307         }
308
309         if(jidx<j_index_end)
310         {
311
312             /* Get j neighbor index, and coordinate index */
313             jnrlistA         = jjnr[jidx];
314             jnrlistB         = jjnr[jidx+1];
315             jnrlistC         = jjnr[jidx+2];
316             jnrlistD         = jjnr[jidx+3];
317             /* Sign of each element will be negative for non-real atoms.
318              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
319              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
320              */
321             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
322             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
323             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
324             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
325             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
326             j_coord_offsetA  = DIM*jnrA;
327             j_coord_offsetB  = DIM*jnrB;
328             j_coord_offsetC  = DIM*jnrC;
329             j_coord_offsetD  = DIM*jnrD;
330
331             /* load j atom coordinates */
332             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
333                                               x+j_coord_offsetC,x+j_coord_offsetD,
334                                               &jx0,&jy0,&jz0);
335
336             /* Calculate displacement vector */
337             dx00             = _mm_sub_ps(ix0,jx0);
338             dy00             = _mm_sub_ps(iy0,jy0);
339             dz00             = _mm_sub_ps(iz0,jz0);
340
341             /* Calculate squared distance and things based on it */
342             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
343
344             rinv00           = gmx_mm_invsqrt_ps(rsq00);
345
346             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
347
348             /* Load parameters for j particles */
349             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
350                                                               charge+jnrC+0,charge+jnrD+0);
351             vdwjidx0A        = 2*vdwtype[jnrA+0];
352             vdwjidx0B        = 2*vdwtype[jnrB+0];
353             vdwjidx0C        = 2*vdwtype[jnrC+0];
354             vdwjidx0D        = 2*vdwtype[jnrD+0];
355
356             /**************************
357              * CALCULATE INTERACTIONS *
358              **************************/
359
360             if (gmx_mm_any_lt(rsq00,rcutoff2))
361             {
362
363             r00              = _mm_mul_ps(rsq00,rinv00);
364             r00              = _mm_andnot_ps(dummy_mask,r00);
365
366             /* Compute parameters for interactions between i and j atoms */
367             qq00             = _mm_mul_ps(iq0,jq0);
368             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
369                                          vdwparam+vdwioffset0+vdwjidx0B,
370                                          vdwparam+vdwioffset0+vdwjidx0C,
371                                          vdwparam+vdwioffset0+vdwjidx0D,
372                                          &c6_00,&c12_00);
373
374             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
375                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
376                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
377                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
378
379             /* EWALD ELECTROSTATICS */
380
381             /* Analytical PME correction */
382             zeta2            = _mm_mul_ps(beta2,rsq00);
383             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
384             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
385             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
386             felec            = _mm_mul_ps(qq00,felec);
387             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
388             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv00,sh_ewald));
389             velec            = _mm_mul_ps(qq00,velec);
390
391             /* Analytical LJ-PME */
392             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
393             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
394             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
395             exponent         = gmx_simd_exp_r(ewcljrsq);
396             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
397             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
398             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
399             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
400             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
401             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
402                                           _mm_mul_ps(_mm_sub_ps(vvdw6,_mm_macc_ps(c6grid_00,sh_lj_ewald,_mm_mul_ps(c6_00,sh_vdw_invrcut6))),one_sixth));
403             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
404             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
405
406             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
407
408             /* Update potential sum for this i atom from the interaction with this j atom. */
409             velec            = _mm_and_ps(velec,cutoff_mask);
410             velec            = _mm_andnot_ps(dummy_mask,velec);
411             velecsum         = _mm_add_ps(velecsum,velec);
412             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
413             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
414             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
415
416             fscal            = _mm_add_ps(felec,fvdw);
417
418             fscal            = _mm_and_ps(fscal,cutoff_mask);
419
420             fscal            = _mm_andnot_ps(dummy_mask,fscal);
421
422              /* Update vectorial force */
423             fix0             = _mm_macc_ps(dx00,fscal,fix0);
424             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
425             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
426
427             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
428             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
429             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
430             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
