Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
105     real             *vftab;
106     __m128           dummy_mask,cutoff_mask;
107     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108     __m128           one     = _mm_set1_ps(1.0);
109     __m128           two     = _mm_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_vdw->data;
128     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
133     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
134     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = jnrC = jnrD = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141     j_coord_offsetC = 0;
142     j_coord_offsetD = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
169
170         fix0             = _mm_setzero_ps();
171         fiy0             = _mm_setzero_ps();
172         fiz0             = _mm_setzero_ps();
173         fix1             = _mm_setzero_ps();
174         fiy1             = _mm_setzero_ps();
175         fiz1             = _mm_setzero_ps();
176         fix2             = _mm_setzero_ps();
177         fiy2             = _mm_setzero_ps();
178         fiz2             = _mm_setzero_ps();
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_ps();
182         vvdwsum          = _mm_setzero_ps();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195             j_coord_offsetC  = DIM*jnrC;
196             j_coord_offsetD  = DIM*jnrD;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               x+j_coord_offsetC,x+j_coord_offsetD,
201                                               &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm_sub_ps(ix0,jx0);
205             dy00             = _mm_sub_ps(iy0,jy0);
206             dz00             = _mm_sub_ps(iz0,jz0);
207             dx10             = _mm_sub_ps(ix1,jx0);
208             dy10             = _mm_sub_ps(iy1,jy0);
209             dz10             = _mm_sub_ps(iz1,jz0);
210             dx20             = _mm_sub_ps(ix2,jx0);
211             dy20             = _mm_sub_ps(iy2,jy0);
212             dz20             = _mm_sub_ps(iz2,jz0);
213
214             /* Calculate squared distance and things based on it */
215             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
216             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
217             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
218
219             rinv00           = gmx_mm_invsqrt_ps(rsq00);
220             rinv10           = gmx_mm_invsqrt_ps(rsq10);
221             rinv20           = gmx_mm_invsqrt_ps(rsq20);
222
223             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
224             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
225             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
226
227             /* Load parameters for j particles */
228             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
229                                                               charge+jnrC+0,charge+jnrD+0);
230             vdwjidx0A        = 2*vdwtype[jnrA+0];
231             vdwjidx0B        = 2*vdwtype[jnrB+0];
232             vdwjidx0C        = 2*vdwtype[jnrC+0];
233             vdwjidx0D        = 2*vdwtype[jnrD+0];
234
235             fjx0             = _mm_setzero_ps();
236             fjy0             = _mm_setzero_ps();
237             fjz0             = _mm_setzero_ps();
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             r00              = _mm_mul_ps(rsq00,rinv00);
244
245             /* Compute parameters for interactions between i and j atoms */
246             qq00             = _mm_mul_ps(iq0,jq0);
247             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
248                                          vdwparam+vdwioffset0+vdwjidx0B,
249                                          vdwparam+vdwioffset0+vdwjidx0C,
250                                          vdwparam+vdwioffset0+vdwjidx0D,
251                                          &c6_00,&c12_00);
252
253             /* Calculate table index by multiplying r with table scale and truncate to integer */
254             rt               = _mm_mul_ps(r00,vftabscale);
255             vfitab           = _mm_cvttps_epi32(rt);
256 #ifdef __XOP__
257             vfeps            = _mm_frcz_ps(rt);
258 #else
259             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
260 #endif
261             twovfeps         = _mm_add_ps(vfeps,vfeps);
262             vfitab           = _mm_slli_epi32(vfitab,3);
263
264             /* COULOMB ELECTROSTATICS */
265             velec            = _mm_mul_ps(qq00,rinv00);
266             felec            = _mm_mul_ps(velec,rinvsq00);
267
268             /* CUBIC SPLINE TABLE DISPERSION */
269             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
270             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
271             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
272             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
273             _MM_TRANSPOSE4_PS(Y,F,G,H);
274             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
275             VV               = _mm_macc_ps(vfeps,Fp,Y);
276             vvdw6            = _mm_mul_ps(c6_00,VV);
277             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
278             fvdw6            = _mm_mul_ps(c6_00,FF);
279
280             /* CUBIC SPLINE TABLE REPULSION */
281             vfitab           = _mm_add_epi32(vfitab,ifour);
282             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
283             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
284             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
285             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
286             _MM_TRANSPOSE4_PS(Y,F,G,H);
287             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
288             VV               = _mm_macc_ps(vfeps,Fp,Y);
289             vvdw12           = _mm_mul_ps(c12_00,VV);
290             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
291             fvdw12           = _mm_mul_ps(c12_00,FF);
292             vvdw             = _mm_add_ps(vvdw12,vvdw6);
293             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velecsum         = _mm_add_ps(velecsum,velec);
