Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwioffset3;
92     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
106     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
107     __m128i          vfitab;
108     __m128i          ifour       = _mm_set1_epi32(4);
109     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
110     real             *vftab;
111     __m128           dummy_mask,cutoff_mask;
112     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
113     __m128           one     = _mm_set1_ps(1.0);
114     __m128           two     = _mm_set1_ps(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_ps(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_vdw->data;
133     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
138     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
139     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
173                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
174
175         fix0             = _mm_setzero_ps();
176         fiy0             = _mm_setzero_ps();
177         fiz0             = _mm_setzero_ps();
178         fix1             = _mm_setzero_ps();
179         fiy1             = _mm_setzero_ps();
180         fiz1             = _mm_setzero_ps();
181         fix2             = _mm_setzero_ps();
182         fiy2             = _mm_setzero_ps();
183         fiz2             = _mm_setzero_ps();
184         fix3             = _mm_setzero_ps();
185         fiy3             = _mm_setzero_ps();
186         fiz3             = _mm_setzero_ps();
187
188         /* Reset potential sums */
189         velecsum         = _mm_setzero_ps();
190         vvdwsum          = _mm_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203             j_coord_offsetC  = DIM*jnrC;
204             j_coord_offsetD  = DIM*jnrD;
205
206             /* load j atom coordinates */
207             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               x+j_coord_offsetC,x+j_coord_offsetD,
209                                               &jx0,&jy0,&jz0);
210
211             /* Calculate displacement vector */
212             dx00             = _mm_sub_ps(ix0,jx0);
213             dy00             = _mm_sub_ps(iy0,jy0);
214             dz00             = _mm_sub_ps(iz0,jz0);
215             dx10             = _mm_sub_ps(ix1,jx0);
216             dy10             = _mm_sub_ps(iy1,jy0);
217             dz10             = _mm_sub_ps(iz1,jz0);
218             dx20             = _mm_sub_ps(ix2,jx0);
219             dy20             = _mm_sub_ps(iy2,jy0);
220             dz20             = _mm_sub_ps(iz2,jz0);
221             dx30             = _mm_sub_ps(ix3,jx0);
222             dy30             = _mm_sub_ps(iy3,jy0);
223             dz30             = _mm_sub_ps(iz3,jz0);
224
225             /* Calculate squared distance and things based on it */
226             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
227             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
228             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
229             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
230
231             rinv00           = gmx_mm_invsqrt_ps(rsq00);
232             rinv10           = gmx_mm_invsqrt_ps(rsq10);
233             rinv20           = gmx_mm_invsqrt_ps(rsq20);
234             rinv30           = gmx_mm_invsqrt_ps(rsq30);
235
236             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
237             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
238             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
239
240             /* Load parameters for j particles */
241             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
242                                                               charge+jnrC+0,charge+jnrD+0);
243             vdwjidx0A        = 2*vdwtype[jnrA+0];
244             vdwjidx0B        = 2*vdwtype[jnrB+0];
245             vdwjidx0C        = 2*vdwtype[jnrC+0];
246             vdwjidx0D        = 2*vdwtype[jnrD+0];
247
248             fjx0             = _mm_setzero_ps();
249             fjy0             = _mm_setzero_ps();
250             fjz0             = _mm_setzero_ps();
251
252             /**************************
253              * CALCULATE INTERACTIONS *
254              **************************/
255
256             r00              = _mm_mul_ps(rsq00,rinv00);
257
258             /* Compute parameters for interactions between i and j atoms */
259             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
260                                          vdwparam+vdwioffset0+vdwjidx0B,
261                                          vdwparam+vdwioffset0+vdwjidx0C,
262                                          vdwparam+vdwioffset0+vdwjidx0D,
263                                          &c6_00,&c12_00);
264
265             /* Calculate table index by multiplying r with table scale and truncate to integer */
266             rt               = _mm_mul_ps(r00,vftabscale);
267             vfitab           = _mm_cvttps_epi32(rt);
268 #ifdef __XOP__
269             vfeps            = _mm_frcz_ps(rt);
270 #else
271             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
272 #endif
273             twovfeps         = _mm_add_ps(vfeps,vfeps);
274             vfitab           = _mm_slli_epi32(vfitab,3);
275
276             /* CUBIC SPLINE TABLE DISPERSION */
277             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
278             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
279             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
