822a3a4e1e4f91243ea2026f7aa6ce74ca6f8e2e
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
104     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
105     __m128i          vfitab;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
108     real             *vftab;
109     __m128           dummy_mask,cutoff_mask;
110     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
111     __m128           one     = _mm_set1_ps(1.0);
112     __m128           two     = _mm_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_ps(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
136     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
137     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = jnrC = jnrD = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144     j_coord_offsetC = 0;
145     j_coord_offsetD = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
171                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
172
173         fix0             = _mm_setzero_ps();
174         fiy0             = _mm_setzero_ps();
175         fiz0             = _mm_setzero_ps();
176         fix1             = _mm_setzero_ps();
177         fiy1             = _mm_setzero_ps();
178         fiz1             = _mm_setzero_ps();
179         fix2             = _mm_setzero_ps();
180         fiy2             = _mm_setzero_ps();
181         fiz2             = _mm_setzero_ps();
182         fix3             = _mm_setzero_ps();
183         fiy3             = _mm_setzero_ps();
184         fiz3             = _mm_setzero_ps();
185
186         /* Reset potential sums */
187         velecsum         = _mm_setzero_ps();
188         vvdwsum          = _mm_setzero_ps();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203
204             /* load j atom coordinates */
205             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               x+j_coord_offsetC,x+j_coord_offsetD,
207                                               &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _mm_sub_ps(ix0,jx0);
211             dy00             = _mm_sub_ps(iy0,jy0);
212             dz00             = _mm_sub_ps(iz0,jz0);
213             dx10             = _mm_sub_ps(ix1,jx0);
214             dy10             = _mm_sub_ps(iy1,jy0);
215             dz10             = _mm_sub_ps(iz1,jz0);
216             dx20             = _mm_sub_ps(ix2,jx0);
217             dy20             = _mm_sub_ps(iy2,jy0);
218             dz20             = _mm_sub_ps(iz2,jz0);
219             dx30             = _mm_sub_ps(ix3,jx0);
220             dy30             = _mm_sub_ps(iy3,jy0);
221             dz30             = _mm_sub_ps(iz3,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
225             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
226             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
227             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
228
229             rinv00           = gmx_mm_invsqrt_ps(rsq00);
230             rinv10           = gmx_mm_invsqrt_ps(rsq10);
231             rinv20           = gmx_mm_invsqrt_ps(rsq20);
232             rinv30           = gmx_mm_invsqrt_ps(rsq30);
233
234             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
235             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
236             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
237
238             /* Load parameters for j particles */
239             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
240                                                               charge+jnrC+0,charge+jnrD+0);
241             vdwjidx0A        = 2*vdwtype[jnrA+0];
242             vdwjidx0B        = 2*vdwtype[jnrB+0];
243             vdwjidx0C        = 2*vdwtype[jnrC+0];
244             vdwjidx0D        = 2*vdwtype[jnrD+0];
245
246             fjx0             = _mm_setzero_ps();
247             fjy0             = _mm_setzero_ps();
248             fjz0             = _mm_setzero_ps();
249
250             /**************************
251              * CALCULATE INTERACTIONS *
252              **************************/
253
254             r00              = _mm_mul_ps(rsq00,rinv00);
255
256             /* Compute parameters for interactions between i and j atoms */
257             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
258                                          vdwparam+vdwioffset0+vdwjidx0B,
259                                          vdwparam+vdwioffset0+vdwjidx0C,
260                                          vdwparam+vdwioffset0+vdwjidx0D,
261                                          &c6_00,&c12_00);
262
263             /* Calculate table index by multiplying r with table scale and truncate to integer */
264             rt               = _mm_mul_ps(r00,vftabscale);
265             vfitab           = _mm_cvttps_epi32(rt);
266 #ifdef __XOP__
267             vfeps            = _mm_frcz_ps(rt);
268 #else
269             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
270 #endif
271             twovfeps         = _mm_add_ps(vfeps,vfeps);
272             vfitab           = _mm_slli_epi32(vfitab,3);
273
274             /* CUBIC SPLINE TABLE DISPERSION */
275             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
276             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
277             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
278             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
279             _MM_TRANSPOSE4_PS(Y,F,G,H);
280             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
281             VV               = _mm_macc_ps(vfeps,Fp,Y);