297             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
298
299             fscal            = _mm_add_ps(felec,fvdw);
300
301              /* Update vectorial force */
302             fix0             = _mm_macc_ps(dx00,fscal,fix0);
303             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
304             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
305
306             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
307             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
308             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             /* Compute parameters for interactions between i and j atoms */
315             qq10             = _mm_mul_ps(iq1,jq0);
316
317             /* COULOMB ELECTROSTATICS */
318             velec            = _mm_mul_ps(qq10,rinv10);
319             felec            = _mm_mul_ps(velec,rinvsq10);
320
321             /* Update potential sum for this i atom from the interaction with this j atom. */
322             velecsum         = _mm_add_ps(velecsum,velec);
323
324             fscal            = felec;
325
326              /* Update vectorial force */
327             fix1             = _mm_macc_ps(dx10,fscal,fix1);
328             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
329             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
330
331             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
332             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
333             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             /* Compute parameters for interactions between i and j atoms */
340             qq20             = _mm_mul_ps(iq2,jq0);
341
342             /* COULOMB ELECTROSTATICS */
343             velec            = _mm_mul_ps(qq20,rinv20);
344             felec            = _mm_mul_ps(velec,rinvsq20);
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velecsum         = _mm_add_ps(velecsum,velec);
348
349             fscal            = felec;
350
351              /* Update vectorial force */
352             fix2             = _mm_macc_ps(dx20,fscal,fix2);
353             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
354             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
355
356             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
357             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
358             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
359
360             fjptrA             = f+j_coord_offsetA;
361             fjptrB             = f+j_coord_offsetB;
362             fjptrC             = f+j_coord_offsetC;
363             fjptrD             = f+j_coord_offsetD;
364
365             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
366
367             /* Inner loop uses 128 flops */
368         }
369
370         if(jidx<j_index_end)
371         {
372
373             /* Get j neighbor index, and coordinate index */
374             jnrlistA         = jjnr[jidx];
375             jnrlistB         = jjnr[jidx+1];
376             jnrlistC         = jjnr[jidx+2];
377             jnrlistD         = jjnr[jidx+3];
378             /* Sign of each element will be negative for non-real atoms.
379              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
380              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
381              */
382             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
383             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
384             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
385             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
386             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
387             j_coord_offsetA  = DIM*jnrA;
388             j_coord_offsetB  = DIM*jnrB;
389             j_coord_offsetC  = DIM*jnrC;
390             j_coord_offsetD  = DIM*jnrD;
391
392             /* load j atom coordinates */
393             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
394                                               x+j_coord_offsetC,x+j_coord_offsetD,
395                                               &jx0,&jy0,&jz0);
396
397             /* Calculate displacement vector */
398             dx00             = _mm_sub_ps(ix0,jx0);
399             dy00             = _mm_sub_ps(iy0,jy0);
400             dz00             = _mm_sub_ps(iz0,jz0);
401             dx10             = _mm_sub_ps(ix1,jx0);
402             dy10             = _mm_sub_ps(iy1,jy0);
403             dz10             = _mm_sub_ps(iz1,jz0);
404             dx20             = _mm_sub_ps(ix2,jx0);
405             dy20             = _mm_sub_ps(iy2,jy0);
406             dz20             = _mm_sub_ps(iz2,jz0);
407
408             /* Calculate squared distance and things based on it */
409             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
410             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
411             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
412
413             rinv00           = gmx_mm_invsqrt_ps(rsq00);
414             rinv10           = gmx_mm_invsqrt_ps(rsq10);
415             rinv20           = gmx_mm_invsqrt_ps(rsq20);
416
417             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
418             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
419             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
420
421             /* Load parameters for j particles */
422             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
423                                                               charge+jnrC+0,charge+jnrD+0);
424             vdwjidx0A        = 2*vdwtype[jnrA+0];
425             vdwjidx0B        = 2*vdwtype[jnrB+0];
426             vdwjidx0C        = 2*vdwtype[jnrC+0];
427             vdwjidx0D        = 2*vdwtype[jnrD+0];
428
429             fjx0             = _mm_setzero_ps();
430             fjy0             = _mm_setzero_ps();
431             fjz0             = _mm_setzero_ps();
432
433             /**************************
434              * CALCULATE INTERACTIONS *
435              **************************/
436
