Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
100     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
104     real             *vftab;
105     __m128           dummy_mask,cutoff_mask;
106     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
107     __m128           one     = _mm_set1_ps(1.0);
108     __m128           two     = _mm_set1_ps(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_ps(fr->ic->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_vdw->data;
127     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
132     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
133     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     for(iidx=0;iidx<4*DIM;iidx++)
147     {
148         scratch[iidx] = 0.0;
149     }
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
167                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
168
169         fix0             = _mm_setzero_ps();
170         fiy0             = _mm_setzero_ps();
171         fiz0             = _mm_setzero_ps();
172         fix1             = _mm_setzero_ps();
173         fiy1             = _mm_setzero_ps();
174         fiz1             = _mm_setzero_ps();
175         fix2             = _mm_setzero_ps();
176         fiy2             = _mm_setzero_ps();
177         fiz2             = _mm_setzero_ps();
178
179         /* Reset potential sums */
180         velecsum         = _mm_setzero_ps();
181         vvdwsum          = _mm_setzero_ps();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             jnrC             = jjnr[jidx+2];
191             jnrD             = jjnr[jidx+3];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194             j_coord_offsetC  = DIM*jnrC;
195             j_coord_offsetD  = DIM*jnrD;
196
197             /* load j atom coordinates */
198             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
199                                               x+j_coord_offsetC,x+j_coord_offsetD,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_ps(ix0,jx0);
204             dy00             = _mm_sub_ps(iy0,jy0);
205             dz00             = _mm_sub_ps(iz0,jz0);
206             dx10             = _mm_sub_ps(ix1,jx0);
207             dy10             = _mm_sub_ps(iy1,jy0);
208             dz10             = _mm_sub_ps(iz1,jz0);
209             dx20             = _mm_sub_ps(ix2,jx0);
210             dy20             = _mm_sub_ps(iy2,jy0);
211             dz20             = _mm_sub_ps(iz2,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
215             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
216             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
217
218             rinv00           = avx128fma_invsqrt_f(rsq00);
219             rinv10           = avx128fma_invsqrt_f(rsq10);
220             rinv20           = avx128fma_invsqrt_f(rsq20);
221
222             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
223             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
224             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
228                                                               charge+jnrC+0,charge+jnrD+0);
229             vdwjidx0A        = 2*vdwtype[jnrA+0];
230             vdwjidx0B        = 2*vdwtype[jnrB+0];
231             vdwjidx0C        = 2*vdwtype[jnrC+0];
232             vdwjidx0D        = 2*vdwtype[jnrD+0];
233
234             fjx0             = _mm_setzero_ps();
235             fjy0             = _mm_setzero_ps();
236             fjz0             = _mm_setzero_ps();
237
238             /**************************
239              * CALCULATE INTERACTIONS *
240              **************************/
241
242             r00              = _mm_mul_ps(rsq00,rinv00);
243
244             /* Compute parameters for interactions between i and j atoms */
245             qq00             = _mm_mul_ps(iq0,jq0);
246             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
247                                          vdwparam+vdwioffset0+vdwjidx0B,
248                                          vdwparam+vdwioffset0+vdwjidx0C,
249                                          vdwparam+vdwioffset0+vdwjidx0D,
250                                          &c6_00,&c12_00);
251
252             /* Calculate table index by multiplying r with table scale and truncate to integer */
253             rt               = _mm_mul_ps(r00,vftabscale);
254             vfitab           = _mm_cvttps_epi32(rt);
255 #ifdef __XOP__
256             vfeps            = _mm_frcz_ps(rt);
257 #else
258             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
259 #endif
260             twovfeps         = _mm_add_ps(vfeps,vfeps);
261             vfitab           = _mm_slli_epi32(vfitab,3);
262
263             /* COULOMB ELECTROSTATICS */
264             velec            = _mm_mul_ps(qq00,rinv00);
265             felec            = _mm_mul_ps(velec,rinvsq00);
266
267             /* CUBIC SPLINE TABLE DISPERSION */
268             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