280             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
281             _MM_TRANSPOSE4_PS(Y,F,G,H);
282             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
283             VV               = _mm_macc_ps(vfeps,Fp,Y);
284             vvdw6            = _mm_mul_ps(c6_00,VV);
285             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
286             fvdw6            = _mm_mul_ps(c6_00,FF);
287
288             /* CUBIC SPLINE TABLE REPULSION */
289             vfitab           = _mm_add_epi32(vfitab,ifour);
290             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
291             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
292             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
293             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
294             _MM_TRANSPOSE4_PS(Y,F,G,H);
295             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
296             VV               = _mm_macc_ps(vfeps,Fp,Y);
297             vvdw12           = _mm_mul_ps(c12_00,VV);
298             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
299             fvdw12           = _mm_mul_ps(c12_00,FF);
300             vvdw             = _mm_add_ps(vvdw12,vvdw6);
301             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
305
306             fscal            = fvdw;
307
308              /* Update vectorial force */
309             fix0             = _mm_macc_ps(dx00,fscal,fix0);
310             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
311             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
312
313             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
314             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
315             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             /* Compute parameters for interactions between i and j atoms */
322             qq10             = _mm_mul_ps(iq1,jq0);
323
324             /* COULOMB ELECTROSTATICS */
325             velec            = _mm_mul_ps(qq10,rinv10);
326             felec            = _mm_mul_ps(velec,rinvsq10);
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velecsum         = _mm_add_ps(velecsum,velec);
330
331             fscal            = felec;
332
333              /* Update vectorial force */
334             fix1             = _mm_macc_ps(dx10,fscal,fix1);
335             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
336             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
337
338             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
339             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
340             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
341
342             /**************************
343              * CALCULATE INTERACTIONS *
344              **************************/
345
346             /* Compute parameters for interactions between i and j atoms */
347             qq20             = _mm_mul_ps(iq2,jq0);
348
349             /* COULOMB ELECTROSTATICS */
350             velec            = _mm_mul_ps(qq20,rinv20);
351             felec            = _mm_mul_ps(velec,rinvsq20);
352
353             /* Update potential sum for this i atom from the interaction with this j atom. */
354             velecsum         = _mm_add_ps(velecsum,velec);
355
356             fscal            = felec;
357
358              /* Update vectorial force */
359             fix2             = _mm_macc_ps(dx20,fscal,fix2);
360             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
361             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
362
363             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
364             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
365             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
366
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq30             = _mm_mul_ps(iq3,jq0);
373
374             /* COULOMB ELECTROSTATICS */
375             velec            = _mm_mul_ps(qq30,rinv30);
376             felec            = _mm_mul_ps(velec,rinvsq30);
377
378             /* Update potential sum for this i atom from the interaction with this j atom. */
379             velecsum         = _mm_add_ps(velecsum,velec);
380
381             fscal            = felec;
382
383              /* Update vectorial force */
384             fix3             = _mm_macc_ps(dx30,fscal,fix3);
385             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
386             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
387
388             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
389             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
390             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
391
392             fjptrA             = f+j_coord_offsetA;
393             fjptrB             = f+j_coord_offsetB;
394             fjptrC             = f+j_coord_offsetC;
395             fjptrD             = f+j_coord_offsetD;
396
397             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
398
399             /* Inner loop uses 152 flops */
400         }
401
402         if(jidx<j_index_end)
403         {
404
405             /* Get j neighbor index, and coordinate index */
406             jnrlistA         = jjnr[jidx];
407             jnrlistB         = jjnr[jidx+1];
408             jnrlistC         = jjnr[jidx+2];
409             jnrlistD         = jjnr[jidx+3];
410             /* Sign of each element will be negative for non-real atoms.