437             r00              = _mm_mul_ps(rsq00,rinv00);
438             r00              = _mm_andnot_ps(dummy_mask,r00);
439
440             /* Compute parameters for interactions between i and j atoms */
441             qq00             = _mm_mul_ps(iq0,jq0);
442             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
443                                          vdwparam+vdwioffset0+vdwjidx0B,
444                                          vdwparam+vdwioffset0+vdwjidx0C,
445                                          vdwparam+vdwioffset0+vdwjidx0D,
446                                          &c6_00,&c12_00);
447
448             /* Calculate table index by multiplying r with table scale and truncate to integer */
449             rt               = _mm_mul_ps(r00,vftabscale);
450             vfitab           = _mm_cvttps_epi32(rt);
451 #ifdef __XOP__
452             vfeps            = _mm_frcz_ps(rt);
453 #else
454             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
455 #endif
456             twovfeps         = _mm_add_ps(vfeps,vfeps);
457             vfitab           = _mm_slli_epi32(vfitab,3);
458
459             /* COULOMB ELECTROSTATICS */
460             velec            = _mm_mul_ps(qq00,rinv00);
461             felec            = _mm_mul_ps(velec,rinvsq00);
462
463             /* CUBIC SPLINE TABLE DISPERSION */
464             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
465             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
466             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
467             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
468             _MM_TRANSPOSE4_PS(Y,F,G,H);
469             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
470             VV               = _mm_macc_ps(vfeps,Fp,Y);
471             vvdw6            = _mm_mul_ps(c6_00,VV);
472             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
473             fvdw6            = _mm_mul_ps(c6_00,FF);
474
475             /* CUBIC SPLINE TABLE REPULSION */
476             vfitab           = _mm_add_epi32(vfitab,ifour);
477             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
478             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
479             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
480             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
481             _MM_TRANSPOSE4_PS(Y,F,G,H);
482             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
483             VV               = _mm_macc_ps(vfeps,Fp,Y);
484             vvdw12           = _mm_mul_ps(c12_00,VV);
485             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
486             fvdw12           = _mm_mul_ps(c12_00,FF);
487             vvdw             = _mm_add_ps(vvdw12,vvdw6);
488             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
489
490             /* Update potential sum for this i atom from the interaction with this j atom. */
491             velec            = _mm_andnot_ps(dummy_mask,velec);
492             velecsum         = _mm_add_ps(velecsum,velec);
493             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
494             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
495
496             fscal            = _mm_add_ps(felec,fvdw);
497
498             fscal            = _mm_andnot_ps(dummy_mask,fscal);
499
500              /* Update vectorial force */
501             fix0             = _mm_macc_ps(dx00,fscal,fix0);
502             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
503             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
504
505             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
506             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
507             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
508
509             /**************************
510              * CALCULATE INTERACTIONS *
511              **************************/
512
513             /* Compute parameters for interactions between i and j atoms */
514             qq10             = _mm_mul_ps(iq1,jq0);
515
516             /* COULOMB ELECTROSTATICS */
517             velec            = _mm_mul_ps(qq10,rinv10);
518             felec            = _mm_mul_ps(velec,rinvsq10);
519
520             /* Update potential sum for this i atom from the interaction with this j atom. */
521             velec            = _mm_andnot_ps(dummy_mask,velec);
522             velecsum         = _mm_add_ps(velecsum,velec);
523
524             fscal            = felec;
525
526             fscal            = _mm_andnot_ps(dummy_mask,fscal);
527
528              /* Update vectorial force */
529             fix1             = _mm_macc_ps(dx10,fscal,fix1);
530             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
531             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
532
533             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
534             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
535             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
536
537             /**************************
538              * CALCULATE INTERACTIONS *
539              **************************/
540
541             /* Compute parameters for interactions between i and j atoms */
542             qq20             = _mm_mul_ps(iq2,jq0);
543
544             /* COULOMB ELECTROSTATICS */
545             velec            = _mm_mul_ps(qq20,rinv20);
546             felec            = _mm_mul_ps(velec,rinvsq20);
547
548             /* Update potential sum for this i atom from the interaction with this j atom. */
549             velec            = _mm_andnot_ps(dummy_mask,velec);
550             velecsum         = _mm_add_ps(velecsum,velec);
551
552             fscal            = felec;
553
554             fscal            = _mm_andnot_ps(dummy_mask,fscal);
555
556              /* Update vectorial force */
557             fix2             = _mm_macc_ps(dx20,fscal,fix2);
558             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
559             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
560
561             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