269             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
270             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
271             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
272             _MM_TRANSPOSE4_PS(Y,F,G,H);
273             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
274             VV               = _mm_macc_ps(vfeps,Fp,Y);
275             vvdw6            = _mm_mul_ps(c6_00,VV);
276             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
277             fvdw6            = _mm_mul_ps(c6_00,FF);
278
279             /* CUBIC SPLINE TABLE REPULSION */
280             vfitab           = _mm_add_epi32(vfitab,ifour);
281             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
282             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
283             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
284             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
285             _MM_TRANSPOSE4_PS(Y,F,G,H);
286             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
287             VV               = _mm_macc_ps(vfeps,Fp,Y);
288             vvdw12           = _mm_mul_ps(c12_00,VV);
289             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
290             fvdw12           = _mm_mul_ps(c12_00,FF);
291             vvdw             = _mm_add_ps(vvdw12,vvdw6);
292             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
293
294             /* Update potential sum for this i atom from the interaction with this j atom. */
295             velecsum         = _mm_add_ps(velecsum,velec);
296             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
297
298             fscal            = _mm_add_ps(felec,fvdw);
299
300              /* Update vectorial force */
301             fix0             = _mm_macc_ps(dx00,fscal,fix0);
302             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
303             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
304
305             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
306             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
307             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
308
309             /**************************
310              * CALCULATE INTERACTIONS *
311              **************************/
312
313             /* Compute parameters for interactions between i and j atoms */
314             qq10             = _mm_mul_ps(iq1,jq0);
315
316             /* COULOMB ELECTROSTATICS */
317             velec            = _mm_mul_ps(qq10,rinv10);
318             felec            = _mm_mul_ps(velec,rinvsq10);
319
320             /* Update potential sum for this i atom from the interaction with this j atom. */
321             velecsum         = _mm_add_ps(velecsum,velec);
322
323             fscal            = felec;
324
325              /* Update vectorial force */
326             fix1             = _mm_macc_ps(dx10,fscal,fix1);
327             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
328             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
329
330             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
331             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
332             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
333
334             /**************************
335              * CALCULATE INTERACTIONS *
336              **************************/
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq20             = _mm_mul_ps(iq2,jq0);
340
341             /* COULOMB ELECTROSTATICS */
342             velec            = _mm_mul_ps(qq20,rinv20);
343             felec            = _mm_mul_ps(velec,rinvsq20);
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velecsum         = _mm_add_ps(velecsum,velec);
347
348             fscal            = felec;
349
350              /* Update vectorial force */
351             fix2             = _mm_macc_ps(dx20,fscal,fix2);
352             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
353             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
354
355             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
356             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
357             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
358
359             fjptrA             = f+j_coord_offsetA;
360             fjptrB             = f+j_coord_offsetB;
361             fjptrC             = f+j_coord_offsetC;
362             fjptrD             = f+j_coord_offsetD;
363
364             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
365
366             /* Inner loop uses 128 flops */
367         }
368
369         if(jidx<j_index_end)
370         {
371
372             /* Get j neighbor index, and coordinate index */
373             jnrlistA         = jjnr[jidx];
374             jnrlistB         = jjnr[jidx+1];
375             jnrlistC         = jjnr[jidx+2];
376             jnrlistD         = jjnr[jidx+3];
377             /* Sign of each element will be negative for non-real atoms.