411              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
412              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
413              */
414             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
415             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
416             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
417             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
418             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
419             j_coord_offsetA  = DIM*jnrA;
420             j_coord_offsetB  = DIM*jnrB;
421             j_coord_offsetC  = DIM*jnrC;
422             j_coord_offsetD  = DIM*jnrD;
423
424             /* load j atom coordinates */
425             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
426                                               x+j_coord_offsetC,x+j_coord_offsetD,
427                                               &jx0,&jy0,&jz0);
428
429             /* Calculate displacement vector */
430             dx00             = _mm_sub_ps(ix0,jx0);
431             dy00             = _mm_sub_ps(iy0,jy0);
432             dz00             = _mm_sub_ps(iz0,jz0);
433             dx10             = _mm_sub_ps(ix1,jx0);
434             dy10             = _mm_sub_ps(iy1,jy0);
435             dz10             = _mm_sub_ps(iz1,jz0);
436             dx20             = _mm_sub_ps(ix2,jx0);
437             dy20             = _mm_sub_ps(iy2,jy0);
438             dz20             = _mm_sub_ps(iz2,jz0);
439             dx30             = _mm_sub_ps(ix3,jx0);
440             dy30             = _mm_sub_ps(iy3,jy0);
441             dz30             = _mm_sub_ps(iz3,jz0);
442
443             /* Calculate squared distance and things based on it */
444             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
445             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
446             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
447             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
448
449             rinv00           = gmx_mm_invsqrt_ps(rsq00);
450             rinv10           = gmx_mm_invsqrt_ps(rsq10);
451             rinv20           = gmx_mm_invsqrt_ps(rsq20);
452             rinv30           = gmx_mm_invsqrt_ps(rsq30);
453
454             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
455             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
456             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
457
458             /* Load parameters for j particles */
459             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
460                                                               charge+jnrC+0,charge+jnrD+0);
461             vdwjidx0A        = 2*vdwtype[jnrA+0];
462             vdwjidx0B        = 2*vdwtype[jnrB+0];
463             vdwjidx0C        = 2*vdwtype[jnrC+0];
464             vdwjidx0D        = 2*vdwtype[jnrD+0];
465
466             fjx0             = _mm_setzero_ps();
467             fjy0             = _mm_setzero_ps();
468             fjz0             = _mm_setzero_ps();
469
470             /**************************
471              * CALCULATE INTERACTIONS *
472              **************************/
473
474             r00              = _mm_mul_ps(rsq00,rinv00);
475             r00              = _mm_andnot_ps(dummy_mask,r00);
476
477             /* Compute parameters for interactions between i and j atoms */
478             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
479                                          vdwparam+vdwioffset0+vdwjidx0B,
480                                          vdwparam+vdwioffset0+vdwjidx0C,
481                                          vdwparam+vdwioffset0+vdwjidx0D,
482                                          &c6_00,&c12_00);
483
484             /* Calculate table index by multiplying r with table scale and truncate to integer */
485             rt               = _mm_mul_ps(r00,vftabscale);
486             vfitab           = _mm_cvttps_epi32(rt);
487 #ifdef __XOP__
488             vfeps            = _mm_frcz_ps(rt);
489 #else
490             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
491 #endif
492             twovfeps         = _mm_add_ps(vfeps,vfeps);
493             vfitab           = _mm_slli_epi32(vfitab,3);
494
495             /* CUBIC SPLINE TABLE DISPERSION */
496             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
497             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
498             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
499             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
500             _MM_TRANSPOSE4_PS(Y,F,G,H);
501             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
502             VV               = _mm_macc_ps(vfeps,Fp,Y);
503             vvdw6            = _mm_mul_ps(c6_00,VV);
504             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
505             fvdw6            = _mm_mul_ps(c6_00,FF);
506
507             /* CUBIC SPLINE TABLE REPULSION */
508             vfitab           = _mm_add_epi32(vfitab,ifour);
509             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
510             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
511             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
512             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
513             _MM_TRANSPOSE4_PS(Y,F,G,H);
514             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
515             VV               = _mm_macc_ps(vfeps,Fp,Y);
516             vvdw12           = _mm_mul_ps(c12_00,VV);
517             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
518             fvdw12           = _mm_mul_ps(c12_00,FF);
519             vvdw             = _mm_add_ps(vvdw12,vvdw6);
520             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
521
522             /* Update potential sum for this i atom from the interaction with this j atom. */
523             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
524             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
525
526             fscal            = fvdw;
527
528             fscal            = _mm_andnot_ps(dummy_mask,fscal);
529
530              /* Update vectorial force */
531             fix0             = _mm_macc_ps(dx00,fscal,fix0);
532             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
