Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCoul_VdwLJ_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_avx_128_fma_single
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128           dummy_mask,cutoff_mask;
103     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104     __m128           one     = _mm_set1_ps(1.0);
105     __m128           two     = _mm_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     /* Setup water-specific parameters */
124     inr              = nlist->iinr[0];
125     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
126     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
127     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
128     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     for(iidx=0;iidx<4*DIM;iidx++)
141     {
142         scratch[iidx] = 0.0;
143     }
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
161                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
162
163         fix0             = _mm_setzero_ps();
164         fiy0             = _mm_setzero_ps();
165         fiz0             = _mm_setzero_ps();
166         fix1             = _mm_setzero_ps();
167         fiy1             = _mm_setzero_ps();
168         fiz1             = _mm_setzero_ps();
169         fix2             = _mm_setzero_ps();
170         fiy2             = _mm_setzero_ps();
171         fiz2             = _mm_setzero_ps();
172
173         /* Reset potential sums */
174         velecsum         = _mm_setzero_ps();
175         vvdwsum          = _mm_setzero_ps();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             jnrC             = jjnr[jidx+2];
185             jnrD             = jjnr[jidx+3];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190
191             /* load j atom coordinates */
192             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
193                                               x+j_coord_offsetC,x+j_coord_offsetD,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_ps(ix0,jx0);
198             dy00             = _mm_sub_ps(iy0,jy0);
199             dz00             = _mm_sub_ps(iz0,jz0);
200             dx10             = _mm_sub_ps(ix1,jx0);
201             dy10             = _mm_sub_ps(iy1,jy0);
202             dz10             = _mm_sub_ps(iz1,jz0);
203             dx20             = _mm_sub_ps(ix2,jx0);
204             dy20             = _mm_sub_ps(iy2,jy0);
205             dz20             = _mm_sub_ps(iz2,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
209             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
210             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
211
212             rinv00           = gmx_mm_invsqrt_ps(rsq00);
213             rinv10           = gmx_mm_invsqrt_ps(rsq10);
214             rinv20           = gmx_mm_invsqrt_ps(rsq20);
215
216             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
217             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
218             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
219
220             /* Load parameters for j particles */
221             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
222                                                               charge+jnrC+0,charge+jnrD+0);
223             vdwjidx0A        = 2*vdwtype[jnrA+0];
224             vdwjidx0B        = 2*vdwtype[jnrB+0];
225             vdwjidx0C        = 2*vdwtype[jnrC+0];
226             vdwjidx0D        = 2*vdwtype[jnrD+0];
227
228             fjx0             = _mm_setzero_ps();
229             fjy0             = _mm_setzero_ps();
230             fjz0             = _mm_setzero_ps();
231
232             /**************************
233              * CALCULATE INTERACTIONS *
234              **************************/
235
236             /* Compute parameters for interactions between i and j atoms */
237             qq00             = _mm_mul_ps(iq0,jq0);
238             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
239                                          vdwparam+vdwioffset0+vdwjidx0B,
240                                          vdwparam+vdwioffset0+vdwjidx0C,
241                                          vdwparam+vdwioffset0+vdwjidx0D,
242                                          &c6_00,&c12_00);
243
244             /* COULOMB ELECTROSTATICS */
245             velec            = _mm_mul_ps(qq00,rinv00);
246             felec            = _mm_mul_ps(velec,rinvsq00);
247
248             /* LENNARD-JONES DISPERSION/REPULSION */
249
250             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
251             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
252             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
253             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
254             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
255
256             /* Update potential sum for this i atom from the interaction with this j atom. */
257             velecsum         = _mm_add_ps(velecsum,velec);
258             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
259
260             fscal            = _mm_add_ps(felec,fvdw);
261
262              /* Update vectorial force */
263             fix0             = _mm_macc_ps(dx00,fscal,fix0);
264             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
265             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
266
267             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
268             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
269             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
270
271             /**************************
272              * CALCULATE INTERACTIONS *
273              **************************/
274
275             /* Compute parameters for interactions between i and j atoms */
276             qq10             = _mm_mul_ps(iq1,jq0);
277
278             /* COULOMB ELECTROSTATICS */
279             velec            = _mm_mul_ps(qq10,rinv10);
280             felec            = _mm_mul_ps(velec,rinvsq10);