378              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
379              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
380              */
381             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
382             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
383             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
384             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
385             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
386             j_coord_offsetA  = DIM*jnrA;
387             j_coord_offsetB  = DIM*jnrB;
388             j_coord_offsetC  = DIM*jnrC;
389             j_coord_offsetD  = DIM*jnrD;
390
391             /* load j atom coordinates */
392             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
393                                               x+j_coord_offsetC,x+j_coord_offsetD,
394                                               &jx0,&jy0,&jz0);
395
396             /* Calculate displacement vector */
397             dx00             = _mm_sub_ps(ix0,jx0);
398             dy00             = _mm_sub_ps(iy0,jy0);
399             dz00             = _mm_sub_ps(iz0,jz0);
400             dx10             = _mm_sub_ps(ix1,jx0);
401             dy10             = _mm_sub_ps(iy1,jy0);
402             dz10             = _mm_sub_ps(iz1,jz0);
403             dx20             = _mm_sub_ps(ix2,jx0);
404             dy20             = _mm_sub_ps(iy2,jy0);
405             dz20             = _mm_sub_ps(iz2,jz0);
406
407             /* Calculate squared distance and things based on it */
408             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
409             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
410             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
411
412             rinv00           = avx128fma_invsqrt_f(rsq00);
413             rinv10           = avx128fma_invsqrt_f(rsq10);
414             rinv20           = avx128fma_invsqrt_f(rsq20);
415
416             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
417             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
418             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
419
420             /* Load parameters for j particles */
421             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
422                                                               charge+jnrC+0,charge+jnrD+0);
423             vdwjidx0A        = 2*vdwtype[jnrA+0];
424             vdwjidx0B        = 2*vdwtype[jnrB+0];
425             vdwjidx0C        = 2*vdwtype[jnrC+0];
426             vdwjidx0D        = 2*vdwtype[jnrD+0];
427
428             fjx0             = _mm_setzero_ps();
429             fjy0             = _mm_setzero_ps();
430             fjz0             = _mm_setzero_ps();
431
432             /**************************
433              * CALCULATE INTERACTIONS *
434              **************************/
435
436             r00              = _mm_mul_ps(rsq00,rinv00);
437             r00              = _mm_andnot_ps(dummy_mask,r00);
438
439             /* Compute parameters for interactions between i and j atoms */
440             qq00             = _mm_mul_ps(iq0,jq0);
441             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
442                                          vdwparam+vdwioffset0+vdwjidx0B,
443                                          vdwparam+vdwioffset0+vdwjidx0C,
444                                          vdwparam+vdwioffset0+vdwjidx0D,
445                                          &c6_00,&c12_00);
446
447             /* Calculate table index by multiplying r with table scale and truncate to integer */
448             rt               = _mm_mul_ps(r00,vftabscale);
449             vfitab           = _mm_cvttps_epi32(rt);
450 #ifdef __XOP__
451             vfeps            = _mm_frcz_ps(rt);
452 #else
453             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
454 #endif
455             twovfeps         = _mm_add_ps(vfeps,vfeps);
456             vfitab           = _mm_slli_epi32(vfitab,3);
457
458             /* COULOMB ELECTROSTATICS */
459             velec            = _mm_mul_ps(qq00,rinv00);
460             felec            = _mm_mul_ps(velec,rinvsq00);
461
462             /* CUBIC SPLINE TABLE DISPERSION */
463             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
464             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
465             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
466             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
467             _MM_TRANSPOSE4_PS(Y,F,G,H);
468             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
469             VV               = _mm_macc_ps(vfeps,Fp,Y);
470             vvdw6            = _mm_mul_ps(c6_00,VV);
471             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
472             fvdw6            = _mm_mul_ps(c6_00,FF);
473
474             /* CUBIC SPLINE TABLE REPULSION */
475             vfitab           = _mm_add_epi32(vfitab,ifour);
476             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
477             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
478             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
479             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
480             _MM_TRANSPOSE4_PS(Y,F,G,H);
481             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
482             VV               = _mm_macc_ps(vfeps,Fp,Y);
483             vvdw12           = _mm_mul_ps(c12_00,VV);
484             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
485             fvdw12           = _mm_mul_ps(c12_00,FF);
486             vvdw             = _mm_add_ps(vvdw12,vvdw6);
487             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
488