533             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
534
535             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
536             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
537             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
538
539             /**************************
540              * CALCULATE INTERACTIONS *
541              **************************/
542
543             /* Compute parameters for interactions between i and j atoms */
544             qq10             = _mm_mul_ps(iq1,jq0);
545
546             /* COULOMB ELECTROSTATICS */
547             velec            = _mm_mul_ps(qq10,rinv10);
548             felec            = _mm_mul_ps(velec,rinvsq10);
549
550             /* Update potential sum for this i atom from the interaction with this j atom. */
551             velec            = _mm_andnot_ps(dummy_mask,velec);
552             velecsum         = _mm_add_ps(velecsum,velec);
553
554             fscal            = felec;
555
556             fscal            = _mm_andnot_ps(dummy_mask,fscal);
557
558              /* Update vectorial force */
559             fix1             = _mm_macc_ps(dx10,fscal,fix1);
560             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
561             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
562
563             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
564             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
565             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
566
567             /**************************
568              * CALCULATE INTERACTIONS *
569              **************************/
570
571             /* Compute parameters for interactions between i and j atoms */
572             qq20             = _mm_mul_ps(iq2,jq0);
573
574             /* COULOMB ELECTROSTATICS */
575             velec            = _mm_mul_ps(qq20,rinv20);
576             felec            = _mm_mul_ps(velec,rinvsq20);
577
578             /* Update potential sum for this i atom from the interaction with this j atom. */
579             velec            = _mm_andnot_ps(dummy_mask,velec);
580             velecsum         = _mm_add_ps(velecsum,velec);
581
582             fscal            = felec;
583
584             fscal            = _mm_andnot_ps(dummy_mask,fscal);
585
586              /* Update vectorial force */
587             fix2             = _mm_macc_ps(dx20,fscal,fix2);
588             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
589             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
590
591             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
592             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
593             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
594
595             /**************************
596              * CALCULATE INTERACTIONS *
597              **************************/
598
599             /* Compute parameters for interactions between i and j atoms */
600             qq30             = _mm_mul_ps(iq3,jq0);
601
602             /* COULOMB ELECTROSTATICS */
603             velec            = _mm_mul_ps(qq30,rinv30);
604             felec            = _mm_mul_ps(velec,rinvsq30);
605
606             /* Update potential sum for this i atom from the interaction with this j atom. */
607             velec            = _mm_andnot_ps(dummy_mask,velec);
608             velecsum         = _mm_add_ps(velecsum,velec);
609
610             fscal            = felec;
611
612             fscal            = _mm_andnot_ps(dummy_mask,fscal);
613
614              /* Update vectorial force */
615             fix3             = _mm_macc_ps(dx30,fscal,fix3);
616             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
617             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
618
619             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
620             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
621             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
622
623             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
624             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
625             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
626             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
627
628             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
629
630             /* Inner loop uses 153 flops */
631         }
632
633         /* End of innermost loop */
634
635         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
636                                               f+i_coord_offset,fshift+i_shift_offset);
637
638         ggid                        = gid[iidx];
639         /* Update potential energies */
640         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
641         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
642
643         /* Increment number of inner iterations */
644         inneriter                  += j_index_end - j_index_start;
645
646         /* Outer loop uses 26 flops */
647     }
648
649     /* Increment number of outer iterations */
650     outeriter        += nri;
651
652     /* Update outer/inner flops */
653
654     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*153);
655 }
656 /*
657  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_128_fma_single
658  * Electrostatics interaction: Coulomb
659  * VdW interaction:            CubicSplineTable
660  * Geometry:                   Water4-Particle
661  * Calculate force/pot:        Force
662  */
663 void
664 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_128_fma_single
665                     (t_nblist                    * gmx_restrict       nlist,
666                      rvec                        * gmx_restrict          xx,
667                      rvec                        * gmx_restrict          ff,
668                      t_forcerec                  * gmx_restrict          fr,
669                      t_mdatoms                   * gmx_restrict     mdatoms,
670                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
671                      t_nrnb                      * gmx_restrict        nrnb)
672 {
673     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
674      * just 0 for non-waters.
675      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
676      * jnr indices corresponding to data put in the four positions in the SIMD register.
