a5fc5393810f03a0966e449254ae1cf67af84594
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
91     real             *vftab;
92     __m128           dummy_mask,cutoff_mask;
93     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
94     __m128           one     = _mm_set1_ps(1.0);
95     __m128           two     = _mm_set1_ps(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_ps(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
119     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
120     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
121     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = jnrC = jnrD = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127     j_coord_offsetC = 0;
128     j_coord_offsetD = 0;
129
130     outeriter        = 0;
131     inneriter        = 0;
132
133     for(iidx=0;iidx<4*DIM;iidx++)
134     {
135         scratch[iidx] = 0.0;
136     }
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
154                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
155
156         fix0             = _mm_setzero_ps();
157         fiy0             = _mm_setzero_ps();
158         fiz0             = _mm_setzero_ps();
159         fix1             = _mm_setzero_ps();
160         fiy1             = _mm_setzero_ps();
161         fiz1             = _mm_setzero_ps();
162         fix2             = _mm_setzero_ps();
163         fiy2             = _mm_setzero_ps();
164         fiz2             = _mm_setzero_ps();
165
166         /* Reset potential sums */
167         velecsum         = _mm_setzero_ps();
168         vvdwsum          = _mm_setzero_ps();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             jnrC             = jjnr[jidx+2];
178             jnrD             = jjnr[jidx+3];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181             j_coord_offsetC  = DIM*jnrC;
182             j_coord_offsetD  = DIM*jnrD;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               x+j_coord_offsetC,x+j_coord_offsetD,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm_sub_ps(ix0,jx0);
191             dy00             = _mm_sub_ps(iy0,jy0);
192             dz00             = _mm_sub_ps(iz0,jz0);
193             dx10             = _mm_sub_ps(ix1,jx0);
194             dy10             = _mm_sub_ps(iy1,jy0);
195             dz10             = _mm_sub_ps(iz1,jz0);
196             dx20             = _mm_sub_ps(ix2,jx0);
197             dy20             = _mm_sub_ps(iy2,jy0);
198             dz20             = _mm_sub_ps(iz2,jz0);
199
200             /* Calculate squared distance and things based on it */
201             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
202             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
203             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
204
205             rinv00           = gmx_mm_invsqrt_ps(rsq00);
206             rinv10           = gmx_mm_invsqrt_ps(rsq10);
207             rinv20           = gmx_mm_invsqrt_ps(rsq20);
208
209             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
210             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
211             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
212
213             /* Load parameters for j particles */
214             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
215                                                               charge+jnrC+0,charge+jnrD+0);
216             vdwjidx0A        = 2*vdwtype[jnrA+0];
217             vdwjidx0B        = 2*vdwtype[jnrB+0];
218             vdwjidx0C        = 2*vdwtype[jnrC+0];
219             vdwjidx0D        = 2*vdwtype[jnrD+0];
220
221             fjx0             = _mm_setzero_ps();
222             fjy0             = _mm_setzero_ps();
223             fjz0             = _mm_setzero_ps();
224
225             /**************************
226              * CALCULATE INTERACTIONS *
227              **************************/
228
229             r00              = _mm_mul_ps(rsq00,rinv00);
230
231             /* Compute parameters for interactions between i and j atoms */
232             qq00             = _mm_mul_ps(iq0,jq0);
233             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
234                                          vdwparam+vdwioffset0+vdwjidx0B,
235                                          vdwparam+vdwioffset0+vdwjidx0C,
236                                          vdwparam+vdwioffset0+vdwjidx0D,
237                                          &c6_00,&c12_00);
238
239             /* Calculate table index by multiplying r with table scale and truncate to integer */
240             rt               = _mm_mul_ps(r00,vftabscale);
241             vfitab           = _mm_cvttps_epi32(rt);
242 #ifdef __XOP__
243             vfeps            = _mm_frcz_ps(rt);
244 #else
245             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
246 #endif
247             twovfeps         = _mm_add_ps(vfeps,vfeps);
248             vfitab           = _mm_slli_epi32(vfitab,3);
249
250             /* COULOMB ELECTROSTATICS */
251             velec            = _mm_mul_ps(qq00,rinv00);