282             vvdw6            = _mm_mul_ps(c6_00,VV);
283             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
284             fvdw6            = _mm_mul_ps(c6_00,FF);
285
286             /* CUBIC SPLINE TABLE REPULSION */
287             vfitab           = _mm_add_epi32(vfitab,ifour);
288             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
289             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
290             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
291             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
292             _MM_TRANSPOSE4_PS(Y,F,G,H);
293             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
294             VV               = _mm_macc_ps(vfeps,Fp,Y);
295             vvdw12           = _mm_mul_ps(c12_00,VV);
296             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
297             fvdw12           = _mm_mul_ps(c12_00,FF);
298             vvdw             = _mm_add_ps(vvdw12,vvdw6);
299             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
300
301             /* Update potential sum for this i atom from the interaction with this j atom. */
302             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
303
304             fscal            = fvdw;
305
306              /* Update vectorial force */
307             fix0             = _mm_macc_ps(dx00,fscal,fix0);
308             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
309             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
310
311             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
312             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
313             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq10             = _mm_mul_ps(iq1,jq0);
321
322             /* COULOMB ELECTROSTATICS */
323             velec            = _mm_mul_ps(qq10,rinv10);
324             felec            = _mm_mul_ps(velec,rinvsq10);
325
326             /* Update potential sum for this i atom from the interaction with this j atom. */
327             velecsum         = _mm_add_ps(velecsum,velec);
328
329             fscal            = felec;
330
331              /* Update vectorial force */
332             fix1             = _mm_macc_ps(dx10,fscal,fix1);
333             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
334             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
335
336             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
337             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
338             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
339
340             /**************************
341              * CALCULATE INTERACTIONS *
342              **************************/
343
344             /* Compute parameters for interactions between i and j atoms */
345             qq20             = _mm_mul_ps(iq2,jq0);
346
347             /* COULOMB ELECTROSTATICS */
348             velec            = _mm_mul_ps(qq20,rinv20);
349             felec            = _mm_mul_ps(velec,rinvsq20);
350
351             /* Update potential sum for this i atom from the interaction with this j atom. */
352             velecsum         = _mm_add_ps(velecsum,velec);
353
354             fscal            = felec;
355
356              /* Update vectorial force */
357             fix2             = _mm_macc_ps(dx20,fscal,fix2);
358             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
359             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
360
361             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
362             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
363             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
364
365             /**************************
366              * CALCULATE INTERACTIONS *
367              **************************/
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq30             = _mm_mul_ps(iq3,jq0);
371
372             /* COULOMB ELECTROSTATICS */
373             velec            = _mm_mul_ps(qq30,rinv30);
374             felec            = _mm_mul_ps(velec,rinvsq30);
375
376             /* Update potential sum for this i atom from the interaction with this j atom. */
377             velecsum         = _mm_add_ps(velecsum,velec);
378
379             fscal            = felec;
380
381              /* Update vectorial force */
382             fix3             = _mm_macc_ps(dx30,fscal,fix3);
383             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
384             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
385
386             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
387             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
388             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
389
390             fjptrA             = f+j_coord_offsetA;
391             fjptrB             = f+j_coord_offsetB;
392             fjptrC             = f+j_coord_offsetC;
393             fjptrD             = f+j_coord_offsetD;
394
395             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
396
397             /* Inner loop uses 152 flops */
398         }
399
400         if(jidx<j_index_end)
401         {
402
403             /* Get j neighbor index, and coordinate index */
404             jnrlistA         = jjnr[jidx];
405             jnrlistB         = jjnr[jidx+1];
406             jnrlistC         = jjnr[jidx+2];
407             jnrlistD         = jjnr[jidx+3];
408             /* Sign of each element will be negative for non-real atoms.