677      */
678     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
679     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
680     int              jnrA,jnrB,jnrC,jnrD;
681     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
682     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
683     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
684     real             rcutoff_scalar;
685     real             *shiftvec,*fshift,*x,*f;
686     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
687     real             scratch[4*DIM];
688     __m128           fscal,rcutoff,rcutoff2,jidxall;
689     int              vdwioffset0;
690     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
691     int              vdwioffset1;
692     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
693     int              vdwioffset2;
694     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
695     int              vdwioffset3;
696     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
697     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
698     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
699     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
700     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
701     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
702     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
703     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
704     real             *charge;
705     int              nvdwtype;
706     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
707     int              *vdwtype;
708     real             *vdwparam;
709     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
710     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
711     __m128i          vfitab;
712     __m128i          ifour       = _mm_set1_epi32(4);
713     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
714     real             *vftab;
715     __m128           dummy_mask,cutoff_mask;
716     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
717     __m128           one     = _mm_set1_ps(1.0);
718     __m128           two     = _mm_set1_ps(2.0);
719     x                = xx[0];
720     f                = ff[0];
721
722     nri              = nlist->nri;
723     iinr             = nlist->iinr;
724     jindex           = nlist->jindex;
725     jjnr             = nlist->jjnr;
726     shiftidx         = nlist->shift;
727     gid              = nlist->gid;
728     shiftvec         = fr->shift_vec[0];
729     fshift           = fr->fshift[0];
730     facel            = _mm_set1_ps(fr->epsfac);
731     charge           = mdatoms->chargeA;
732     nvdwtype         = fr->ntype;
733     vdwparam         = fr->nbfp;
734     vdwtype          = mdatoms->typeA;
735
736     vftab            = kernel_data->table_vdw->data;
737     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
738
739     /* Setup water-specific parameters */
740     inr              = nlist->iinr[0];
741     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
742     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
743     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
744     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
745
746     /* Avoid stupid compiler warnings */
747     jnrA = jnrB = jnrC = jnrD = 0;
748     j_coord_offsetA = 0;
749     j_coord_offsetB = 0;
750     j_coord_offsetC = 0;
751     j_coord_offsetD = 0;
752
753     outeriter        = 0;
754     inneriter        = 0;
755
756     for(iidx=0;iidx<4*DIM;iidx++)
757     {
758         scratch[iidx] = 0.0;
759     }
760
761     /* Start outer loop over neighborlists */
762     for(iidx=0; iidx<nri; iidx++)
763     {
764         /* Load shift vector for this list */
765         i_shift_offset   = DIM*shiftidx[iidx];
766
767         /* Load limits for loop over neighbors */
768         j_index_start    = jindex[iidx];
769         j_index_end      = jindex[iidx+1];
770
771         /* Get outer coordinate index */
772         inr              = iinr[iidx];
773         i_coord_offset   = DIM*inr;
774
775         /* Load i particle coords and add shift vector */
776         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
777                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
778
779         fix0             = _mm_setzero_ps();
780         fiy0             = _mm_setzero_ps();
781         fiz0             = _mm_setzero_ps();
782         fix1             = _mm_setzero_ps();
783         fiy1             = _mm_setzero_ps();
784         fiz1             = _mm_setzero_ps();
785         fix2             = _mm_setzero_ps();
786         fiy2             = _mm_setzero_ps();
787         fiz2             = _mm_setzero_ps();
788         fix3             = _mm_setzero_ps();
789         fiy3             = _mm_setzero_ps();
790         fiz3             = _mm_setzero_ps();
791
792         /* Start inner kernel loop */
793         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
794         {
795
796             /* Get j neighbor index, and coordinate index */
797             jnrA             = jjnr[jidx];
798             jnrB             = jjnr[jidx+1];
799             jnrC             = jjnr[jidx+2];
800             jnrD             = jjnr[jidx+3];
801             j_coord_offsetA  = DIM*jnrA;
802             j_coord_offsetB  = DIM*jnrB;
803             j_coord_offsetC  = DIM*jnrC;
804             j_coord_offsetD  = DIM*jnrD;
805
806             /* load j atom coordinates */
807             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
808                                               x+j_coord_offsetC,x+j_coord_offsetD,
809                                               &jx0,&jy0,&jz0);
810
811             /* Calculate displacement vector */
812             dx00             = _mm_sub_ps(ix0,jx0);
813             dy00             = _mm_sub_ps(iy0,jy0);
814             dz00             = _mm_sub_ps(iz0,jz0);
815             dx10             = _mm_sub_ps(ix1,jx0);
816             dy10             = _mm_sub_ps(iy1,jy0);
817             dz10             = _mm_sub_ps(iz1,jz0);
818             dx20             = _mm_sub_ps(ix2,jx0);
819             dy20             = _mm_sub_ps(iy2,jy0);