489             /* Update potential sum for this i atom from the interaction with this j atom. */
490             velec            = _mm_andnot_ps(dummy_mask,velec);
491             velecsum         = _mm_add_ps(velecsum,velec);
492             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
493             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
494
495             fscal            = _mm_add_ps(felec,fvdw);
496
497             fscal            = _mm_andnot_ps(dummy_mask,fscal);
498
499              /* Update vectorial force */
500             fix0             = _mm_macc_ps(dx00,fscal,fix0);
501             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
502             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
503
504             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
505             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
506             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
507
508             /**************************
509              * CALCULATE INTERACTIONS *
510              **************************/
511
512             /* Compute parameters for interactions between i and j atoms */
513             qq10             = _mm_mul_ps(iq1,jq0);
514
515             /* COULOMB ELECTROSTATICS */
516             velec            = _mm_mul_ps(qq10,rinv10);
517             felec            = _mm_mul_ps(velec,rinvsq10);
518
519             /* Update potential sum for this i atom from the interaction with this j atom. */
520             velec            = _mm_andnot_ps(dummy_mask,velec);
521             velecsum         = _mm_add_ps(velecsum,velec);
522
523             fscal            = felec;
524
525             fscal            = _mm_andnot_ps(dummy_mask,fscal);
526
527              /* Update vectorial force */
528             fix1             = _mm_macc_ps(dx10,fscal,fix1);
529             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
530             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
531
532             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
533             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
534             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
535
536             /**************************
537              * CALCULATE INTERACTIONS *
538              **************************/
539
540             /* Compute parameters for interactions between i and j atoms */
541             qq20             = _mm_mul_ps(iq2,jq0);
542
543             /* COULOMB ELECTROSTATICS */
544             velec            = _mm_mul_ps(qq20,rinv20);
545             felec            = _mm_mul_ps(velec,rinvsq20);
546
547             /* Update potential sum for this i atom from the interaction with this j atom. */
548             velec            = _mm_andnot_ps(dummy_mask,velec);
549             velecsum         = _mm_add_ps(velecsum,velec);
550
551             fscal            = felec;
552
553             fscal            = _mm_andnot_ps(dummy_mask,fscal);
554
555              /* Update vectorial force */
556             fix2             = _mm_macc_ps(dx20,fscal,fix2);
557             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
558             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
559
560             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
561             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
562             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
563
564             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
565             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
566             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
567             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
568
569             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
570
571             /* Inner loop uses 129 flops */
572         }
573
574         /* End of innermost loop */
575
576         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
577                                               f+i_coord_offset,fshift+i_shift_offset);
578
579         ggid                        = gid[iidx];
580         /* Update potential energies */
581         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
582         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
583
584         /* Increment number of inner iterations */
585         inneriter                  += j_index_end - j_index_start;
586
587         /* Outer loop uses 20 flops */
588     }
589
590     /* Increment number of outer iterations */
591     outeriter        += nri;
592
593     /* Update outer/inner flops */
594
595     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*129);
596 }
597 /*
598  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_128_fma_single
599  * Electrostatics interaction: Coulomb
600  * VdW interaction:            CubicSplineTable
601  * Geometry:                   Water3-Particle
602  * Calculate force/pot:        Force
603  */
604 void
605 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_128_fma_single
606                     (t_nblist                    * gmx_restrict       nlist,
607                      rvec                        * gmx_restrict          xx,
608                      rvec                        * gmx_restrict          ff,
609                      struct t_forcerec           * gmx_restrict          fr,
610                      t_mdatoms                   * gmx_restrict     mdatoms,
611                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
612                      t_nrnb                      * gmx_restrict        nrnb)
613 {
614     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
615      * just 0 for non-waters.
616      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
617      * jnr indices corresponding to data put in the four positions in the SIMD register.