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             velecsum         = _mm_add_ps(velecsum,velec);
284
285             fscal            = felec;
286
287              /* Update vectorial force */
288             fix1             = _mm_macc_ps(dx10,fscal,fix1);
289             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
290             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
291
292             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
293             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
294             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             /* Compute parameters for interactions between i and j atoms */
301             qq20             = _mm_mul_ps(iq2,jq0);
302
303             /* COULOMB ELECTROSTATICS */
304             velec            = _mm_mul_ps(qq20,rinv20);
305             felec            = _mm_mul_ps(velec,rinvsq20);
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             velecsum         = _mm_add_ps(velecsum,velec);
309
310             fscal            = felec;
311
312              /* Update vectorial force */
313             fix2             = _mm_macc_ps(dx20,fscal,fix2);
314             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
315             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
316
317             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
318             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
319             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
320
321             fjptrA             = f+j_coord_offsetA;
322             fjptrB             = f+j_coord_offsetB;
323             fjptrC             = f+j_coord_offsetC;
324             fjptrD             = f+j_coord_offsetD;
325
326             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
327
328             /* Inner loop uses 105 flops */
329         }
330
331         if(jidx<j_index_end)
332         {
333
334             /* Get j neighbor index, and coordinate index */
335             jnrlistA         = jjnr[jidx];
336             jnrlistB         = jjnr[jidx+1];
337             jnrlistC         = jjnr[jidx+2];
338             jnrlistD         = jjnr[jidx+3];
339             /* Sign of each element will be negative for non-real atoms.
340              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
341              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
342              */
343             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
344             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
345             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
346             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
347             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
348             j_coord_offsetA  = DIM*jnrA;
349             j_coord_offsetB  = DIM*jnrB;
350             j_coord_offsetC  = DIM*jnrC;
351             j_coord_offsetD  = DIM*jnrD;
352
353             /* load j atom coordinates */
354             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
355                                               x+j_coord_offsetC,x+j_coord_offsetD,
356                                               &jx0,&jy0,&jz0);
357
358             /* Calculate displacement vector */
359             dx00             = _mm_sub_ps(ix0,jx0);
360             dy00             = _mm_sub_ps(iy0,jy0);
361             dz00             = _mm_sub_ps(iz0,jz0);
362             dx10             = _mm_sub_ps(ix1,jx0);
363             dy10             = _mm_sub_ps(iy1,jy0);
364             dz10             = _mm_sub_ps(iz1,jz0);
365             dx20             = _mm_sub_ps(ix2,jx0);
366             dy20             = _mm_sub_ps(iy2,jy0);
367             dz20             = _mm_sub_ps(iz2,jz0);
368
369             /* Calculate squared distance and things based on it */
370             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
371             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
372             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
373
374             rinv00           = gmx_mm_invsqrt_ps(rsq00);
375             rinv10           = gmx_mm_invsqrt_ps(rsq10);
376             rinv20           = gmx_mm_invsqrt_ps(rsq20);
377
378             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
379             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
380             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
381
382             /* Load parameters for j particles */
383             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
384                                                               charge+jnrC+0,charge+jnrD+0);
385             vdwjidx0A        = 2*vdwtype[jnrA+0];
386             vdwjidx0B        = 2*vdwtype[jnrB+0];
387             vdwjidx0C        = 2*vdwtype[jnrC+0];
388             vdwjidx0D        = 2*vdwtype[jnrD+0];
389
390             fjx0             = _mm_setzero_ps();
391             fjy0             = _mm_setzero_ps();
392             fjz0             = _mm_setzero_ps();
393
394             /**************************
395              * CALCULATE INTERACTIONS *
396              **************************/
397
398             /* Compute parameters for interactions between i and j atoms */
399             qq00             = _mm_mul_ps(iq0,jq0);
400             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
401                                          vdwparam+vdwioffset0+vdwjidx0B,
402                                          vdwparam+vdwioffset0+vdwjidx0C,
403                                          vdwparam+vdwioffset0+vdwjidx0D,
404                                          &c6_00,&c12_00);
405
406             /* COULOMB ELECTROSTATICS */
407             velec            = _mm_mul_ps(qq00,rinv00);
408             felec            = _mm_mul_ps(velec,rinvsq00);
409
410             /* LENNARD-JONES DISPERSION/REPULSION */
411
412             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
413             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