409              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
410              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
411              */
412             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
413             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
414             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
415             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
416             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
417             j_coord_offsetA  = DIM*jnrA;
418             j_coord_offsetB  = DIM*jnrB;
419             j_coord_offsetC  = DIM*jnrC;
420             j_coord_offsetD  = DIM*jnrD;
421
422             /* load j atom coordinates */
423             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
424                                               x+j_coord_offsetC,x+j_coord_offsetD,
425                                               &jx0,&jy0,&jz0);
426
427             /* Calculate displacement vector */
428             dx00             = _mm_sub_ps(ix0,jx0);
429             dy00             = _mm_sub_ps(iy0,jy0);
430             dz00             = _mm_sub_ps(iz0,jz0);
431             dx10             = _mm_sub_ps(ix1,jx0);
432             dy10             = _mm_sub_ps(iy1,jy0);
433             dz10             = _mm_sub_ps(iz1,jz0);
434             dx20             = _mm_sub_ps(ix2,jx0);
435             dy20             = _mm_sub_ps(iy2,jy0);
436             dz20             = _mm_sub_ps(iz2,jz0);
437             dx30             = _mm_sub_ps(ix3,jx0);
438             dy30             = _mm_sub_ps(iy3,jy0);
439             dz30             = _mm_sub_ps(iz3,jz0);
440
441             /* Calculate squared distance and things based on it */
442             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
443             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
444             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
445             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
446
447             rinv00           = gmx_mm_invsqrt_ps(rsq00);
448             rinv10           = gmx_mm_invsqrt_ps(rsq10);
449             rinv20           = gmx_mm_invsqrt_ps(rsq20);
450             rinv30           = gmx_mm_invsqrt_ps(rsq30);
451
452             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
453             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
454             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
455
456             /* Load parameters for j particles */
457             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
458                                                               charge+jnrC+0,charge+jnrD+0);
459             vdwjidx0A        = 2*vdwtype[jnrA+0];
460             vdwjidx0B        = 2*vdwtype[jnrB+0];
461             vdwjidx0C        = 2*vdwtype[jnrC+0];
462             vdwjidx0D        = 2*vdwtype[jnrD+0];
463
464             fjx0             = _mm_setzero_ps();
465             fjy0             = _mm_setzero_ps();
466             fjz0             = _mm_setzero_ps();
467
468             /**************************
469              * CALCULATE INTERACTIONS *
470              **************************/
471
472             r00              = _mm_mul_ps(rsq00,rinv00);
473             r00              = _mm_andnot_ps(dummy_mask,r00);
474
475             /* Compute parameters for interactions between i and j atoms */
476             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
477                                          vdwparam+vdwioffset0+vdwjidx0B,
478                                          vdwparam+vdwioffset0+vdwjidx0C,
479                                          vdwparam+vdwioffset0+vdwjidx0D,
480                                          &c6_00,&c12_00);
481
482             /* Calculate table index by multiplying r with table scale and truncate to integer */
483             rt               = _mm_mul_ps(r00,vftabscale);
484             vfitab           = _mm_cvttps_epi32(rt);
485 #ifdef __XOP__
486             vfeps            = _mm_frcz_ps(rt);
487 #else
488             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
489 #endif
490             twovfeps         = _mm_add_ps(vfeps,vfeps);
491             vfitab           = _mm_slli_epi32(vfitab,3);
492
493             /* CUBIC SPLINE TABLE DISPERSION */
494             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
495             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
496             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
497             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
498             _MM_TRANSPOSE4_PS(Y,F,G,H);
499             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
500             VV               = _mm_macc_ps(vfeps,Fp,Y);
501             vvdw6            = _mm_mul_ps(c6_00,VV);
502             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
503             fvdw6            = _mm_mul_ps(c6_00,FF);
504
505             /* CUBIC SPLINE TABLE REPULSION */
506             vfitab           = _mm_add_epi32(vfitab,ifour);
507             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
508             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
509             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
510             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
511             _MM_TRANSPOSE4_PS(Y,F,G,H);
512             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
513             VV               = _mm_macc_ps(vfeps,Fp,Y);
514             vvdw12           = _mm_mul_ps(c12_00,VV);
515             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
516             fvdw12           = _mm_mul_ps(c12_00,FF);
517             vvdw             = _mm_add_ps(vvdw12,vvdw6);
518             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
519
520             /* Update potential sum for this i atom from the interaction with this j atom. */
521             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
522             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
523
524             fscal            = fvdw;
525
526             fscal            = _mm_andnot_ps(dummy_mask,fscal);
527
528              /* Update vectorial force */
529             fix0             = _mm_macc_ps(dx00,fscal,fix0);