618      */
619     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
620     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
621     int              jnrA,jnrB,jnrC,jnrD;
622     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
623     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
624     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
625     real             rcutoff_scalar;
626     real             *shiftvec,*fshift,*x,*f;
627     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
628     real             scratch[4*DIM];
629     __m128           fscal,rcutoff,rcutoff2,jidxall;
630     int              vdwioffset0;
631     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
632     int              vdwioffset1;
633     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
634     int              vdwioffset2;
635     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
636     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
637     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
638     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
639     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
640     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
641     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
642     real             *charge;
643     int              nvdwtype;
644     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
645     int              *vdwtype;
646     real             *vdwparam;
647     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
648     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
649     __m128i          vfitab;
650     __m128i          ifour       = _mm_set1_epi32(4);
651     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
652     real             *vftab;
653     __m128           dummy_mask,cutoff_mask;
654     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
655     __m128           one     = _mm_set1_ps(1.0);
656     __m128           two     = _mm_set1_ps(2.0);
657     x                = xx[0];
658     f                = ff[0];
659
660     nri              = nlist->nri;
661     iinr             = nlist->iinr;
662     jindex           = nlist->jindex;
663     jjnr             = nlist->jjnr;
664     shiftidx         = nlist->shift;
665     gid              = nlist->gid;
666     shiftvec         = fr->shift_vec[0];
667     fshift           = fr->fshift[0];
668     facel            = _mm_set1_ps(fr->ic->epsfac);
669     charge           = mdatoms->chargeA;
670     nvdwtype         = fr->ntype;
671     vdwparam         = fr->nbfp;
672     vdwtype          = mdatoms->typeA;
673
674     vftab            = kernel_data->table_vdw->data;
675     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
676
677     /* Setup water-specific parameters */
678     inr              = nlist->iinr[0];
679     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
680     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
681     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
682     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
683
684     /* Avoid stupid compiler warnings */
685     jnrA = jnrB = jnrC = jnrD = 0;
686     j_coord_offsetA = 0;
687     j_coord_offsetB = 0;
688     j_coord_offsetC = 0;
689     j_coord_offsetD = 0;
690
691     outeriter        = 0;
692     inneriter        = 0;
693
694     for(iidx=0;iidx<4*DIM;iidx++)
695     {
696         scratch[iidx] = 0.0;
697     }
698
699     /* Start outer loop over neighborlists */
700     for(iidx=0; iidx<nri; iidx++)
701     {
702         /* Load shift vector for this list */
703         i_shift_offset   = DIM*shiftidx[iidx];
704
705         /* Load limits for loop over neighbors */
706         j_index_start    = jindex[iidx];
707         j_index_end      = jindex[iidx+1];
708
709         /* Get outer coordinate index */
710         inr              = iinr[iidx];
711         i_coord_offset   = DIM*inr;
712
713         /* Load i particle coords and add shift vector */
714         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
715                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
716
717         fix0             = _mm_setzero_ps();
718         fiy0             = _mm_setzero_ps();
719         fiz0             = _mm_setzero_ps();
720         fix1             = _mm_setzero_ps();
721         fiy1             = _mm_setzero_ps();
722         fiz1             = _mm_setzero_ps();
723         fix2             = _mm_setzero_ps();
724         fiy2             = _mm_setzero_ps();
725         fiz2             = _mm_setzero_ps();
726
727         /* Start inner kernel loop */
728         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
729         {
730
731             /* Get j neighbor index, and coordinate index */
732             jnrA             = jjnr[jidx];
733             jnrB             = jjnr[jidx+1];
734             jnrC             = jjnr[jidx+2];
735             jnrD             = jjnr[jidx+3];
736             j_coord_offsetA  = DIM*jnrA;
737             j_coord_offsetB  = DIM*jnrB;
738             j_coord_offsetC  = DIM*jnrC;
739             j_coord_offsetD  = DIM*jnrD;
740
741             /* load j atom coordinates */
742             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
743                                               x+j_coord_offsetC,x+j_coord_offsetD,
744                                               &jx0,&jy0,&jz0);
745
746             /* Calculate displacement vector */
747             dx00             = _mm_sub_ps(ix0,jx0);
748             dy00             = _mm_sub_ps(iy0,jy0);