414             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
415             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
416             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
417
418             /* Update potential sum for this i atom from the interaction with this j atom. */
419             velec            = _mm_andnot_ps(dummy_mask,velec);
420             velecsum         = _mm_add_ps(velecsum,velec);
421             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
422             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
423
424             fscal            = _mm_add_ps(felec,fvdw);
425
426             fscal            = _mm_andnot_ps(dummy_mask,fscal);
427
428              /* Update vectorial force */
429             fix0             = _mm_macc_ps(dx00,fscal,fix0);
430             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
431             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
432
433             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
434             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
435             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
436
437             /**************************
438              * CALCULATE INTERACTIONS *
439              **************************/
440
441             /* Compute parameters for interactions between i and j atoms */
442             qq10             = _mm_mul_ps(iq1,jq0);
443
444             /* COULOMB ELECTROSTATICS */
445             velec            = _mm_mul_ps(qq10,rinv10);
446             felec            = _mm_mul_ps(velec,rinvsq10);
447
448             /* Update potential sum for this i atom from the interaction with this j atom. */
449             velec            = _mm_andnot_ps(dummy_mask,velec);
450             velecsum         = _mm_add_ps(velecsum,velec);
451
452             fscal            = felec;
453
454             fscal            = _mm_andnot_ps(dummy_mask,fscal);
455
456              /* Update vectorial force */
457             fix1             = _mm_macc_ps(dx10,fscal,fix1);
458             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
459             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
460
461             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
462             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
463             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
464
465             /**************************
466              * CALCULATE INTERACTIONS *
467              **************************/
468
469             /* Compute parameters for interactions between i and j atoms */
470             qq20             = _mm_mul_ps(iq2,jq0);
471
472             /* COULOMB ELECTROSTATICS */
473             velec            = _mm_mul_ps(qq20,rinv20);
474             felec            = _mm_mul_ps(velec,rinvsq20);
475
476             /* Update potential sum for this i atom from the interaction with this j atom. */
477             velec            = _mm_andnot_ps(dummy_mask,velec);
478             velecsum         = _mm_add_ps(velecsum,velec);
479
480             fscal            = felec;
481
482             fscal            = _mm_andnot_ps(dummy_mask,fscal);
483
484              /* Update vectorial force */
485             fix2             = _mm_macc_ps(dx20,fscal,fix2);
486             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
487             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
488
489             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
490             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
491             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
492
493             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
494             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
495             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
496             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
497
498             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
499
500             /* Inner loop uses 105 flops */
501         }
502
503         /* End of innermost loop */
504
505         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
506                                               f+i_coord_offset,fshift+i_shift_offset);
507
508         ggid                        = gid[iidx];
509         /* Update potential energies */
510         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
511         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
512
513         /* Increment number of inner iterations */
514         inneriter                  += j_index_end - j_index_start;
515
516         /* Outer loop uses 20 flops */
517     }
518
519     /* Increment number of outer iterations */
520     outeriter        += nri;
521
522     /* Update outer/inner flops */
523
524     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*105);
525 }
526 /*
527  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_avx_128_fma_single
528  * Electrostatics interaction: Coulomb
529  * VdW interaction:            LennardJones
530  * Geometry:                   Water3-Particle
531  * Calculate force/pot:        Force
532  */
533 void
534 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_avx_128_fma_single
535                     (t_nblist                    * gmx_restrict       nlist,
536                      rvec                        * gmx_restrict          xx,
537                      rvec                        * gmx_restrict          ff,
538                      t_forcerec                  * gmx_restrict          fr,
539                      t_mdatoms                   * gmx_restrict     mdatoms,
540                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
541                      t_nrnb                      * gmx_restrict        nrnb)
542 {
543     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
544      * just 0 for non-waters.
545      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
546      * jnr indices corresponding to data put in the four positions in the SIMD register.