820             dz20             = _mm_sub_ps(iz2,jz0);
821             dx30             = _mm_sub_ps(ix3,jx0);
822             dy30             = _mm_sub_ps(iy3,jy0);
823             dz30             = _mm_sub_ps(iz3,jz0);
824
825             /* Calculate squared distance and things based on it */
826             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
827             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
828             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
829             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
830
831             rinv00           = gmx_mm_invsqrt_ps(rsq00);
832             rinv10           = gmx_mm_invsqrt_ps(rsq10);
833             rinv20           = gmx_mm_invsqrt_ps(rsq20);
834             rinv30           = gmx_mm_invsqrt_ps(rsq30);
835
836             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
837             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
838             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
839
840             /* Load parameters for j particles */
841             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
842                                                               charge+jnrC+0,charge+jnrD+0);
843             vdwjidx0A        = 2*vdwtype[jnrA+0];
844             vdwjidx0B        = 2*vdwtype[jnrB+0];
845             vdwjidx0C        = 2*vdwtype[jnrC+0];
846             vdwjidx0D        = 2*vdwtype[jnrD+0];
847
848             fjx0             = _mm_setzero_ps();
849             fjy0             = _mm_setzero_ps();
850             fjz0             = _mm_setzero_ps();
851
852             /**************************
853              * CALCULATE INTERACTIONS *
854              **************************/
855
856             r00              = _mm_mul_ps(rsq00,rinv00);
857
858             /* Compute parameters for interactions between i and j atoms */
859             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
860                                          vdwparam+vdwioffset0+vdwjidx0B,
861                                          vdwparam+vdwioffset0+vdwjidx0C,
862                                          vdwparam+vdwioffset0+vdwjidx0D,
863                                          &c6_00,&c12_00);
864
865             /* Calculate table index by multiplying r with table scale and truncate to integer */
866             rt               = _mm_mul_ps(r00,vftabscale);
867             vfitab           = _mm_cvttps_epi32(rt);
868 #ifdef __XOP__
869             vfeps            = _mm_frcz_ps(rt);
870 #else
871             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
872 #endif
873             twovfeps         = _mm_add_ps(vfeps,vfeps);
874             vfitab           = _mm_slli_epi32(vfitab,3);
875
876             /* CUBIC SPLINE TABLE DISPERSION */
877             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
878             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
879             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
880             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
881             _MM_TRANSPOSE4_PS(Y,F,G,H);
882             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
883             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
884             fvdw6            = _mm_mul_ps(c6_00,FF);
885
886             /* CUBIC SPLINE TABLE REPULSION */
887             vfitab           = _mm_add_epi32(vfitab,ifour);
888             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
889             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
890             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
891             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
892             _MM_TRANSPOSE4_PS(Y,F,G,H);
893             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
894             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
895             fvdw12           = _mm_mul_ps(c12_00,FF);
896             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
897
898             fscal            = fvdw;
899
900              /* Update vectorial force */
901             fix0             = _mm_macc_ps(dx00,fscal,fix0);
902             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
903             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
904
905             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
906             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
907             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
908
909             /**************************
910              * CALCULATE INTERACTIONS *
911              **************************/
912
913             /* Compute parameters for interactions between i and j atoms */
914             qq10             = _mm_mul_ps(iq1,jq0);
915
916             /* COULOMB ELECTROSTATICS */
917             velec            = _mm_mul_ps(qq10,rinv10);
918             felec            = _mm_mul_ps(velec,rinvsq10);
919
920             fscal            = felec;
921
922              /* Update vectorial force */
923             fix1             = _mm_macc_ps(dx10,fscal,fix1);
924             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
925             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
926
927             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
928             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
929             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
930
931             /**************************
932              * CALCULATE INTERACTIONS *
933              **************************/
934
935             /* Compute parameters for interactions between i and j atoms */
936             qq20             = _mm_mul_ps(iq2,jq0);
937
938             /* COULOMB ELECTROSTATICS */
939             velec            = _mm_mul_ps(qq20,rinv20);
940             felec            = _mm_mul_ps(velec,rinvsq20);
941
942             fscal            = felec;
943
944              /* Update vectorial force */
945             fix2             = _mm_macc_ps(dx20,fscal,fix2);
946             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