749             dz00             = _mm_sub_ps(iz0,jz0);
750             dx10             = _mm_sub_ps(ix1,jx0);
751             dy10             = _mm_sub_ps(iy1,jy0);
752             dz10             = _mm_sub_ps(iz1,jz0);
753             dx20             = _mm_sub_ps(ix2,jx0);
754             dy20             = _mm_sub_ps(iy2,jy0);
755             dz20             = _mm_sub_ps(iz2,jz0);
756
757             /* Calculate squared distance and things based on it */
758             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
759             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
760             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
761
762             rinv00           = avx128fma_invsqrt_f(rsq00);
763             rinv10           = avx128fma_invsqrt_f(rsq10);
764             rinv20           = avx128fma_invsqrt_f(rsq20);
765
766             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
767             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
768             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
769
770             /* Load parameters for j particles */
771             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
772                                                               charge+jnrC+0,charge+jnrD+0);
773             vdwjidx0A        = 2*vdwtype[jnrA+0];
774             vdwjidx0B        = 2*vdwtype[jnrB+0];
775             vdwjidx0C        = 2*vdwtype[jnrC+0];
776             vdwjidx0D        = 2*vdwtype[jnrD+0];
777
778             fjx0             = _mm_setzero_ps();
779             fjy0             = _mm_setzero_ps();
780             fjz0             = _mm_setzero_ps();
781
782             /**************************
783              * CALCULATE INTERACTIONS *
784              **************************/
785
786             r00              = _mm_mul_ps(rsq00,rinv00);
787
788             /* Compute parameters for interactions between i and j atoms */
789             qq00             = _mm_mul_ps(iq0,jq0);
790             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
791                                          vdwparam+vdwioffset0+vdwjidx0B,
792                                          vdwparam+vdwioffset0+vdwjidx0C,
793                                          vdwparam+vdwioffset0+vdwjidx0D,
794                                          &c6_00,&c12_00);
795
796             /* Calculate table index by multiplying r with table scale and truncate to integer */
797             rt               = _mm_mul_ps(r00,vftabscale);
798             vfitab           = _mm_cvttps_epi32(rt);
799 #ifdef __XOP__
800             vfeps            = _mm_frcz_ps(rt);
801 #else
802             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
803 #endif
804             twovfeps         = _mm_add_ps(vfeps,vfeps);
805             vfitab           = _mm_slli_epi32(vfitab,3);
806
807             /* COULOMB ELECTROSTATICS */
808             velec            = _mm_mul_ps(qq00,rinv00);
809             felec            = _mm_mul_ps(velec,rinvsq00);
810
811             /* CUBIC SPLINE TABLE DISPERSION */
812             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
813             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
814             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
815             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
816             _MM_TRANSPOSE4_PS(Y,F,G,H);
817             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
818             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
819             fvdw6            = _mm_mul_ps(c6_00,FF);
820
821             /* CUBIC SPLINE TABLE REPULSION */
822             vfitab           = _mm_add_epi32(vfitab,ifour);
823             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
824             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
825             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
826             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
827             _MM_TRANSPOSE4_PS(Y,F,G,H);
828             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
829             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
830             fvdw12           = _mm_mul_ps(c12_00,FF);
831             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
832
833             fscal            = _mm_add_ps(felec,fvdw);
834
835              /* Update vectorial force */
836             fix0             = _mm_macc_ps(dx00,fscal,fix0);
837             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
838             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
839
840             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
841             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
842             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
843
844             /**************************
845              * CALCULATE INTERACTIONS *
846              **************************/
847
848             /* Compute parameters for interactions between i and j atoms */
849             qq10             = _mm_mul_ps(iq1,jq0);
850
851             /* COULOMB ELECTROSTATICS */
852             velec            = _mm_mul_ps(qq10,rinv10);
853             felec            = _mm_mul_ps(velec,rinvsq10);
854
855             fscal            = felec;
856
857              /* Update vectorial force */
858             fix1             = _mm_macc_ps(dx10,fscal,fix1);
859             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
860             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
861