562             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
563             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
564
565             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
566             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
567             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
568             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
569
570             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
571
572             /* Inner loop uses 129 flops */
573         }
574
575         /* End of innermost loop */
576
577         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
578                                               f+i_coord_offset,fshift+i_shift_offset);
579
580         ggid                        = gid[iidx];
581         /* Update potential energies */
582         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
583         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
584
585         /* Increment number of inner iterations */
586         inneriter                  += j_index_end - j_index_start;
587
588         /* Outer loop uses 20 flops */
589     }
590
591     /* Increment number of outer iterations */
592     outeriter        += nri;
593
594     /* Update outer/inner flops */
595
596     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*129);
597 }
598 /*
599  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_128_fma_single
600  * Electrostatics interaction: Coulomb
601  * VdW interaction:            CubicSplineTable
602  * Geometry:                   Water3-Particle
603  * Calculate force/pot:        Force
604  */
605 void
606 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_128_fma_single
607                     (t_nblist                    * gmx_restrict       nlist,
608                      rvec                        * gmx_restrict          xx,
609                      rvec                        * gmx_restrict          ff,
610                      t_forcerec                  * gmx_restrict          fr,
611                      t_mdatoms                   * gmx_restrict     mdatoms,
612                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
613                      t_nrnb                      * gmx_restrict        nrnb)
614 {
615     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
616      * just 0 for non-waters.
617      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
618      * jnr indices corresponding to data put in the four positions in the SIMD register.
619      */
620     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
621     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
622     int              jnrA,jnrB,jnrC,jnrD;
623     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
624     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
625     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
626     real             rcutoff_scalar;
627     real             *shiftvec,*fshift,*x,*f;
628     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
629     real             scratch[4*DIM];
630     __m128           fscal,rcutoff,rcutoff2,jidxall;
631     int              vdwioffset0;
632     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
633     int              vdwioffset1;
634     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
635     int              vdwioffset2;
636     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
637     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
638     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
639     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
640     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
641     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
642     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
643     real             *charge;
644     int              nvdwtype;
645     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
646     int              *vdwtype;
647     real             *vdwparam;
648     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
649     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
650     __m128i          vfitab;
651     __m128i          ifour       = _mm_set1_epi32(4);
652     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
653     real             *vftab;
654     __m128           dummy_mask,cutoff_mask;
655     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
656     __m128           one     = _mm_set1_ps(1.0);
657     __m128           two     = _mm_set1_ps(2.0);
658     x                = xx[0];
659     f                = ff[0];
660
661     nri              = nlist->nri;
662     iinr             = nlist->iinr;
663     jindex           = nlist->jindex;
664     jjnr             = nlist->jjnr;
665     shiftidx         = nlist->shift;
666     gid              = nlist->gid;
667     shiftvec         = fr->shift_vec[0];
668     fshift           = fr->fshift[0];
669     facel            = _mm_set1_ps(fr->epsfac);
670     charge           = mdatoms->chargeA;
671     nvdwtype         = fr->ntype;
672     vdwparam         = fr->nbfp;
673     vdwtype          = mdatoms->typeA;
674
675     vftab            = kernel_data->table_vdw->data;
676     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
677
678     /* Setup water-specific parameters */
679     inr              = nlist->iinr[0];
680     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
681     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
682     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
683     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
684
685     /* Avoid stupid compiler warnings */
686     jnrA = jnrB = jnrC = jnrD = 0;
687     j_coord_offsetA = 0;
688     j_coord_offsetB = 0;
689     j_coord_offsetC = 0;
690     j_coord_offsetD = 0;
691
692     outeriter        = 0;
693     inneriter        = 0;
694
695     for(iidx=0;iidx<4*DIM;iidx++)
696     {
697         scratch[iidx] = 0.0;
698     }
699
700     /* Start outer loop over neighborlists */
701     for(iidx=0; iidx<nri; iidx++)
702     {
703         /* Load shift vector for this list */
704         i_shift_offset   = DIM*shiftidx[iidx];
705
706         /* Load limits for loop over neighbors */