947             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
948
949             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
950             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
951             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
952
953             /**************************
954              * CALCULATE INTERACTIONS *
955              **************************/
956
957             /* Compute parameters for interactions between i and j atoms */
958             qq30             = _mm_mul_ps(iq3,jq0);
959
960             /* COULOMB ELECTROSTATICS */
961             velec            = _mm_mul_ps(qq30,rinv30);
962             felec            = _mm_mul_ps(velec,rinvsq30);
963
964             fscal            = felec;
965
966              /* Update vectorial force */
967             fix3             = _mm_macc_ps(dx30,fscal,fix3);
968             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
969             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
970
971             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
972             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
973             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
974
975             fjptrA             = f+j_coord_offsetA;
976             fjptrB             = f+j_coord_offsetB;
977             fjptrC             = f+j_coord_offsetC;
978             fjptrD             = f+j_coord_offsetD;
979
980             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
981
982             /* Inner loop uses 141 flops */
983         }
984
985         if(jidx<j_index_end)
986         {
987
988             /* Get j neighbor index, and coordinate index */
989             jnrlistA         = jjnr[jidx];
990             jnrlistB         = jjnr[jidx+1];
991             jnrlistC         = jjnr[jidx+2];
992             jnrlistD         = jjnr[jidx+3];
993             /* Sign of each element will be negative for non-real atoms.
994              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
995              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
996              */
997             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
998             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
999             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1000             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1001             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1002             j_coord_offsetA  = DIM*jnrA;
1003             j_coord_offsetB  = DIM*jnrB;
1004             j_coord_offsetC  = DIM*jnrC;
1005             j_coord_offsetD  = DIM*jnrD;
1006
1007             /* load j atom coordinates */
1008             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1009                                               x+j_coord_offsetC,x+j_coord_offsetD,
1010                                               &jx0,&jy0,&jz0);
1011
1012             /* Calculate displacement vector */
1013             dx00             = _mm_sub_ps(ix0,jx0);
1014             dy00             = _mm_sub_ps(iy0,jy0);
1015             dz00             = _mm_sub_ps(iz0,jz0);
1016             dx10             = _mm_sub_ps(ix1,jx0);
1017             dy10             = _mm_sub_ps(iy1,jy0);
1018             dz10             = _mm_sub_ps(iz1,jz0);
1019             dx20             = _mm_sub_ps(ix2,jx0);
1020             dy20             = _mm_sub_ps(iy2,jy0);
1021             dz20             = _mm_sub_ps(iz2,jz0);
1022             dx30             = _mm_sub_ps(ix3,jx0);
1023             dy30             = _mm_sub_ps(iy3,jy0);
1024             dz30             = _mm_sub_ps(iz3,jz0);
1025
1026             /* Calculate squared distance and things based on it */
1027             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1028             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1029             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1030             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1031
1032             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1033             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1034             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1035             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1036
1037             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1038             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1039             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1040
1041             /* Load parameters for j particles */
1042             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1043                                                               charge+jnrC+0,charge+jnrD+0);
1044             vdwjidx0A        = 2*vdwtype[jnrA+0];
1045             vdwjidx0B        = 2*vdwtype[jnrB+0];
1046             vdwjidx0C        = 2*vdwtype[jnrC+0];
1047             vdwjidx0D        = 2*vdwtype[jnrD+0];
1048
1049             fjx0             = _mm_setzero_ps();
1050             fjy0             = _mm_setzero_ps();
1051             fjz0             = _mm_setzero_ps();
1052
1053             /**************************
1054              * CALCULATE INTERACTIONS *
1055              **************************/
1056
1057             r00              = _mm_mul_ps(rsq00,rinv00);
1058             r00              = _mm_andnot_ps(dummy_mask,r00);
1059
1060             /* Compute parameters for interactions between i and j atoms */
1061             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1062                                          vdwparam+vdwioffset0+vdwjidx0B,
1063                                          vdwparam+vdwioffset0+vdwjidx0C,
1064                                          vdwparam+vdwioffset0+vdwjidx0D,
1065                                          &c6_00,&c12_00);
1066
1067             /* Calculate table index by multiplying r with table scale and truncate to integer */
1068             rt               = _mm_mul_ps(r00,vftabscale);
1069             vfitab           = _mm_cvttps_epi32(rt);
1070 #ifdef __XOP__
1071             vfeps            = _mm_frcz_ps(rt);
1072 #else
1073             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1074 #endif