862             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
863             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
864             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
865
866             /**************************
867              * CALCULATE INTERACTIONS *
868              **************************/
869
870             /* Compute parameters for interactions between i and j atoms */
871             qq20             = _mm_mul_ps(iq2,jq0);
872
873             /* COULOMB ELECTROSTATICS */
874             velec            = _mm_mul_ps(qq20,rinv20);
875             felec            = _mm_mul_ps(velec,rinvsq20);
876
877             fscal            = felec;
878
879              /* Update vectorial force */
880             fix2             = _mm_macc_ps(dx20,fscal,fix2);
881             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
882             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
883
884             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
885             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
886             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
887
888             fjptrA             = f+j_coord_offsetA;
889             fjptrB             = f+j_coord_offsetB;
890             fjptrC             = f+j_coord_offsetC;
891             fjptrD             = f+j_coord_offsetD;
892
893             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
894
895             /* Inner loop uses 117 flops */
896         }
897
898         if(jidx<j_index_end)
899         {
900
901             /* Get j neighbor index, and coordinate index */
902             jnrlistA         = jjnr[jidx];
903             jnrlistB         = jjnr[jidx+1];
904             jnrlistC         = jjnr[jidx+2];
905             jnrlistD         = jjnr[jidx+3];
906             /* Sign of each element will be negative for non-real atoms.
907              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
908              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
909              */
910             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
911             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
912             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
913             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
914             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
915             j_coord_offsetA  = DIM*jnrA;
916             j_coord_offsetB  = DIM*jnrB;
917             j_coord_offsetC  = DIM*jnrC;
918             j_coord_offsetD  = DIM*jnrD;
919
920             /* load j atom coordinates */
921             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
922                                               x+j_coord_offsetC,x+j_coord_offsetD,
923                                               &jx0,&jy0,&jz0);
924
925             /* Calculate displacement vector */
926             dx00             = _mm_sub_ps(ix0,jx0);
927             dy00             = _mm_sub_ps(iy0,jy0);
928             dz00             = _mm_sub_ps(iz0,jz0);
929             dx10             = _mm_sub_ps(ix1,jx0);
930             dy10             = _mm_sub_ps(iy1,jy0);
931             dz10             = _mm_sub_ps(iz1,jz0);
932             dx20             = _mm_sub_ps(ix2,jx0);
933             dy20             = _mm_sub_ps(iy2,jy0);
934             dz20             = _mm_sub_ps(iz2,jz0);
935
936             /* Calculate squared distance and things based on it */
937             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
938             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
939             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
940
941             rinv00           = avx128fma_invsqrt_f(rsq00);
942             rinv10           = avx128fma_invsqrt_f(rsq10);
943             rinv20           = avx128fma_invsqrt_f(rsq20);
944
945             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
946             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
947             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
948
949             /* Load parameters for j particles */
950             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
951                                                               charge+jnrC+0,charge+jnrD+0);
952             vdwjidx0A        = 2*vdwtype[jnrA+0];
953             vdwjidx0B        = 2*vdwtype[jnrB+0];
954             vdwjidx0C        = 2*vdwtype[jnrC+0];
955             vdwjidx0D        = 2*vdwtype[jnrD+0];
956
957             fjx0             = _mm_setzero_ps();
958             fjy0             = _mm_setzero_ps();
959             fjz0             = _mm_setzero_ps();
960
961             /**************************
962              * CALCULATE INTERACTIONS *
963              **************************/
964
965             r00              = _mm_mul_ps(rsq00,rinv00);
966             r00              = _mm_andnot_ps(dummy_mask,r00);
967
968             /* Compute parameters for interactions between i and j atoms */
969             qq00             = _mm_mul_ps(iq0,jq0);
970             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
971                                          vdwparam+vdwioffset0+vdwjidx0B,
972                                          vdwparam+vdwioffset0+vdwjidx0C,
973                                          vdwparam+vdwioffset0+vdwjidx0D,
974                                          &c6_00,&c12_00);
975
976             /* Calculate table index by multiplying r with table scale and truncate to integer */