431             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
432                                                    _mm_mul_ps(dx00,fscal),
433                                                    _mm_mul_ps(dy00,fscal),
434                                                    _mm_mul_ps(dz00,fscal));
435
436             }
437
438             /* Inner loop uses 64 flops */
439         }
440
441         /* End of innermost loop */
442
443         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
444                                               f+i_coord_offset,fshift+i_shift_offset);
445
446         ggid                        = gid[iidx];
447         /* Update potential energies */
448         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
449         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
450
451         /* Increment number of inner iterations */
452         inneriter                  += j_index_end - j_index_start;
453
454         /* Outer loop uses 9 flops */
455     }
456
457     /* Increment number of outer iterations */
458     outeriter        += nri;
459
460     /* Update outer/inner flops */
461
462     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*64);
463 }
464 /*
465  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_128_fma_single
466  * Electrostatics interaction: Ewald
467  * VdW interaction:            LJEwald
468  * Geometry:                   Particle-Particle
469  * Calculate force/pot:        Force
470  */
471 void
472 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_128_fma_single
473                     (t_nblist                    * gmx_restrict       nlist,
474                      rvec                        * gmx_restrict          xx,
475                      rvec                        * gmx_restrict          ff,
476                      t_forcerec                  * gmx_restrict          fr,
477                      t_mdatoms                   * gmx_restrict     mdatoms,
478                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
479                      t_nrnb                      * gmx_restrict        nrnb)
480 {
481     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
482      * just 0 for non-waters.
483      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
484      * jnr indices corresponding to data put in the four positions in the SIMD register.
485      */
486     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
487     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
488     int              jnrA,jnrB,jnrC,jnrD;
489     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
490     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
491     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
492     real             rcutoff_scalar;
493     real             *shiftvec,*fshift,*x,*f;
494     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
495     real             scratch[4*DIM];
496     __m128           fscal,rcutoff,rcutoff2,jidxall;
497     int              vdwioffset0;
498     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
499     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
500     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
501     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
502     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
503     real             *charge;
504     int              nvdwtype;
505     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
506     int              *vdwtype;
507     real             *vdwparam;
508     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
509     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
510     __m128           c6grid_00;
511     real             *vdwgridparam;
512     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
513     __m128           one_half = _mm_set1_ps(0.5);
514     __m128           minus_one = _mm_set1_ps(-1.0);
515     __m128i          ewitab;
516     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
517     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
518     real             *ewtab;
519     __m128           dummy_mask,cutoff_mask;
520     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
521     __m128           one     = _mm_set1_ps(1.0);
522     __m128           two     = _mm_set1_ps(2.0);
523     x                = xx[0];
524     f                = ff[0];
525
526     nri              = nlist->nri;
527     iinr             = nlist->iinr;
528     jindex           = nlist->jindex;
529     jjnr             = nlist->jjnr;
530     shiftidx         = nlist->shift;
531     gid              = nlist->gid;
532     shiftvec         = fr->shift_vec[0];
533     fshift           = fr->fshift[0];
534     facel            = _mm_set1_ps(fr->epsfac);
535     charge           = mdatoms->chargeA;
536     nvdwtype         = fr->ntype;
537     vdwparam         = fr->nbfp;
538     vdwtype          = mdatoms->typeA;
539     vdwgridparam     = fr->ljpme_c6grid;
540     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
541     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
542     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
543
544     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
545     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
546     beta2            = _mm_mul_ps(beta,beta);
547     beta3            = _mm_mul_ps(beta,beta2);
548     ewtab            = fr->ic->tabq_coul_F;
549     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
550     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
551
552     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
553     rcutoff_scalar   = fr->rcoulomb;
554     rcutoff          = _mm_set1_ps(rcutoff_scalar);
555     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
556
557     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
558     rvdw             = _mm_set1_ps(fr->rvdw);
559
560     /* Avoid stupid compiler warnings */
561     jnrA = jnrB = jnrC = jnrD = 0;
562     j_coord_offsetA = 0;
563     j_coord_offsetB = 0;
564     j_coord_offsetC = 0;
565     j_coord_offsetD = 0;
566
567     outeriter        = 0;
568     inneriter        = 0;
569
570     for(iidx=0;iidx<4*DIM;iidx++)
571     {
572         scratch[iidx] = 0.0;
573     }
574
575     /* Start outer loop over neighborlists */
576     for(iidx=0; iidx<nri; iidx++)
577     {