252             felec            = _mm_mul_ps(velec,rinvsq00);
253
254             /* CUBIC SPLINE TABLE DISPERSION */
255             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
256             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
257             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
258             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
259             _MM_TRANSPOSE4_PS(Y,F,G,H);
260             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
261             VV               = _mm_macc_ps(vfeps,Fp,Y);
262             vvdw6            = _mm_mul_ps(c6_00,VV);
263             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
264             fvdw6            = _mm_mul_ps(c6_00,FF);
265
266             /* CUBIC SPLINE TABLE REPULSION */
267             vfitab           = _mm_add_epi32(vfitab,ifour);
268             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
269             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
270             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
271             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
272             _MM_TRANSPOSE4_PS(Y,F,G,H);
273             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
274             VV               = _mm_macc_ps(vfeps,Fp,Y);
275             vvdw12           = _mm_mul_ps(c12_00,VV);
276             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
277             fvdw12           = _mm_mul_ps(c12_00,FF);
278             vvdw             = _mm_add_ps(vvdw12,vvdw6);
279             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velecsum         = _mm_add_ps(velecsum,velec);
283             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
284
285             fscal            = _mm_add_ps(felec,fvdw);
286
287              /* Update vectorial force */
288             fix0             = _mm_macc_ps(dx00,fscal,fix0);
289             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
290             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
291
292             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
293             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
294             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             /* Compute parameters for interactions between i and j atoms */
301             qq10             = _mm_mul_ps(iq1,jq0);
302
303             /* COULOMB ELECTROSTATICS */
304             velec            = _mm_mul_ps(qq10,rinv10);
305             felec            = _mm_mul_ps(velec,rinvsq10);
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             velecsum         = _mm_add_ps(velecsum,velec);
309
310             fscal            = felec;
311
312              /* Update vectorial force */
313             fix1             = _mm_macc_ps(dx10,fscal,fix1);
314             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
315             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
316
317             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
318             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
319             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
320
321             /**************************
322              * CALCULATE INTERACTIONS *
323              **************************/
324
325             /* Compute parameters for interactions between i and j atoms */
326             qq20             = _mm_mul_ps(iq2,jq0);
327
328             /* COULOMB ELECTROSTATICS */
329             velec            = _mm_mul_ps(qq20,rinv20);
330             felec            = _mm_mul_ps(velec,rinvsq20);
331
332             /* Update potential sum for this i atom from the interaction with this j atom. */
333             velecsum         = _mm_add_ps(velecsum,velec);
334
335             fscal            = felec;
336
337              /* Update vectorial force */
338             fix2             = _mm_macc_ps(dx20,fscal,fix2);
339             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
340             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
341
342             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
343             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
344             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
345
346             fjptrA             = f+j_coord_offsetA;
347             fjptrB             = f+j_coord_offsetB;
348             fjptrC             = f+j_coord_offsetC;
349             fjptrD             = f+j_coord_offsetD;
350
351             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
352
353             /* Inner loop uses 128 flops */
354         }
355
356         if(jidx<j_index_end)
357         {
358
359             /* Get j neighbor index, and coordinate index */
360             jnrlistA         = jjnr[jidx];
361             jnrlistB         = jjnr[jidx+1];
362             jnrlistC         = jjnr[jidx+2];
363             jnrlistD         = jjnr[jidx+3];
364             /* Sign of each element will be negative for non-real atoms.