547      */
548     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
549     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
550     int              jnrA,jnrB,jnrC,jnrD;
551     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
552     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
553     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
554     real             rcutoff_scalar;
555     real             *shiftvec,*fshift,*x,*f;
556     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
557     real             scratch[4*DIM];
558     __m128           fscal,rcutoff,rcutoff2,jidxall;
559     int              vdwioffset0;
560     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
561     int              vdwioffset1;
562     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
563     int              vdwioffset2;
564     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
565     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
566     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
567     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
568     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
569     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
570     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
571     real             *charge;
572     int              nvdwtype;
573     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
574     int              *vdwtype;
575     real             *vdwparam;
576     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
577     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
578     __m128           dummy_mask,cutoff_mask;
579     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
580     __m128           one     = _mm_set1_ps(1.0);
581     __m128           two     = _mm_set1_ps(2.0);
582     x                = xx[0];
583     f                = ff[0];
584
585     nri              = nlist->nri;
586     iinr             = nlist->iinr;
587     jindex           = nlist->jindex;
588     jjnr             = nlist->jjnr;
589     shiftidx         = nlist->shift;
590     gid              = nlist->gid;
591     shiftvec         = fr->shift_vec[0];
592     fshift           = fr->fshift[0];
593     facel            = _mm_set1_ps(fr->epsfac);
594     charge           = mdatoms->chargeA;
595     nvdwtype         = fr->ntype;
596     vdwparam         = fr->nbfp;
597     vdwtype          = mdatoms->typeA;
598
599     /* Setup water-specific parameters */
600     inr              = nlist->iinr[0];
601     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
602     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
603     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
604     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
605
606     /* Avoid stupid compiler warnings */
607     jnrA = jnrB = jnrC = jnrD = 0;
608     j_coord_offsetA = 0;
609     j_coord_offsetB = 0;
610     j_coord_offsetC = 0;
611     j_coord_offsetD = 0;
612
613     outeriter        = 0;
614     inneriter        = 0;
615
616     for(iidx=0;iidx<4*DIM;iidx++)
617     {
618         scratch[iidx] = 0.0;
619     }
620
621     /* Start outer loop over neighborlists */
622     for(iidx=0; iidx<nri; iidx++)
623     {
624         /* Load shift vector for this list */
625         i_shift_offset   = DIM*shiftidx[iidx];
626
627         /* Load limits for loop over neighbors */
628         j_index_start    = jindex[iidx];
629         j_index_end      = jindex[iidx+1];
630
631         /* Get outer coordinate index */
632         inr              = iinr[iidx];
633         i_coord_offset   = DIM*inr;
634
635         /* Load i particle coords and add shift vector */
636         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
637                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
638
639         fix0             = _mm_setzero_ps();
640         fiy0             = _mm_setzero_ps();
641         fiz0             = _mm_setzero_ps();
642         fix1             = _mm_setzero_ps();
643         fiy1             = _mm_setzero_ps();
644         fiz1             = _mm_setzero_ps();
645         fix2             = _mm_setzero_ps();
646         fiy2             = _mm_setzero_ps();
647         fiz2             = _mm_setzero_ps();
648
649         /* Start inner kernel loop */
650         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
651         {
652
653             /* Get j neighbor index, and coordinate index */
654             jnrA             = jjnr[jidx];
655             jnrB             = jjnr[jidx+1];
656             jnrC             = jjnr[jidx+2];
657             jnrD             = jjnr[jidx+3];
658             j_coord_offsetA  = DIM*jnrA;
659             j_coord_offsetB  = DIM*jnrB;
660             j_coord_offsetC  = DIM*jnrC;
661             j_coord_offsetD  = DIM*jnrD;
662
663             /* load j atom coordinates */
664             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
665                                               x+j_coord_offsetC,x+j_coord_offsetD,
666                                               &jx0,&jy0,&jz0);
667
668             /* Calculate displacement vector */
669             dx00             = _mm_sub_ps(ix0,jx0);
670             dy00             = _mm_sub_ps(iy0,jy0);
671             dz00             = _mm_sub_ps(iz0,jz0);
672             dx10             = _mm_sub_ps(ix1,jx0);
673             dy10             = _mm_sub_ps(iy1,jy0);
674             dz10             = _mm_sub_ps(iz1,jz0);
675             dx20             = _mm_sub_ps(ix2,jx0);
676             dy20             = _mm_sub_ps(iy2,jy0);