578         /* Load shift vector for this list */
579         i_shift_offset   = DIM*shiftidx[iidx];
580
581         /* Load limits for loop over neighbors */
582         j_index_start    = jindex[iidx];
583         j_index_end      = jindex[iidx+1];
584
585         /* Get outer coordinate index */
586         inr              = iinr[iidx];
587         i_coord_offset   = DIM*inr;
588
589         /* Load i particle coords and add shift vector */
590         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
591
592         fix0             = _mm_setzero_ps();
593         fiy0             = _mm_setzero_ps();
594         fiz0             = _mm_setzero_ps();
595
596         /* Load parameters for i particles */
597         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
598         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
599
600         /* Start inner kernel loop */
601         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
602         {
603
604             /* Get j neighbor index, and coordinate index */
605             jnrA             = jjnr[jidx];
606             jnrB             = jjnr[jidx+1];
607             jnrC             = jjnr[jidx+2];
608             jnrD             = jjnr[jidx+3];
609             j_coord_offsetA  = DIM*jnrA;
610             j_coord_offsetB  = DIM*jnrB;
611             j_coord_offsetC  = DIM*jnrC;
612             j_coord_offsetD  = DIM*jnrD;
613
614             /* load j atom coordinates */
615             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
616                                               x+j_coord_offsetC,x+j_coord_offsetD,
617                                               &jx0,&jy0,&jz0);
618
619             /* Calculate displacement vector */
620             dx00             = _mm_sub_ps(ix0,jx0);
621             dy00             = _mm_sub_ps(iy0,jy0);
622             dz00             = _mm_sub_ps(iz0,jz0);
623
624             /* Calculate squared distance and things based on it */
625             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
626
627             rinv00           = gmx_mm_invsqrt_ps(rsq00);
628
629             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
630
631             /* Load parameters for j particles */
632             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
633                                                               charge+jnrC+0,charge+jnrD+0);
634             vdwjidx0A        = 2*vdwtype[jnrA+0];
635             vdwjidx0B        = 2*vdwtype[jnrB+0];
636             vdwjidx0C        = 2*vdwtype[jnrC+0];
637             vdwjidx0D        = 2*vdwtype[jnrD+0];
638
639             /**************************
640              * CALCULATE INTERACTIONS *
641              **************************/
642
643             if (gmx_mm_any_lt(rsq00,rcutoff2))
644             {
645
646             r00              = _mm_mul_ps(rsq00,rinv00);
647
648             /* Compute parameters for interactions between i and j atoms */
649             qq00             = _mm_mul_ps(iq0,jq0);
650             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
651                                          vdwparam+vdwioffset0+vdwjidx0B,
652                                          vdwparam+vdwioffset0+vdwjidx0C,
653                                          vdwparam+vdwioffset0+vdwjidx0D,
654                                          &c6_00,&c12_00);
655
656             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
657                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
658                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
659                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
660
661             /* EWALD ELECTROSTATICS */
662
663             /* Analytical PME correction */
664             zeta2            = _mm_mul_ps(beta2,rsq00);
665             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
666             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
667             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
668             felec            = _mm_mul_ps(qq00,felec);
669
670             /* Analytical LJ-PME */
671             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
672             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
673             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
674             exponent         = gmx_simd_exp_r(ewcljrsq);
675             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
676             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
677             /* f6A = 6 * C6grid * (1 - poly) */
678             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
679             /* f6B = C6grid * exponent * beta^6 */
680             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
681             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
682             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
683
684             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
685
686             fscal            = _mm_add_ps(felec,fvdw);
687
688             fscal            = _mm_and_ps(fscal,cutoff_mask);
689
690              /* Update vectorial force */
691             fix0             = _mm_macc_ps(dx00,fscal,fix0);
692             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
693             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
694
695             fjptrA             = f+j_coord_offsetA;
696             fjptrB             = f+j_coord_offsetB;
697             fjptrC             = f+j_coord_offsetC;
698             fjptrD             = f+j_coord_offsetD;
699             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
700                                                    _mm_mul_ps(dx00,fscal),
701                                                    _mm_mul_ps(dy00,fscal),
702                                                    _mm_mul_ps(dz00,fscal));
703
704             }
705
706             /* Inner loop uses 52 flops */
707         }
708
709         if(jidx<j_index_end)
710         {
711
712             /* Get j neighbor index, and coordinate index */
713             jnrlistA         = jjnr[jidx];
714             jnrlistB         = jjnr[jidx+1];
715             jnrlistC         = jjnr[jidx+2];
716             jnrlistD         = jjnr[jidx+3];
717             /* Sign of each element will be negative for non-real atoms.