365              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
366              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
367              */
368             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
369             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
370             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
371             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
372             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
373             j_coord_offsetA  = DIM*jnrA;
374             j_coord_offsetB  = DIM*jnrB;
375             j_coord_offsetC  = DIM*jnrC;
376             j_coord_offsetD  = DIM*jnrD;
377
378             /* load j atom coordinates */
379             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
380                                               x+j_coord_offsetC,x+j_coord_offsetD,
381                                               &jx0,&jy0,&jz0);
382
383             /* Calculate displacement vector */
384             dx00             = _mm_sub_ps(ix0,jx0);
385             dy00             = _mm_sub_ps(iy0,jy0);
386             dz00             = _mm_sub_ps(iz0,jz0);
387             dx10             = _mm_sub_ps(ix1,jx0);
388             dy10             = _mm_sub_ps(iy1,jy0);
389             dz10             = _mm_sub_ps(iz1,jz0);
390             dx20             = _mm_sub_ps(ix2,jx0);
391             dy20             = _mm_sub_ps(iy2,jy0);
392             dz20             = _mm_sub_ps(iz2,jz0);
393
394             /* Calculate squared distance and things based on it */
395             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
396             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
397             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
398
399             rinv00           = gmx_mm_invsqrt_ps(rsq00);
400             rinv10           = gmx_mm_invsqrt_ps(rsq10);
401             rinv20           = gmx_mm_invsqrt_ps(rsq20);
402
403             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
404             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
405             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
406
407             /* Load parameters for j particles */
408             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
409                                                               charge+jnrC+0,charge+jnrD+0);
410             vdwjidx0A        = 2*vdwtype[jnrA+0];
411             vdwjidx0B        = 2*vdwtype[jnrB+0];
412             vdwjidx0C        = 2*vdwtype[jnrC+0];
413             vdwjidx0D        = 2*vdwtype[jnrD+0];
414
415             fjx0             = _mm_setzero_ps();
416             fjy0             = _mm_setzero_ps();
417             fjz0             = _mm_setzero_ps();
418
419             /**************************
420              * CALCULATE INTERACTIONS *
421              **************************/
422
423             r00              = _mm_mul_ps(rsq00,rinv00);
424             r00              = _mm_andnot_ps(dummy_mask,r00);
425
426             /* Compute parameters for interactions between i and j atoms */
427             qq00             = _mm_mul_ps(iq0,jq0);
428             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
429                                          vdwparam+vdwioffset0+vdwjidx0B,
430                                          vdwparam+vdwioffset0+vdwjidx0C,
431                                          vdwparam+vdwioffset0+vdwjidx0D,
432                                          &c6_00,&c12_00);
433
434             /* Calculate table index by multiplying r with table scale and truncate to integer */
435             rt               = _mm_mul_ps(r00,vftabscale);
436             vfitab           = _mm_cvttps_epi32(rt);
437 #ifdef __XOP__
438             vfeps            = _mm_frcz_ps(rt);
439 #else
440             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
441 #endif
442             twovfeps         = _mm_add_ps(vfeps,vfeps);
443             vfitab           = _mm_slli_epi32(vfitab,3);
444
445             /* COULOMB ELECTROSTATICS */
446             velec            = _mm_mul_ps(qq00,rinv00);
447             felec            = _mm_mul_ps(velec,rinvsq00);
448
449             /* CUBIC SPLINE TABLE DISPERSION */
450             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
451             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
452             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
453             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
454             _MM_TRANSPOSE4_PS(Y,F,G,H);
455             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
456             VV               = _mm_macc_ps(vfeps,Fp,Y);
457             vvdw6            = _mm_mul_ps(c6_00,VV);
458             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
459             fvdw6            = _mm_mul_ps(c6_00,FF);
460
461             /* CUBIC SPLINE TABLE REPULSION */
462             vfitab           = _mm_add_epi32(vfitab,ifour);
463             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
464             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
465             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
466             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
467             _MM_TRANSPOSE4_PS(Y,F,G,H);
468             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
469             VV               = _mm_macc_ps(vfeps,Fp,Y);
470             vvdw12           = _mm_mul_ps(c12_00,VV);
471             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
472             fvdw12           = _mm_mul_ps(c12_00,FF);
473             vvdw             = _mm_add_ps(vvdw12,vvdw6);