677             dz20             = _mm_sub_ps(iz2,jz0);
678
679             /* Calculate squared distance and things based on it */
680             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
681             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
682             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
683
684             rinv00           = gmx_mm_invsqrt_ps(rsq00);
685             rinv10           = gmx_mm_invsqrt_ps(rsq10);
686             rinv20           = gmx_mm_invsqrt_ps(rsq20);
687
688             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
689             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
690             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
691
692             /* Load parameters for j particles */
693             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
694                                                               charge+jnrC+0,charge+jnrD+0);
695             vdwjidx0A        = 2*vdwtype[jnrA+0];
696             vdwjidx0B        = 2*vdwtype[jnrB+0];
697             vdwjidx0C        = 2*vdwtype[jnrC+0];
698             vdwjidx0D        = 2*vdwtype[jnrD+0];
699
700             fjx0             = _mm_setzero_ps();
701             fjy0             = _mm_setzero_ps();
702             fjz0             = _mm_setzero_ps();
703
704             /**************************
705              * CALCULATE INTERACTIONS *
706              **************************/
707
708             /* Compute parameters for interactions between i and j atoms */
709             qq00             = _mm_mul_ps(iq0,jq0);
710             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
711                                          vdwparam+vdwioffset0+vdwjidx0B,
712                                          vdwparam+vdwioffset0+vdwjidx0C,
713                                          vdwparam+vdwioffset0+vdwjidx0D,
714                                          &c6_00,&c12_00);
715
716             /* COULOMB ELECTROSTATICS */
717             velec            = _mm_mul_ps(qq00,rinv00);
718             felec            = _mm_mul_ps(velec,rinvsq00);
719
720             /* LENNARD-JONES DISPERSION/REPULSION */
721
722             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
723             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
724
725             fscal            = _mm_add_ps(felec,fvdw);
726
727              /* Update vectorial force */
728             fix0             = _mm_macc_ps(dx00,fscal,fix0);
729             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
730             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
731
732             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
733             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
734             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
735
736             /**************************
737              * CALCULATE INTERACTIONS *
738              **************************/
739
740             /* Compute parameters for interactions between i and j atoms */
741             qq10             = _mm_mul_ps(iq1,jq0);
742
743             /* COULOMB ELECTROSTATICS */
744             velec            = _mm_mul_ps(qq10,rinv10);
745             felec            = _mm_mul_ps(velec,rinvsq10);
746
747             fscal            = felec;
748
749              /* Update vectorial force */
750             fix1             = _mm_macc_ps(dx10,fscal,fix1);
751             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
752             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
753
754             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
755             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
756             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
757
758             /**************************
759              * CALCULATE INTERACTIONS *
760              **************************/
761
762             /* Compute parameters for interactions between i and j atoms */
763             qq20             = _mm_mul_ps(iq2,jq0);
764
765             /* COULOMB ELECTROSTATICS */
766             velec            = _mm_mul_ps(qq20,rinv20);
767             felec            = _mm_mul_ps(velec,rinvsq20);
768
769             fscal            = felec;
770
771              /* Update vectorial force */
772             fix2             = _mm_macc_ps(dx20,fscal,fix2);
773             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
774             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
775
776             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
777             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
778             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
779
780             fjptrA             = f+j_coord_offsetA;
781             fjptrB             = f+j_coord_offsetB;
782             fjptrC             = f+j_coord_offsetC;
783             fjptrD             = f+j_coord_offsetD;
784
785             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
786
787             /* Inner loop uses 97 flops */
788         }
789
790         if(jidx<j_index_end)
791         {
792
793             /* Get j neighbor index, and coordinate index */
794             jnrlistA         = jjnr[jidx];
795             jnrlistB         = jjnr[jidx+1];
796             jnrlistC         = jjnr[jidx+2];
797             jnrlistD         = jjnr[jidx+3];
798             /* Sign of each element will be negative for non-real atoms.