530             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
531             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
532
533             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
534             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
535             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
536
537             /**************************
538              * CALCULATE INTERACTIONS *
539              **************************/
540
541             /* Compute parameters for interactions between i and j atoms */
542             qq10             = _mm_mul_ps(iq1,jq0);
543
544             /* COULOMB ELECTROSTATICS */
545             velec            = _mm_mul_ps(qq10,rinv10);
546             felec            = _mm_mul_ps(velec,rinvsq10);
547
548             /* Update potential sum for this i atom from the interaction with this j atom. */
549             velec            = _mm_andnot_ps(dummy_mask,velec);
550             velecsum         = _mm_add_ps(velecsum,velec);
551
552             fscal            = felec;
553
554             fscal            = _mm_andnot_ps(dummy_mask,fscal);
555
556              /* Update vectorial force */
557             fix1             = _mm_macc_ps(dx10,fscal,fix1);
558             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
559             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
560
561             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
562             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
563             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             /* Compute parameters for interactions between i and j atoms */
570             qq20             = _mm_mul_ps(iq2,jq0);
571
572             /* COULOMB ELECTROSTATICS */
573             velec            = _mm_mul_ps(qq20,rinv20);
574             felec            = _mm_mul_ps(velec,rinvsq20);
575
576             /* Update potential sum for this i atom from the interaction with this j atom. */
577             velec            = _mm_andnot_ps(dummy_mask,velec);
578             velecsum         = _mm_add_ps(velecsum,velec);
579
580             fscal            = felec;
581
582             fscal            = _mm_andnot_ps(dummy_mask,fscal);
583
584              /* Update vectorial force */
585             fix2             = _mm_macc_ps(dx20,fscal,fix2);
586             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
587             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
588
589             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
590             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
591             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
592
593             /**************************
594              * CALCULATE INTERACTIONS *
595              **************************/
596
597             /* Compute parameters for interactions between i and j atoms */
598             qq30             = _mm_mul_ps(iq3,jq0);
599
600             /* COULOMB ELECTROSTATICS */
601             velec            = _mm_mul_ps(qq30,rinv30);
602             felec            = _mm_mul_ps(velec,rinvsq30);
603
604             /* Update potential sum for this i atom from the interaction with this j atom. */
605             velec            = _mm_andnot_ps(dummy_mask,velec);
606             velecsum         = _mm_add_ps(velecsum,velec);
607
608             fscal            = felec;
609
610             fscal            = _mm_andnot_ps(dummy_mask,fscal);
611
612              /* Update vectorial force */
613             fix3             = _mm_macc_ps(dx30,fscal,fix3);
614             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
615             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
616
617             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
618             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
619             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
620
621             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
622             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
623             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
624             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
625
626             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
627
628             /* Inner loop uses 153 flops */
629         }
630
631         /* End of innermost loop */
632
633         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
634                                               f+i_coord_offset,fshift+i_shift_offset);
635
636         ggid                        = gid[iidx];
637         /* Update potential energies */
638         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
639         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
640
641         /* Increment number of inner iterations */
642         inneriter                  += j_index_end - j_index_start;
643
644         /* Outer loop uses 26 flops */
645     }
646
647     /* Increment number of outer iterations */
648     outeriter        += nri;
649
650     /* Update outer/inner flops */
651
652     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*153);
653 }
654 /*
655  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_128_fma_single
656  * Electrostatics interaction: Coulomb
657  * VdW interaction:            CubicSplineTable
658  * Geometry:                   Water4-Particle
659  * Calculate force/pot:        Force
660  */
661 void
662 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_128_fma_single
663                     (t_nblist                    * gmx_restrict       nlist,
664                      rvec                        * gmx_restrict          xx,
665                      rvec                        * gmx_restrict          ff,
666                      t_forcerec                  * gmx_restrict          fr,
667                      t_mdatoms                   * gmx_restrict     mdatoms,
668                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
669                      t_nrnb                      * gmx_restrict        nrnb)
670 {
671     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
672      * just 0 for non-waters.
673      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
674      * jnr indices corresponding to data put in the four positions in the SIMD register.