474             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
475
476             /* Update potential sum for this i atom from the interaction with this j atom. */
477             velec            = _mm_andnot_ps(dummy_mask,velec);
478             velecsum         = _mm_add_ps(velecsum,velec);
479             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
480             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
481
482             fscal            = _mm_add_ps(felec,fvdw);
483
484             fscal            = _mm_andnot_ps(dummy_mask,fscal);
485
486              /* Update vectorial force */
487             fix0             = _mm_macc_ps(dx00,fscal,fix0);
488             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
489             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
490
491             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
492             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
493             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
494
495             /**************************
496              * CALCULATE INTERACTIONS *
497              **************************/
498
499             /* Compute parameters for interactions between i and j atoms */
500             qq10             = _mm_mul_ps(iq1,jq0);
501
502             /* COULOMB ELECTROSTATICS */
503             velec            = _mm_mul_ps(qq10,rinv10);
504             felec            = _mm_mul_ps(velec,rinvsq10);
505
506             /* Update potential sum for this i atom from the interaction with this j atom. */
507             velec            = _mm_andnot_ps(dummy_mask,velec);
508             velecsum         = _mm_add_ps(velecsum,velec);
509
510             fscal            = felec;
511
512             fscal            = _mm_andnot_ps(dummy_mask,fscal);
513
514              /* Update vectorial force */
515             fix1             = _mm_macc_ps(dx10,fscal,fix1);
516             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
517             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
518
519             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
520             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
521             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
522
523             /**************************
524              * CALCULATE INTERACTIONS *
525              **************************/
526
527             /* Compute parameters for interactions between i and j atoms */
528             qq20             = _mm_mul_ps(iq2,jq0);
529
530             /* COULOMB ELECTROSTATICS */
531             velec            = _mm_mul_ps(qq20,rinv20);
532             felec            = _mm_mul_ps(velec,rinvsq20);
533
534             /* Update potential sum for this i atom from the interaction with this j atom. */
535             velec            = _mm_andnot_ps(dummy_mask,velec);
536             velecsum         = _mm_add_ps(velecsum,velec);
537
538             fscal            = felec;
539
540             fscal            = _mm_andnot_ps(dummy_mask,fscal);
541
542              /* Update vectorial force */
543             fix2             = _mm_macc_ps(dx20,fscal,fix2);
544             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
545             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
546
547             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
548             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
549             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
550
551             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
552             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
553             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
554             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
555
556             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
557
558             /* Inner loop uses 129 flops */
559         }
560
561         /* End of innermost loop */
562
563         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
564                                               f+i_coord_offset,fshift+i_shift_offset);
565
566         ggid                        = gid[iidx];
567         /* Update potential energies */
568         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
569         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
570
571         /* Increment number of inner iterations */
572         inneriter                  += j_index_end - j_index_start;
573
574         /* Outer loop uses 20 flops */
575     }
576
577     /* Increment number of outer iterations */
578     outeriter        += nri;
579
580     /* Update outer/inner flops */
581
582     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*129);
583 }
584 /*
585  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_128_fma_single
586  * Electrostatics interaction: Coulomb
587  * VdW interaction:            CubicSplineTable
588  * Geometry:                   Water3-Particle
589  * Calculate force/pot:        Force
590  */
591 void
592 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_128_fma_single
593                     (t_nblist * gmx_restrict                nlist,
594                      rvec * gmx_restrict                    xx,
595                      rvec * gmx_restrict                    ff,
596                      t_forcerec * gmx_restrict              fr,
597                      t_mdatoms * gmx_restrict               mdatoms,
598                      nb_kernel_data_t * gmx_restrict        kernel_data,
599                      t_nrnb * gmx_restrict                  nrnb)
600 {
601     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
602      * just 0 for non-waters.