977             rt               = _mm_mul_ps(r00,vftabscale);
978             vfitab           = _mm_cvttps_epi32(rt);
979 #ifdef __XOP__
980             vfeps            = _mm_frcz_ps(rt);
981 #else
982             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
983 #endif
984             twovfeps         = _mm_add_ps(vfeps,vfeps);
985             vfitab           = _mm_slli_epi32(vfitab,3);
986
987             /* COULOMB ELECTROSTATICS */
988             velec            = _mm_mul_ps(qq00,rinv00);
989             felec            = _mm_mul_ps(velec,rinvsq00);
990
991             /* CUBIC SPLINE TABLE DISPERSION */
992             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
993             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
994             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
995             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
996             _MM_TRANSPOSE4_PS(Y,F,G,H);
997             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
998             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
999             fvdw6            = _mm_mul_ps(c6_00,FF);
1000
1001             /* CUBIC SPLINE TABLE REPULSION */
1002             vfitab           = _mm_add_epi32(vfitab,ifour);
1003             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1004             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1005             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1006             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1007             _MM_TRANSPOSE4_PS(Y,F,G,H);
1008             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1009             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1010             fvdw12           = _mm_mul_ps(c12_00,FF);
1011             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1012
1013             fscal            = _mm_add_ps(felec,fvdw);
1014
1015             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1016
1017              /* Update vectorial force */
1018             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1019             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1020             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1021
1022             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1023             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1024             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1025
1026             /**************************
1027              * CALCULATE INTERACTIONS *
1028              **************************/
1029
1030             /* Compute parameters for interactions between i and j atoms */
1031             qq10             = _mm_mul_ps(iq1,jq0);
1032
1033             /* COULOMB ELECTROSTATICS */
1034             velec            = _mm_mul_ps(qq10,rinv10);
1035             felec            = _mm_mul_ps(velec,rinvsq10);
1036
1037             fscal            = felec;
1038
1039             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1040
1041              /* Update vectorial force */
1042             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1043             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1044             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1045
1046             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1047             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1048             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1049
1050             /**************************
1051              * CALCULATE INTERACTIONS *
1052              **************************/
1053
1054             /* Compute parameters for interactions between i and j atoms */
1055             qq20             = _mm_mul_ps(iq2,jq0);
1056
1057             /* COULOMB ELECTROSTATICS */
1058             velec            = _mm_mul_ps(qq20,rinv20);
1059             felec            = _mm_mul_ps(velec,rinvsq20);
1060
1061             fscal            = felec;
1062
1063             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1064
1065              /* Update vectorial force */
1066             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1067             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1068             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1069
1070             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1071             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1072             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1073
1074             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1075             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1076             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1077             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1078
1079             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1080
1081             /* Inner loop uses 118 flops */
1082         }
1083
1084         /* End of innermost loop */
1085
1086         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1087                                               f+i_coord_offset,fshift+i_shift_offset);
1088
1089         /* Increment number of inner iterations */
1090         inneriter                  += j_index_end - j_index_start;
1091
1092         /* Outer loop uses 18 flops */
1093     }
1094
1095     /* Increment number of outer iterations */
1096     outeriter        += nri;
1097
1098     /* Update outer/inner flops */
1099
1100     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*118);
1101 }