675      */
676     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
677     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
678     int              jnrA,jnrB,jnrC,jnrD;
679     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
680     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
681     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
682     real             rcutoff_scalar;
683     real             *shiftvec,*fshift,*x,*f;
684     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
685     real             scratch[4*DIM];
686     __m128           fscal,rcutoff,rcutoff2,jidxall;
687     int              vdwioffset0;
688     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
689     int              vdwioffset1;
690     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
691     int              vdwioffset2;
692     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
693     int              vdwioffset3;
694     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
695     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
696     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
697     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
698     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
699     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
700     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
701     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
702     real             *charge;
703     int              nvdwtype;
704     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
705     int              *vdwtype;
706     real             *vdwparam;
707     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
708     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
709     __m128i          vfitab;
710     __m128i          ifour       = _mm_set1_epi32(4);
711     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
712     real             *vftab;
713     __m128           dummy_mask,cutoff_mask;
714     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
715     __m128           one     = _mm_set1_ps(1.0);
716     __m128           two     = _mm_set1_ps(2.0);
717     x                = xx[0];
718     f                = ff[0];
719
720     nri              = nlist->nri;
721     iinr             = nlist->iinr;
722     jindex           = nlist->jindex;
723     jjnr             = nlist->jjnr;
724     shiftidx         = nlist->shift;
725     gid              = nlist->gid;
726     shiftvec         = fr->shift_vec[0];
727     fshift           = fr->fshift[0];
728     facel            = _mm_set1_ps(fr->epsfac);
729     charge           = mdatoms->chargeA;
730     nvdwtype         = fr->ntype;
731     vdwparam         = fr->nbfp;
732     vdwtype          = mdatoms->typeA;
733
734     vftab            = kernel_data->table_vdw->data;
735     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
736
737     /* Setup water-specific parameters */
738     inr              = nlist->iinr[0];
739     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
740     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
741     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
742     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
743
744     /* Avoid stupid compiler warnings */
745     jnrA = jnrB = jnrC = jnrD = 0;
746     j_coord_offsetA = 0;
747     j_coord_offsetB = 0;
748     j_coord_offsetC = 0;
749     j_coord_offsetD = 0;
750
751     outeriter        = 0;
752     inneriter        = 0;
753
754     for(iidx=0;iidx<4*DIM;iidx++)
755     {
756         scratch[iidx] = 0.0;
757     }
758
759     /* Start outer loop over neighborlists */
760     for(iidx=0; iidx<nri; iidx++)
761     {
762         /* Load shift vector for this list */
763         i_shift_offset   = DIM*shiftidx[iidx];
764
765         /* Load limits for loop over neighbors */
766         j_index_start    = jindex[iidx];
767         j_index_end      = jindex[iidx+1];
768
769         /* Get outer coordinate index */
770         inr              = iinr[iidx];
771         i_coord_offset   = DIM*inr;
772
773         /* Load i particle coords and add shift vector */
774         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
775                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
776
777         fix0             = _mm_setzero_ps();
778         fiy0             = _mm_setzero_ps();
779         fiz0             = _mm_setzero_ps();
780         fix1             = _mm_setzero_ps();
781         fiy1             = _mm_setzero_ps();
782         fiz1             = _mm_setzero_ps();
783         fix2             = _mm_setzero_ps();
784         fiy2             = _mm_setzero_ps();
785         fiz2             = _mm_setzero_ps();
786         fix3             = _mm_setzero_ps();
787         fiy3             = _mm_setzero_ps();
788         fiz3             = _mm_setzero_ps();
789
790         /* Start inner kernel loop */
791         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
792         {
793
794             /* Get j neighbor index, and coordinate index */
795             jnrA             = jjnr[jidx];
796             jnrB             = jjnr[jidx+1];
797             jnrC             = jjnr[jidx+2];
798             jnrD             = jjnr[jidx+3];
799             j_coord_offsetA  = DIM*jnrA;
800             j_coord_offsetB  = DIM*jnrB;
801             j_coord_offsetC  = DIM*jnrC;
802             j_coord_offsetD  = DIM*jnrD;
803
804             /* load j atom coordinates */
805             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
806                                               x+j_coord_offsetC,x+j_coord_offsetD,
807                                               &jx0,&jy0,&jz0);
808
809             /* Calculate displacement vector */
810             dx00             = _mm_sub_ps(ix0,jx0);
811             dy00             = _mm_sub_ps(iy0,jy0);
812             dz00             = _mm_sub_ps(iz0,jz0);
813             dx10             = _mm_sub_ps(ix1,jx0);
814             dy10             = _mm_sub_ps(iy1,jy0);
815             dz10             = _mm_sub_ps(iz1,jz0);
816             dx20             = _mm_sub_ps(ix2,jx0);
817             dy20             = _mm_sub_ps(iy2,jy0);