603      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
604      * jnr indices corresponding to data put in the four positions in the SIMD register.
605      */
606     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
607     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
608     int              jnrA,jnrB,jnrC,jnrD;
609     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
610     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
611     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
612     real             rcutoff_scalar;
613     real             *shiftvec,*fshift,*x,*f;
614     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
615     real             scratch[4*DIM];
616     __m128           fscal,rcutoff,rcutoff2,jidxall;
617     int              vdwioffset0;
618     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
619     int              vdwioffset1;
620     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
621     int              vdwioffset2;
622     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
623     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
624     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
625     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
626     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
627     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
628     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
629     real             *charge;
630     int              nvdwtype;
631     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
632     int              *vdwtype;
633     real             *vdwparam;
634     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
635     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
636     __m128i          vfitab;
637     __m128i          ifour       = _mm_set1_epi32(4);
638     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
639     real             *vftab;
640     __m128           dummy_mask,cutoff_mask;
641     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
642     __m128           one     = _mm_set1_ps(1.0);
643     __m128           two     = _mm_set1_ps(2.0);
644     x                = xx[0];
645     f                = ff[0];
646
647     nri              = nlist->nri;
648     iinr             = nlist->iinr;
649     jindex           = nlist->jindex;
650     jjnr             = nlist->jjnr;
651     shiftidx         = nlist->shift;
652     gid              = nlist->gid;
653     shiftvec         = fr->shift_vec[0];
654     fshift           = fr->fshift[0];
655     facel            = _mm_set1_ps(fr->epsfac);
656     charge           = mdatoms->chargeA;
657     nvdwtype         = fr->ntype;
658     vdwparam         = fr->nbfp;
659     vdwtype          = mdatoms->typeA;
660
661     vftab            = kernel_data->table_vdw->data;
662     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
663
664     /* Setup water-specific parameters */
665     inr              = nlist->iinr[0];
666     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
667     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
668     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
669     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
670
671     /* Avoid stupid compiler warnings */
672     jnrA = jnrB = jnrC = jnrD = 0;
673     j_coord_offsetA = 0;
674     j_coord_offsetB = 0;
675     j_coord_offsetC = 0;
676     j_coord_offsetD = 0;
677
678     outeriter        = 0;
679     inneriter        = 0;
680
681     for(iidx=0;iidx<4*DIM;iidx++)
682     {
683         scratch[iidx] = 0.0;
684     }
685
686     /* Start outer loop over neighborlists */
687     for(iidx=0; iidx<nri; iidx++)
688     {
689         /* Load shift vector for this list */
690         i_shift_offset   = DIM*shiftidx[iidx];
691
692         /* Load limits for loop over neighbors */
693         j_index_start    = jindex[iidx];
694         j_index_end      = jindex[iidx+1];
695
696         /* Get outer coordinate index */
697         inr              = iinr[iidx];
698         i_coord_offset   = DIM*inr;
699
700         /* Load i particle coords and add shift vector */
701         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
702                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
703
704         fix0             = _mm_setzero_ps();
705         fiy0             = _mm_setzero_ps();
706         fiz0             = _mm_setzero_ps();
707         fix1             = _mm_setzero_ps();
708         fiy1             = _mm_setzero_ps();
709         fiz1             = _mm_setzero_ps();
710         fix2             = _mm_setzero_ps();
711         fiy2             = _mm_setzero_ps();
712         fiz2             = _mm_setzero_ps();
713
714         /* Start inner kernel loop */
715         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
716         {
717
718             /* Get j neighbor index, and coordinate index */
719             jnrA             = jjnr[jidx];
720             jnrB             = jjnr[jidx+1];
721             jnrC             = jjnr[jidx+2];
722             jnrD             = jjnr[jidx+3];
723             j_coord_offsetA  = DIM*jnrA;
724             j_coord_offsetB  = DIM*jnrB;
725             j_coord_offsetC  = DIM*jnrC;
726             j_coord_offsetD  = DIM*jnrD;
727
728             /* load j atom coordinates */
729             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
730                                               x+j_coord_offsetC,x+j_coord_offsetD,
731                                               &jx0,&jy0,&jz0);
732
733             /* Calculate displacement vector */