707         j_index_start    = jindex[iidx];
708         j_index_end      = jindex[iidx+1];
709
710         /* Get outer coordinate index */
711         inr              = iinr[iidx];
712         i_coord_offset   = DIM*inr;
713
714         /* Load i particle coords and add shift vector */
715         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
716                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
717
718         fix0             = _mm_setzero_ps();
719         fiy0             = _mm_setzero_ps();
720         fiz0             = _mm_setzero_ps();
721         fix1             = _mm_setzero_ps();
722         fiy1             = _mm_setzero_ps();
723         fiz1             = _mm_setzero_ps();
724         fix2             = _mm_setzero_ps();
725         fiy2             = _mm_setzero_ps();
726         fiz2             = _mm_setzero_ps();
727
728         /* Start inner kernel loop */
729         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
730         {
731
732             /* Get j neighbor index, and coordinate index */
733             jnrA             = jjnr[jidx];
734             jnrB             = jjnr[jidx+1];
735             jnrC             = jjnr[jidx+2];
736             jnrD             = jjnr[jidx+3];
737             j_coord_offsetA  = DIM*jnrA;
738             j_coord_offsetB  = DIM*jnrB;
739             j_coord_offsetC  = DIM*jnrC;
740             j_coord_offsetD  = DIM*jnrD;
741
742             /* load j atom coordinates */
743             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
744                                               x+j_coord_offsetC,x+j_coord_offsetD,
745                                               &jx0,&jy0,&jz0);
746
747             /* Calculate displacement vector */
748             dx00             = _mm_sub_ps(ix0,jx0);
749             dy00             = _mm_sub_ps(iy0,jy0);
750             dz00             = _mm_sub_ps(iz0,jz0);
751             dx10             = _mm_sub_ps(ix1,jx0);
752             dy10             = _mm_sub_ps(iy1,jy0);
753             dz10             = _mm_sub_ps(iz1,jz0);
754             dx20             = _mm_sub_ps(ix2,jx0);
755             dy20             = _mm_sub_ps(iy2,jy0);
756             dz20             = _mm_sub_ps(iz2,jz0);
757
758             /* Calculate squared distance and things based on it */
759             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
760             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
761             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
762
763             rinv00           = gmx_mm_invsqrt_ps(rsq00);
764             rinv10           = gmx_mm_invsqrt_ps(rsq10);
765             rinv20           = gmx_mm_invsqrt_ps(rsq20);
766
767             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
768             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
769             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
770
771             /* Load parameters for j particles */
772             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
773                                                               charge+jnrC+0,charge+jnrD+0);
774             vdwjidx0A        = 2*vdwtype[jnrA+0];
775             vdwjidx0B        = 2*vdwtype[jnrB+0];
776             vdwjidx0C        = 2*vdwtype[jnrC+0];
777             vdwjidx0D        = 2*vdwtype[jnrD+0];
778
779             fjx0             = _mm_setzero_ps();
780             fjy0             = _mm_setzero_ps();
781             fjz0             = _mm_setzero_ps();
782
783             /**************************
784              * CALCULATE INTERACTIONS *
785              **************************/
786
787             r00              = _mm_mul_ps(rsq00,rinv00);
788
789             /* Compute parameters for interactions between i and j atoms */
790             qq00             = _mm_mul_ps(iq0,jq0);
791             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
792                                          vdwparam+vdwioffset0+vdwjidx0B,
793                                          vdwparam+vdwioffset0+vdwjidx0C,
794                                          vdwparam+vdwioffset0+vdwjidx0D,
795                                          &c6_00,&c12_00);
796
797             /* Calculate table index by multiplying r with table scale and truncate to integer */
798             rt               = _mm_mul_ps(r00,vftabscale);
799             vfitab           = _mm_cvttps_epi32(rt);
800 #ifdef __XOP__
801             vfeps            = _mm_frcz_ps(rt);
802 #else
803             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
804 #endif
805             twovfeps         = _mm_add_ps(vfeps,vfeps);
806             vfitab           = _mm_slli_epi32(vfitab,3);
807
808             /* COULOMB ELECTROSTATICS */
809             velec            = _mm_mul_ps(qq00,rinv00);
810             felec            = _mm_mul_ps(velec,rinvsq00);
811
812             /* CUBIC SPLINE TABLE DISPERSION */
813             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
814             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
815             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
816             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
817             _MM_TRANSPOSE4_PS(Y,F,G,H);
818             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
819             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
820             fvdw6            = _mm_mul_ps(c6_00,FF);
821
822             /* CUBIC SPLINE TABLE REPULSION */
823             vfitab           = _mm_add_epi32(vfitab,ifour);
824             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
825             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
826             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
827             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
828             _MM_TRANSPOSE4_PS(Y,F,G,H);
829             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
830             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
831             fvdw12           = _mm_mul_ps(c12_00,FF);
832             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
833