818             dz20             = _mm_sub_ps(iz2,jz0);
819             dx30             = _mm_sub_ps(ix3,jx0);
820             dy30             = _mm_sub_ps(iy3,jy0);
821             dz30             = _mm_sub_ps(iz3,jz0);
822
823             /* Calculate squared distance and things based on it */
824             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
825             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
826             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
827             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
828
829             rinv00           = gmx_mm_invsqrt_ps(rsq00);
830             rinv10           = gmx_mm_invsqrt_ps(rsq10);
831             rinv20           = gmx_mm_invsqrt_ps(rsq20);
832             rinv30           = gmx_mm_invsqrt_ps(rsq30);
833
834             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
835             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
836             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
837
838             /* Load parameters for j particles */
839             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
840                                                               charge+jnrC+0,charge+jnrD+0);
841             vdwjidx0A        = 2*vdwtype[jnrA+0];
842             vdwjidx0B        = 2*vdwtype[jnrB+0];
843             vdwjidx0C        = 2*vdwtype[jnrC+0];
844             vdwjidx0D        = 2*vdwtype[jnrD+0];
845
846             fjx0             = _mm_setzero_ps();
847             fjy0             = _mm_setzero_ps();
848             fjz0             = _mm_setzero_ps();
849
850             /**************************
851              * CALCULATE INTERACTIONS *
852              **************************/
853
854             r00              = _mm_mul_ps(rsq00,rinv00);
855
856             /* Compute parameters for interactions between i and j atoms */
857             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
858                                          vdwparam+vdwioffset0+vdwjidx0B,
859                                          vdwparam+vdwioffset0+vdwjidx0C,
860                                          vdwparam+vdwioffset0+vdwjidx0D,
861                                          &c6_00,&c12_00);
862
863             /* Calculate table index by multiplying r with table scale and truncate to integer */
864             rt               = _mm_mul_ps(r00,vftabscale);
865             vfitab           = _mm_cvttps_epi32(rt);
866 #ifdef __XOP__
867             vfeps            = _mm_frcz_ps(rt);
868 #else
869             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
870 #endif
871             twovfeps         = _mm_add_ps(vfeps,vfeps);
872             vfitab           = _mm_slli_epi32(vfitab,3);
873
874             /* CUBIC SPLINE TABLE DISPERSION */
875             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
876             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
877             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
878             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
879             _MM_TRANSPOSE4_PS(Y,F,G,H);
880             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
881             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
882             fvdw6            = _mm_mul_ps(c6_00,FF);
883
884             /* CUBIC SPLINE TABLE REPULSION */
885             vfitab           = _mm_add_epi32(vfitab,ifour);
886             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
887             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
888             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
889             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
890             _MM_TRANSPOSE4_PS(Y,F,G,H);
891             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
892             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
893             fvdw12           = _mm_mul_ps(c12_00,FF);
894             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
895
896             fscal            = fvdw;
897
898              /* Update vectorial force */
899             fix0             = _mm_macc_ps(dx00,fscal,fix0);
900             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
901             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
902
903             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
904             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
905             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
906
907             /**************************
908              * CALCULATE INTERACTIONS *
909              **************************/
910
911             /* Compute parameters for interactions between i and j atoms */
912             qq10             = _mm_mul_ps(iq1,jq0);
913
914             /* COULOMB ELECTROSTATICS */
915             velec            = _mm_mul_ps(qq10,rinv10);
916             felec            = _mm_mul_ps(velec,rinvsq10);
917
918             fscal            = felec;
919
920              /* Update vectorial force */
921             fix1             = _mm_macc_ps(dx10,fscal,fix1);
922             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
923             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
924
925             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
926             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
927             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
928
929             /**************************
930              * CALCULATE INTERACTIONS *
931              **************************/
932
933             /* Compute parameters for interactions between i and j atoms */
934             qq20             = _mm_mul_ps(iq2,jq0);
935
936             /* COULOMB ELECTROSTATICS */
937             velec            = _mm_mul_ps(qq20,rinv20);
938             felec            = _mm_mul_ps(velec,rinvsq20);
939
940             fscal            = felec;
941
942              /* Update vectorial force */
943             fix2             = _mm_macc_ps(dx20,fscal,fix2);
944             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