734             dx00             = _mm_sub_ps(ix0,jx0);
735             dy00             = _mm_sub_ps(iy0,jy0);
736             dz00             = _mm_sub_ps(iz0,jz0);
737             dx10             = _mm_sub_ps(ix1,jx0);
738             dy10             = _mm_sub_ps(iy1,jy0);
739             dz10             = _mm_sub_ps(iz1,jz0);
740             dx20             = _mm_sub_ps(ix2,jx0);
741             dy20             = _mm_sub_ps(iy2,jy0);
742             dz20             = _mm_sub_ps(iz2,jz0);
743
744             /* Calculate squared distance and things based on it */
745             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
746             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
747             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
748
749             rinv00           = gmx_mm_invsqrt_ps(rsq00);
750             rinv10           = gmx_mm_invsqrt_ps(rsq10);
751             rinv20           = gmx_mm_invsqrt_ps(rsq20);
752
753             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
754             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
755             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
756
757             /* Load parameters for j particles */
758             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
759                                                               charge+jnrC+0,charge+jnrD+0);
760             vdwjidx0A        = 2*vdwtype[jnrA+0];
761             vdwjidx0B        = 2*vdwtype[jnrB+0];
762             vdwjidx0C        = 2*vdwtype[jnrC+0];
763             vdwjidx0D        = 2*vdwtype[jnrD+0];
764
765             fjx0             = _mm_setzero_ps();
766             fjy0             = _mm_setzero_ps();
767             fjz0             = _mm_setzero_ps();
768
769             /**************************
770              * CALCULATE INTERACTIONS *
771              **************************/
772
773             r00              = _mm_mul_ps(rsq00,rinv00);
774
775             /* Compute parameters for interactions between i and j atoms */
776             qq00             = _mm_mul_ps(iq0,jq0);
777             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
778                                          vdwparam+vdwioffset0+vdwjidx0B,
779                                          vdwparam+vdwioffset0+vdwjidx0C,
780                                          vdwparam+vdwioffset0+vdwjidx0D,
781                                          &c6_00,&c12_00);
782
783             /* Calculate table index by multiplying r with table scale and truncate to integer */
784             rt               = _mm_mul_ps(r00,vftabscale);
785             vfitab           = _mm_cvttps_epi32(rt);
786 #ifdef __XOP__
787             vfeps            = _mm_frcz_ps(rt);
788 #else
789             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
790 #endif
791             twovfeps         = _mm_add_ps(vfeps,vfeps);
792             vfitab           = _mm_slli_epi32(vfitab,3);
793
794             /* COULOMB ELECTROSTATICS */
795             velec            = _mm_mul_ps(qq00,rinv00);
796             felec            = _mm_mul_ps(velec,rinvsq00);
797
798             /* CUBIC SPLINE TABLE DISPERSION */
799             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
800             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
801             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
802             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
803             _MM_TRANSPOSE4_PS(Y,F,G,H);
804             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
805             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
806             fvdw6            = _mm_mul_ps(c6_00,FF);
807
808             /* CUBIC SPLINE TABLE REPULSION */
809             vfitab           = _mm_add_epi32(vfitab,ifour);
810             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
811             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
812             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
813             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
814             _MM_TRANSPOSE4_PS(Y,F,G,H);
815             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
816             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
817             fvdw12           = _mm_mul_ps(c12_00,FF);
818             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
819
820             fscal            = _mm_add_ps(felec,fvdw);
821
822              /* Update vectorial force */
823             fix0             = _mm_macc_ps(dx00,fscal,fix0);
824             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
825             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
826
827             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
828             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
829             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
830
831             /**************************
832              * CALCULATE INTERACTIONS *
833              **************************/
834
835             /* Compute parameters for interactions between i and j atoms */
836             qq10             = _mm_mul_ps(iq1,jq0);
837
838             /* COULOMB ELECTROSTATICS */
839             velec            = _mm_mul_ps(qq10,rinv10);
840             felec            = _mm_mul_ps(velec,rinvsq10);
841
842             fscal            = felec;
843
844              /* Update vectorial force */
845             fix1             = _mm_macc_ps(dx10,fscal,fix1);
846             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