718              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
719              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
720              */
721             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
722             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
723             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
724             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
725             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
726             j_coord_offsetA  = DIM*jnrA;
727             j_coord_offsetB  = DIM*jnrB;
728             j_coord_offsetC  = DIM*jnrC;
729             j_coord_offsetD  = DIM*jnrD;
730
731             /* load j atom coordinates */
732             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
733                                               x+j_coord_offsetC,x+j_coord_offsetD,
734                                               &jx0,&jy0,&jz0);
735
736             /* Calculate displacement vector */
737             dx00             = _mm_sub_ps(ix0,jx0);
738             dy00             = _mm_sub_ps(iy0,jy0);
739             dz00             = _mm_sub_ps(iz0,jz0);
740
741             /* Calculate squared distance and things based on it */
742             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
743
744             rinv00           = gmx_mm_invsqrt_ps(rsq00);
745
746             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
747
748             /* Load parameters for j particles */
749             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
750                                                               charge+jnrC+0,charge+jnrD+0);
751             vdwjidx0A        = 2*vdwtype[jnrA+0];
752             vdwjidx0B        = 2*vdwtype[jnrB+0];
753             vdwjidx0C        = 2*vdwtype[jnrC+0];
754             vdwjidx0D        = 2*vdwtype[jnrD+0];
755
756             /**************************
757              * CALCULATE INTERACTIONS *
758              **************************/
759
760             if (gmx_mm_any_lt(rsq00,rcutoff2))
761             {
762
763             r00              = _mm_mul_ps(rsq00,rinv00);
764             r00              = _mm_andnot_ps(dummy_mask,r00);
765
766             /* Compute parameters for interactions between i and j atoms */
767             qq00             = _mm_mul_ps(iq0,jq0);
768             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
769                                          vdwparam+vdwioffset0+vdwjidx0B,
770                                          vdwparam+vdwioffset0+vdwjidx0C,
771                                          vdwparam+vdwioffset0+vdwjidx0D,
772                                          &c6_00,&c12_00);
773
774             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
775                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
776                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
777                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
778
779             /* EWALD ELECTROSTATICS */
780
781             /* Analytical PME correction */
782             zeta2            = _mm_mul_ps(beta2,rsq00);
783             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
784             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
785             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
786             felec            = _mm_mul_ps(qq00,felec);
787
788             /* Analytical LJ-PME */
789             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
790             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
791             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
792             exponent         = gmx_simd_exp_r(ewcljrsq);
793             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
794             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
795             /* f6A = 6 * C6grid * (1 - poly) */
796             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
797             /* f6B = C6grid * exponent * beta^6 */
798             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
799             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
800             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
801
802             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
803
804             fscal            = _mm_add_ps(felec,fvdw);
805
806             fscal            = _mm_and_ps(fscal,cutoff_mask);
807
808             fscal            = _mm_andnot_ps(dummy_mask,fscal);
809
810              /* Update vectorial force */
811             fix0             = _mm_macc_ps(dx00,fscal,fix0);
812             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
813             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
814
815             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
816             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
817             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
818             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
819             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
820                                                    _mm_mul_ps(dx00,fscal),
821                                                    _mm_mul_ps(dy00,fscal),
822                                                    _mm_mul_ps(dz00,fscal));
823
824             }
825
826             /* Inner loop uses 53 flops */
827         }
828
829         /* End of innermost loop */
830
831         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
832                                               f+i_coord_offset,fshift+i_shift_offset);
833
834         /* Increment number of inner iterations */
835         inneriter                  += j_index_end - j_index_start;
836
837         /* Outer loop uses 7 flops */
838     }
839
840     /* Increment number of outer iterations */
841     outeriter        += nri;
842
843     /* Update outer/inner flops */
844
845     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*53);
846 }