945             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
946
947             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
948             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
949             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
950
951             /**************************
952              * CALCULATE INTERACTIONS *
953              **************************/
954
955             /* Compute parameters for interactions between i and j atoms */
956             qq30             = _mm_mul_ps(iq3,jq0);
957
958             /* COULOMB ELECTROSTATICS */
959             velec            = _mm_mul_ps(qq30,rinv30);
960             felec            = _mm_mul_ps(velec,rinvsq30);
961
962             fscal            = felec;
963
964              /* Update vectorial force */
965             fix3             = _mm_macc_ps(dx30,fscal,fix3);
966             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
967             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
968
969             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
970             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
971             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
972
973             fjptrA             = f+j_coord_offsetA;
974             fjptrB             = f+j_coord_offsetB;
975             fjptrC             = f+j_coord_offsetC;
976             fjptrD             = f+j_coord_offsetD;
977
978             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
979
980             /* Inner loop uses 141 flops */
981         }
982
983         if(jidx<j_index_end)
984         {
985
986             /* Get j neighbor index, and coordinate index */
987             jnrlistA         = jjnr[jidx];
988             jnrlistB         = jjnr[jidx+1];
989             jnrlistC         = jjnr[jidx+2];
990             jnrlistD         = jjnr[jidx+3];
991             /* Sign of each element will be negative for non-real atoms.
992              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
993              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
994              */
995             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
996             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
997             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
998             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
999             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1000             j_coord_offsetA  = DIM*jnrA;
1001             j_coord_offsetB  = DIM*jnrB;
1002             j_coord_offsetC  = DIM*jnrC;
1003             j_coord_offsetD  = DIM*jnrD;
1004
1005             /* load j atom coordinates */
1006             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1007                                               x+j_coord_offsetC,x+j_coord_offsetD,
1008                                               &jx0,&jy0,&jz0);
1009
1010             /* Calculate displacement vector */
1011             dx00             = _mm_sub_ps(ix0,jx0);
1012             dy00             = _mm_sub_ps(iy0,jy0);
1013             dz00             = _mm_sub_ps(iz0,jz0);
1014             dx10             = _mm_sub_ps(ix1,jx0);
1015             dy10             = _mm_sub_ps(iy1,jy0);
1016             dz10             = _mm_sub_ps(iz1,jz0);
1017             dx20             = _mm_sub_ps(ix2,jx0);
1018             dy20             = _mm_sub_ps(iy2,jy0);
1019             dz20             = _mm_sub_ps(iz2,jz0);
1020             dx30             = _mm_sub_ps(ix3,jx0);
1021             dy30             = _mm_sub_ps(iy3,jy0);
1022             dz30             = _mm_sub_ps(iz3,jz0);
1023
1024             /* Calculate squared distance and things based on it */
1025             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1026             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1027             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1028             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1029
1030             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1031             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1032             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1033             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1034
1035             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1036             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1037             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1038
1039             /* Load parameters for j particles */
1040             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1041                                                               charge+jnrC+0,charge+jnrD+0);
1042             vdwjidx0A        = 2*vdwtype[jnrA+0];
1043             vdwjidx0B        = 2*vdwtype[jnrB+0];
1044             vdwjidx0C        = 2*vdwtype[jnrC+0];
1045             vdwjidx0D        = 2*vdwtype[jnrD+0];
1046
1047             fjx0             = _mm_setzero_ps();
1048             fjy0             = _mm_setzero_ps();
1049             fjz0             = _mm_setzero_ps();
1050
1051             /**************************
1052              * CALCULATE INTERACTIONS *
1053              **************************/
1054
1055             r00              = _mm_mul_ps(rsq00,rinv00);
1056             r00              = _mm_andnot_ps(dummy_mask,r00);
1057
1058             /* Compute parameters for interactions between i and j atoms */
1059             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1060                                          vdwparam+vdwioffset0+vdwjidx0B,
1061                                          vdwparam+vdwioffset0+vdwjidx0C,
1062                                          vdwparam+vdwioffset0+vdwjidx0D,
1063                                          &c6_00,&c12_00);
1064
1065             /* Calculate table index by multiplying r with table scale and truncate to integer */
1066             rt               = _mm_mul_ps(r00,vftabscale);
1067             vfitab           = _mm_cvttps_epi32(rt);
1068 #ifdef __XOP__
1069             vfeps            = _mm_frcz_ps(rt);
1070 #else
1071             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1072 #endif