847             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
848
849             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
850             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
851             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
852
853             /**************************
854              * CALCULATE INTERACTIONS *
855              **************************/
856
857             /* Compute parameters for interactions between i and j atoms */
858             qq20             = _mm_mul_ps(iq2,jq0);
859
860             /* COULOMB ELECTROSTATICS */
861             velec            = _mm_mul_ps(qq20,rinv20);
862             felec            = _mm_mul_ps(velec,rinvsq20);
863
864             fscal            = felec;
865
866              /* Update vectorial force */
867             fix2             = _mm_macc_ps(dx20,fscal,fix2);
868             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
869             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
870
871             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
872             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
873             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
874
875             fjptrA             = f+j_coord_offsetA;
876             fjptrB             = f+j_coord_offsetB;
877             fjptrC             = f+j_coord_offsetC;
878             fjptrD             = f+j_coord_offsetD;
879
880             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
881
882             /* Inner loop uses 117 flops */
883         }
884
885         if(jidx<j_index_end)
886         {
887
888             /* Get j neighbor index, and coordinate index */
889             jnrlistA         = jjnr[jidx];
890             jnrlistB         = jjnr[jidx+1];
891             jnrlistC         = jjnr[jidx+2];
892             jnrlistD         = jjnr[jidx+3];
893             /* Sign of each element will be negative for non-real atoms.
894              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
895              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
896              */
897             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
898             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
899             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
900             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
901             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
902             j_coord_offsetA  = DIM*jnrA;
903             j_coord_offsetB  = DIM*jnrB;
904             j_coord_offsetC  = DIM*jnrC;
905             j_coord_offsetD  = DIM*jnrD;
906
907             /* load j atom coordinates */
908             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
909                                               x+j_coord_offsetC,x+j_coord_offsetD,
910                                               &jx0,&jy0,&jz0);
911
912             /* Calculate displacement vector */
913             dx00             = _mm_sub_ps(ix0,jx0);
914             dy00             = _mm_sub_ps(iy0,jy0);
915             dz00             = _mm_sub_ps(iz0,jz0);
916             dx10             = _mm_sub_ps(ix1,jx0);
917             dy10             = _mm_sub_ps(iy1,jy0);
918             dz10             = _mm_sub_ps(iz1,jz0);
919             dx20             = _mm_sub_ps(ix2,jx0);
920             dy20             = _mm_sub_ps(iy2,jy0);
921             dz20             = _mm_sub_ps(iz2,jz0);
922
923             /* Calculate squared distance and things based on it */
924             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
925             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
926             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
927
928             rinv00           = gmx_mm_invsqrt_ps(rsq00);
929             rinv10           = gmx_mm_invsqrt_ps(rsq10);
930             rinv20           = gmx_mm_invsqrt_ps(rsq20);
931
932             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
933             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
934             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
935
936             /* Load parameters for j particles */
937             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
938                                                               charge+jnrC+0,charge+jnrD+0);
939             vdwjidx0A        = 2*vdwtype[jnrA+0];
940             vdwjidx0B        = 2*vdwtype[jnrB+0];
941             vdwjidx0C        = 2*vdwtype[jnrC+0];
942             vdwjidx0D        = 2*vdwtype[jnrD+0];
943
944             fjx0             = _mm_setzero_ps();
945             fjy0             = _mm_setzero_ps();
946             fjz0             = _mm_setzero_ps();
947
948             /**************************
949              * CALCULATE INTERACTIONS *
950              **************************/
951
952             r00              = _mm_mul_ps(rsq00,rinv00);
953             r00              = _mm_andnot_ps(dummy_mask,r00);
954
955             /* Compute parameters for interactions between i and j atoms */
956             qq00             = _mm_mul_ps(iq0,jq0);
957             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
958                                          vdwparam+vdwioffset0+vdwjidx0B,
959                                          vdwparam+vdwioffset0+vdwjidx0C,
960                                          vdwparam+vdwioffset0+vdwjidx0D,
961                                          &c6_00,&c12_00);
962
963             /* Calculate table index by multiplying r with table scale and truncate to integer */