799              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
800              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
801              */
802             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
803             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
804             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
805             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
806             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
807             j_coord_offsetA  = DIM*jnrA;
808             j_coord_offsetB  = DIM*jnrB;
809             j_coord_offsetC  = DIM*jnrC;
810             j_coord_offsetD  = DIM*jnrD;
811
812             /* load j atom coordinates */
813             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
814                                               x+j_coord_offsetC,x+j_coord_offsetD,
815                                               &jx0,&jy0,&jz0);
816
817             /* Calculate displacement vector */
818             dx00             = _mm_sub_ps(ix0,jx0);
819             dy00             = _mm_sub_ps(iy0,jy0);
820             dz00             = _mm_sub_ps(iz0,jz0);
821             dx10             = _mm_sub_ps(ix1,jx0);
822             dy10             = _mm_sub_ps(iy1,jy0);
823             dz10             = _mm_sub_ps(iz1,jz0);
824             dx20             = _mm_sub_ps(ix2,jx0);
825             dy20             = _mm_sub_ps(iy2,jy0);
826             dz20             = _mm_sub_ps(iz2,jz0);
827
828             /* Calculate squared distance and things based on it */
829             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
830             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
831             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
832
833             rinv00           = gmx_mm_invsqrt_ps(rsq00);
834             rinv10           = gmx_mm_invsqrt_ps(rsq10);
835             rinv20           = gmx_mm_invsqrt_ps(rsq20);
836
837             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
838             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
839             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
840
841             /* Load parameters for j particles */
842             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
843                                                               charge+jnrC+0,charge+jnrD+0);
844             vdwjidx0A        = 2*vdwtype[jnrA+0];
845             vdwjidx0B        = 2*vdwtype[jnrB+0];
846             vdwjidx0C        = 2*vdwtype[jnrC+0];
847             vdwjidx0D        = 2*vdwtype[jnrD+0];
848
849             fjx0             = _mm_setzero_ps();
850             fjy0             = _mm_setzero_ps();
851             fjz0             = _mm_setzero_ps();
852
853             /**************************
854              * CALCULATE INTERACTIONS *
855              **************************/
856
857             /* Compute parameters for interactions between i and j atoms */
858             qq00             = _mm_mul_ps(iq0,jq0);
859             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
860                                          vdwparam+vdwioffset0+vdwjidx0B,
861                                          vdwparam+vdwioffset0+vdwjidx0C,
862                                          vdwparam+vdwioffset0+vdwjidx0D,
863                                          &c6_00,&c12_00);
864
865             /* COULOMB ELECTROSTATICS */
866             velec            = _mm_mul_ps(qq00,rinv00);
867             felec            = _mm_mul_ps(velec,rinvsq00);
868
869             /* LENNARD-JONES DISPERSION/REPULSION */
870
871             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
872             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
873
874             fscal            = _mm_add_ps(felec,fvdw);
875
876             fscal            = _mm_andnot_ps(dummy_mask,fscal);
877
878              /* Update vectorial force */
879             fix0             = _mm_macc_ps(dx00,fscal,fix0);
880             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
881             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
882
883             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
884             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
885             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
886
887             /**************************
888              * CALCULATE INTERACTIONS *
889              **************************/
890
891             /* Compute parameters for interactions between i and j atoms */
892             qq10             = _mm_mul_ps(iq1,jq0);
893
894             /* COULOMB ELECTROSTATICS */
895             velec            = _mm_mul_ps(qq10,rinv10);
896             felec            = _mm_mul_ps(velec,rinvsq10);
897
898             fscal            = felec;
899
900             fscal            = _mm_andnot_ps(dummy_mask,fscal);
901
902              /* Update vectorial force */
903             fix1             = _mm_macc_ps(dx10,fscal,fix1);
904             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
905             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
906
907             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
908             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
909             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
910
911             /**************************
912              * CALCULATE INTERACTIONS *
913              **************************/
914
915             /* Compute parameters for interactions between i and j atoms */
916             qq20             = _mm_mul_ps(iq2,jq0);
917
918             /* COULOMB ELECTROSTATICS */
919             velec            = _mm_mul_ps(qq20,rinv20);
920             felec            = _mm_mul_ps(velec,rinvsq20);
921
922             fscal            = felec;
923
924             fscal            = _mm_andnot_ps(dummy_mask,fscal);
925
926              /* Update vectorial force */
927             fix2             = _mm_macc_ps(dx20,fscal,fix2);
928             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
929             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
930
931             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
932             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
933             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
934
935             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
936             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
937             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
938             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
939
940             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
941
942             /* Inner loop uses 97 flops */
943         }
944
945         /* End of innermost loop */
946
947         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
948                                               f+i_coord_offset,fshift+i_shift_offset);
949
950         /* Increment number of inner iterations */
951         inneriter                  += j_index_end - j_index_start;
952
953         /* Outer loop uses 18 flops */
954     }
955
956     /* Increment number of outer iterations */
957     outeriter        += nri;
958
959     /* Update outer/inner flops */
960
961     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*97);
962 }