1073             twovfeps         = _mm_add_ps(vfeps,vfeps);
1074             vfitab           = _mm_slli_epi32(vfitab,3);
1075
1076             /* CUBIC SPLINE TABLE DISPERSION */
1077             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1078             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1079             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1080             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1081             _MM_TRANSPOSE4_PS(Y,F,G,H);
1082             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1083             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1084             fvdw6            = _mm_mul_ps(c6_00,FF);
1085
1086             /* CUBIC SPLINE TABLE REPULSION */
1087             vfitab           = _mm_add_epi32(vfitab,ifour);
1088             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1089             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1090             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1091             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1092             _MM_TRANSPOSE4_PS(Y,F,G,H);
1093             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1094             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1095             fvdw12           = _mm_mul_ps(c12_00,FF);
1096             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1097
1098             fscal            = fvdw;
1099
1100             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1101
1102              /* Update vectorial force */
1103             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1104             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1105             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1106
1107             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1108             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1109             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1110
1111             /**************************
1112              * CALCULATE INTERACTIONS *
1113              **************************/
1114
1115             /* Compute parameters for interactions between i and j atoms */
1116             qq10             = _mm_mul_ps(iq1,jq0);
1117
1118             /* COULOMB ELECTROSTATICS */
1119             velec            = _mm_mul_ps(qq10,rinv10);
1120             felec            = _mm_mul_ps(velec,rinvsq10);
1121
1122             fscal            = felec;
1123
1124             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1125
1126              /* Update vectorial force */
1127             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1128             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1129             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1130
1131             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1132             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1133             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1134
1135             /**************************
1136              * CALCULATE INTERACTIONS *
1137              **************************/
1138
1139             /* Compute parameters for interactions between i and j atoms */
1140             qq20             = _mm_mul_ps(iq2,jq0);
1141
1142             /* COULOMB ELECTROSTATICS */
1143             velec            = _mm_mul_ps(qq20,rinv20);
1144             felec            = _mm_mul_ps(velec,rinvsq20);
1145
1146             fscal            = felec;
1147
1148             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1149
1150              /* Update vectorial force */
1151             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1152             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1153             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1154
1155             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1156             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1157             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1158
1159             /**************************
1160              * CALCULATE INTERACTIONS *
1161              **************************/
1162
1163             /* Compute parameters for interactions between i and j atoms */
1164             qq30             = _mm_mul_ps(iq3,jq0);
1165
1166             /* COULOMB ELECTROSTATICS */
1167             velec            = _mm_mul_ps(qq30,rinv30);
1168             felec            = _mm_mul_ps(velec,rinvsq30);
1169
1170             fscal            = felec;
1171
1172             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1173
1174              /* Update vectorial force */
1175             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1176             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1177             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1178
1179             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1180             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1181             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1182
1183             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1184             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1185             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1186             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1187
1188             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1189
1190             /* Inner loop uses 142 flops */
1191         }
1192
1193         /* End of innermost loop */
1194
1195         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1196                                               f+i_coord_offset,fshift+i_shift_offset);
1197
1198         /* Increment number of inner iterations */
1199         inneriter                  += j_index_end - j_index_start;
1200
1201         /* Outer loop uses 24 flops */
1202     }
1203
1204     /* Increment number of outer iterations */
1205     outeriter        += nri;
1206
1207     /* Update outer/inner flops */
1208
1209     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*142);
1210 }