964             rt               = _mm_mul_ps(r00,vftabscale);
965             vfitab           = _mm_cvttps_epi32(rt);
966 #ifdef __XOP__
967             vfeps            = _mm_frcz_ps(rt);
968 #else
969             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
970 #endif
971             twovfeps         = _mm_add_ps(vfeps,vfeps);
972             vfitab           = _mm_slli_epi32(vfitab,3);
973
974             /* COULOMB ELECTROSTATICS */
975             velec            = _mm_mul_ps(qq00,rinv00);
976             felec            = _mm_mul_ps(velec,rinvsq00);
977
978             /* CUBIC SPLINE TABLE DISPERSION */
979             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
980             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
981             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
982             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
983             _MM_TRANSPOSE4_PS(Y,F,G,H);
984             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
985             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
986             fvdw6            = _mm_mul_ps(c6_00,FF);
987
988             /* CUBIC SPLINE TABLE REPULSION */
989             vfitab           = _mm_add_epi32(vfitab,ifour);
990             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
991             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
992             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
993             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
994             _MM_TRANSPOSE4_PS(Y,F,G,H);
995             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
996             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
997             fvdw12           = _mm_mul_ps(c12_00,FF);
998             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
999
1000             fscal            = _mm_add_ps(felec,fvdw);
1001
1002             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1003
1004              /* Update vectorial force */
1005             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1006             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1007             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1008
1009             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1010             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1011             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1012
1013             /**************************
1014              * CALCULATE INTERACTIONS *
1015              **************************/
1016
1017             /* Compute parameters for interactions between i and j atoms */
1018             qq10             = _mm_mul_ps(iq1,jq0);
1019
1020             /* COULOMB ELECTROSTATICS */
1021             velec            = _mm_mul_ps(qq10,rinv10);
1022             felec            = _mm_mul_ps(velec,rinvsq10);
1023
1024             fscal            = felec;
1025
1026             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1027
1028              /* Update vectorial force */
1029             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1030             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1031             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1032
1033             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1034             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1035             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1036
1037             /**************************
1038              * CALCULATE INTERACTIONS *
1039              **************************/
1040
1041             /* Compute parameters for interactions between i and j atoms */
1042             qq20             = _mm_mul_ps(iq2,jq0);
1043
1044             /* COULOMB ELECTROSTATICS */
1045             velec            = _mm_mul_ps(qq20,rinv20);
1046             felec            = _mm_mul_ps(velec,rinvsq20);
1047
1048             fscal            = felec;
1049
1050             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1051
1052              /* Update vectorial force */
1053             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1054             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1055             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1056
1057             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1058             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1059             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1060
1061             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1062             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1063             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1064             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1065
1066             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1067
1068             /* Inner loop uses 118 flops */
1069         }
1070
1071         /* End of innermost loop */
1072
1073         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1074                                               f+i_coord_offset,fshift+i_shift_offset);
1075
1076         /* Increment number of inner iterations */
1077         inneriter                  += j_index_end - j_index_start;
1078
1079         /* Outer loop uses 18 flops */
1080     }
1081
1082     /* Increment number of outer iterations */
1083     outeriter        += nri;
1084
1085     /* Update outer/inner flops */
1086
1087     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*118);
1088 }