834             fscal            = _mm_add_ps(felec,fvdw);
835
836              /* Update vectorial force */
837             fix0             = _mm_macc_ps(dx00,fscal,fix0);
838             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
839             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
840
841             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
842             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
843             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
844
845             /**************************
846              * CALCULATE INTERACTIONS *
847              **************************/
848
849             /* Compute parameters for interactions between i and j atoms */
850             qq10             = _mm_mul_ps(iq1,jq0);
851
852             /* COULOMB ELECTROSTATICS */
853             velec            = _mm_mul_ps(qq10,rinv10);
854             felec            = _mm_mul_ps(velec,rinvsq10);
855
856             fscal            = felec;
857
858              /* Update vectorial force */
859             fix1             = _mm_macc_ps(dx10,fscal,fix1);
860             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
861             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
862
863             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
864             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
865             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
866
867             /**************************
868              * CALCULATE INTERACTIONS *
869              **************************/
870
871             /* Compute parameters for interactions between i and j atoms */
872             qq20             = _mm_mul_ps(iq2,jq0);
873
874             /* COULOMB ELECTROSTATICS */
875             velec            = _mm_mul_ps(qq20,rinv20);
876             felec            = _mm_mul_ps(velec,rinvsq20);
877
878             fscal            = felec;
879
880              /* Update vectorial force */
881             fix2             = _mm_macc_ps(dx20,fscal,fix2);
882             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
883             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
884
885             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
886             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
887             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
888
889             fjptrA             = f+j_coord_offsetA;
890             fjptrB             = f+j_coord_offsetB;
891             fjptrC             = f+j_coord_offsetC;
892             fjptrD             = f+j_coord_offsetD;
893
894             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
895
896             /* Inner loop uses 117 flops */
897         }
898
899         if(jidx<j_index_end)
900         {
901
902             /* Get j neighbor index, and coordinate index */
903             jnrlistA         = jjnr[jidx];
904             jnrlistB         = jjnr[jidx+1];
905             jnrlistC         = jjnr[jidx+2];
906             jnrlistD         = jjnr[jidx+3];
907             /* Sign of each element will be negative for non-real atoms.
908              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
909              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
910              */
911             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
912             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
913             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
914             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
915             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
916             j_coord_offsetA  = DIM*jnrA;
917             j_coord_offsetB  = DIM*jnrB;
918             j_coord_offsetC  = DIM*jnrC;
919             j_coord_offsetD  = DIM*jnrD;
920
921             /* load j atom coordinates */
922             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
923                                               x+j_coord_offsetC,x+j_coord_offsetD,
924                                               &jx0,&jy0,&jz0);
925
926             /* Calculate displacement vector */
927             dx00             = _mm_sub_ps(ix0,jx0);
928             dy00             = _mm_sub_ps(iy0,jy0);
929             dz00             = _mm_sub_ps(iz0,jz0);
930             dx10             = _mm_sub_ps(ix1,jx0);
931             dy10             = _mm_sub_ps(iy1,jy0);
932             dz10             = _mm_sub_ps(iz1,jz0);
933             dx20             = _mm_sub_ps(ix2,jx0);
934             dy20             = _mm_sub_ps(iy2,jy0);
935             dz20             = _mm_sub_ps(iz2,jz0);
936
937             /* Calculate squared distance and things based on it */
938             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
939             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
940             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
941
942             rinv00           = gmx_mm_invsqrt_ps(rsq00);
943             rinv10           = gmx_mm_invsqrt_ps(rsq10);
944             rinv20           = gmx_mm_invsqrt_ps(rsq20);
945
946             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
947             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
948             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
949
950             /* Load parameters for j particles */
951             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
952                                                               charge+jnrC+0,charge+jnrD+0);
953             vdwjidx0A        = 2*vdwtype[jnrA+0];
954             vdwjidx0B        = 2*vdwtype[jnrB+0];
955             vdwjidx0C        = 2*vdwtype[jnrC+0];
956             vdwjidx0D        = 2*vdwtype[jnrD+0];
957
958             fjx0             = _mm_setzero_ps();
959             fjy0             = _mm_setzero_ps();
960             fjz0             = _mm_setzero_ps();
961
962             /**************************
963              * CALCULATE INTERACTIONS *
964              **************************/
965
966             r00              = _mm_mul_ps(rsq00,rinv00);
967             r00              = _mm_andnot_ps(dummy_mask,r00);