1075             twovfeps         = _mm_add_ps(vfeps,vfeps);
1076             vfitab           = _mm_slli_epi32(vfitab,3);
1077
1078             /* CUBIC SPLINE TABLE DISPERSION */
1079             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1080             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1081             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1082             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1083             _MM_TRANSPOSE4_PS(Y,F,G,H);
1084             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1085             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1086             fvdw6            = _mm_mul_ps(c6_00,FF);
1087
1088             /* CUBIC SPLINE TABLE REPULSION */
1089             vfitab           = _mm_add_epi32(vfitab,ifour);
1090             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1091             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1092             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1093             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1094             _MM_TRANSPOSE4_PS(Y,F,G,H);
1095             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1096             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1097             fvdw12           = _mm_mul_ps(c12_00,FF);
1098             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1099
1100             fscal            = fvdw;
1101
1102             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1103
1104              /* Update vectorial force */
1105             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1106             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1107             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1108
1109             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1110             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1111             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1112
1113             /**************************
1114              * CALCULATE INTERACTIONS *
1115              **************************/
1116
1117             /* Compute parameters for interactions between i and j atoms */
1118             qq10             = _mm_mul_ps(iq1,jq0);
1119
1120             /* COULOMB ELECTROSTATICS */
1121             velec            = _mm_mul_ps(qq10,rinv10);
1122             felec            = _mm_mul_ps(velec,rinvsq10);
1123
1124             fscal            = felec;
1125
1126             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1127
1128              /* Update vectorial force */
1129             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1130             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1131             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1132
1133             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1134             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1135             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1136
1137             /**************************
1138              * CALCULATE INTERACTIONS *
1139              **************************/
1140
1141             /* Compute parameters for interactions between i and j atoms */
1142             qq20             = _mm_mul_ps(iq2,jq0);
1143
1144             /* COULOMB ELECTROSTATICS */
1145             velec            = _mm_mul_ps(qq20,rinv20);
1146             felec            = _mm_mul_ps(velec,rinvsq20);
1147
1148             fscal            = felec;
1149
1150             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1151
1152              /* Update vectorial force */
1153             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1154             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1155             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1156
1157             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1158             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1159             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1160
1161             /**************************
1162              * CALCULATE INTERACTIONS *
1163              **************************/
1164
1165             /* Compute parameters for interactions between i and j atoms */
1166             qq30             = _mm_mul_ps(iq3,jq0);
1167
1168             /* COULOMB ELECTROSTATICS */
1169             velec            = _mm_mul_ps(qq30,rinv30);
1170             felec            = _mm_mul_ps(velec,rinvsq30);
1171
1172             fscal            = felec;
1173
1174             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1175
1176              /* Update vectorial force */
1177             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1178             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1179             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1180
1181             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1182             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1183             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1184
1185             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1186             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1187             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1188             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1189
1190             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1191
1192             /* Inner loop uses 142 flops */
1193         }
1194
1195         /* End of innermost loop */
1196
1197         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1198                                               f+i_coord_offset,fshift+i_shift_offset);
1199
1200         /* Increment number of inner iterations */
1201         inneriter                  += j_index_end - j_index_start;
1202
1203         /* Outer loop uses 24 flops */
1204     }
1205
1206     /* Increment number of outer iterations */
1207     outeriter        += nri;
1208
1209     /* Update outer/inner flops */
1210
1211     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*142);
1212 }