968
969             /* Compute parameters for interactions between i and j atoms */
970             qq00             = _mm_mul_ps(iq0,jq0);
971             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
972                                          vdwparam+vdwioffset0+vdwjidx0B,
973                                          vdwparam+vdwioffset0+vdwjidx0C,
974                                          vdwparam+vdwioffset0+vdwjidx0D,
975                                          &c6_00,&c12_00);
976
977             /* Calculate table index by multiplying r with table scale and truncate to integer */
978             rt               = _mm_mul_ps(r00,vftabscale);
979             vfitab           = _mm_cvttps_epi32(rt);
980 #ifdef __XOP__
981             vfeps            = _mm_frcz_ps(rt);
982 #else
983             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
984 #endif
985             twovfeps         = _mm_add_ps(vfeps,vfeps);
986             vfitab           = _mm_slli_epi32(vfitab,3);
987
988             /* COULOMB ELECTROSTATICS */
989             velec            = _mm_mul_ps(qq00,rinv00);
990             felec            = _mm_mul_ps(velec,rinvsq00);
991
992             /* CUBIC SPLINE TABLE DISPERSION */
993             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
994             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
995             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
996             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
997             _MM_TRANSPOSE4_PS(Y,F,G,H);
998             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
999             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1000             fvdw6            = _mm_mul_ps(c6_00,FF);
1001
1002             /* CUBIC SPLINE TABLE REPULSION */
1003             vfitab           = _mm_add_epi32(vfitab,ifour);
1004             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1005             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1006             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1007             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1008             _MM_TRANSPOSE4_PS(Y,F,G,H);
1009             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1010             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1011             fvdw12           = _mm_mul_ps(c12_00,FF);
1012             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1013
1014             fscal            = _mm_add_ps(felec,fvdw);
1015
1016             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1017
1018              /* Update vectorial force */
1019             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1020             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1021             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1022
1023             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1024             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1025             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1026
1027             /**************************
1028              * CALCULATE INTERACTIONS *
1029              **************************/
1030
1031             /* Compute parameters for interactions between i and j atoms */
1032             qq10             = _mm_mul_ps(iq1,jq0);
1033
1034             /* COULOMB ELECTROSTATICS */
1035             velec            = _mm_mul_ps(qq10,rinv10);
1036             felec            = _mm_mul_ps(velec,rinvsq10);
1037
1038             fscal            = felec;
1039
1040             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1041
1042              /* Update vectorial force */
1043             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1044             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1045             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1046
1047             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1048             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1049             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1050
1051             /**************************
1052              * CALCULATE INTERACTIONS *
1053              **************************/
1054
1055             /* Compute parameters for interactions between i and j atoms */
1056             qq20             = _mm_mul_ps(iq2,jq0);
1057
1058             /* COULOMB ELECTROSTATICS */
1059             velec            = _mm_mul_ps(qq20,rinv20);
1060             felec            = _mm_mul_ps(velec,rinvsq20);
1061
1062             fscal            = felec;
1063
1064             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1065
1066              /* Update vectorial force */
1067             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1068             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1069             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1070
1071             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1072             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1073             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1074
1075             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1076             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1077             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1078             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1079
1080             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1081
1082             /* Inner loop uses 118 flops */
1083         }
1084
1085         /* End of innermost loop */
1086
1087         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1088                                               f+i_coord_offset,fshift+i_shift_offset);
1089
1090         /* Increment number of inner iterations */
1091         inneriter                  += j_index_end - j_index_start;
1092
1093         /* Outer loop uses 18 flops */
1094     }
1095
1096     /* Increment number of outer iterations */
1097     outeriter        += nri;
1098
1099     /* Update outer/inner flops */
1100
1101     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*118);
1102 }