Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128i          vfitab;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
99     real             *vftab;
100     __m128           dummy_mask,cutoff_mask;
101     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
102     __m128           one     = _mm_set1_ps(1.0);
103     __m128           two     = _mm_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_ps(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     vftab            = kernel_data->table_vdw->data;
122     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = jnrC = jnrD = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128     j_coord_offsetC = 0;
129     j_coord_offsetD = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     for(iidx=0;iidx<4*DIM;iidx++)
135     {
136         scratch[iidx] = 0.0;
137     }
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _mm_setzero_ps();
157         fiy0             = _mm_setzero_ps();
158         fiz0             = _mm_setzero_ps();
159
160         /* Load parameters for i particles */
161         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
162         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_ps();
166         vvdwsum          = _mm_setzero_ps();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             jnrC             = jjnr[jidx+2];
176             jnrD             = jjnr[jidx+3];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179             j_coord_offsetC  = DIM*jnrC;
180             j_coord_offsetD  = DIM*jnrD;
181
182             /* load j atom coordinates */
183             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
184                                               x+j_coord_offsetC,x+j_coord_offsetD,
185                                               &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm_sub_ps(ix0,jx0);
189             dy00             = _mm_sub_ps(iy0,jy0);
190             dz00             = _mm_sub_ps(iz0,jz0);
191
192             /* Calculate squared distance and things based on it */
193             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
194
195             rinv00           = gmx_mm_invsqrt_ps(rsq00);
196
197             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
198
199             /* Load parameters for j particles */
200             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
201                                                               charge+jnrC+0,charge+jnrD+0);
202             vdwjidx0A        = 2*vdwtype[jnrA+0];
203             vdwjidx0B        = 2*vdwtype[jnrB+0];
204             vdwjidx0C        = 2*vdwtype[jnrC+0];
205             vdwjidx0D        = 2*vdwtype[jnrD+0];
206
207             /**************************
208              * CALCULATE INTERACTIONS *
209              **************************/
210
211             r00              = _mm_mul_ps(rsq00,rinv00);
212
213             /* Compute parameters for interactions between i and j atoms */
214             qq00             = _mm_mul_ps(iq0,jq0);
215             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
216                                          vdwparam+vdwioffset0+vdwjidx0B,
217                                          vdwparam+vdwioffset0+vdwjidx0C,
218                                          vdwparam+vdwioffset0+vdwjidx0D,
219                                          &c6_00,&c12_00);
220
221             /* Calculate table index by multiplying r with table scale and truncate to integer */
222             rt               = _mm_mul_ps(r00,vftabscale);
223             vfitab           = _mm_cvttps_epi32(rt);
224 #ifdef __XOP__
225             vfeps            = _mm_frcz_ps(rt);
226 #else
227             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
228 #endif
229             twovfeps         = _mm_add_ps(vfeps,vfeps);
230             vfitab           = _mm_slli_epi32(vfitab,3);
231
232             /* COULOMB ELECTROSTATICS */
233             velec            = _mm_mul_ps(qq00,rinv00);
234             felec            = _mm_mul_ps(velec,rinvsq00);
235
236             /* CUBIC SPLINE TABLE DISPERSION */
237             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
238             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
239             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
240             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
241             _MM_TRANSPOSE4_PS(Y,F,G,H);
242             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
243             VV               = _mm_macc_ps(vfeps,Fp,Y);
244             vvdw6            = _mm_mul_ps(c6_00,VV);
245             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
246             fvdw6            = _mm_mul_ps(c6_00,FF);
247
248             /* CUBIC SPLINE TABLE REPULSION */
249             vfitab           = _mm_add_epi32(vfitab,ifour);
250             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
251             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
252             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
253             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
254             _MM_TRANSPOSE4_PS(Y,F,G,H);
255             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
256             VV               = _mm_macc_ps(vfeps,Fp,Y);
257             vvdw12           = _mm_mul_ps(c12_00,VV);
258             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
259             fvdw12           = _mm_mul_ps(c12_00,FF);
260             vvdw             = _mm_add_ps(vvdw12,vvdw6);
261             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
262
263             /* Update potential sum for this i atom from the interaction with this j atom. */
264             velecsum         = _mm_add_ps(velecsum,velec);
265             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
266
267             fscal            = _mm_add_ps(felec,fvdw);
268
269              /* Update vectorial force */
270             fix0             = _mm_macc_ps(dx00,fscal,fix0);
271             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
272             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
273
274             fjptrA             = f+j_coord_offsetA;
275             fjptrB             = f+j_coord_offsetB;
276             fjptrC             = f+j_coord_offsetC;
277             fjptrD             = f+j_coord_offsetD;
278             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
279                                                    _mm_mul_ps(dx00,fscal),
280                                                    _mm_mul_ps(dy00,fscal),
281                                                    _mm_mul_ps(dz00,fscal));
282
283             /* Inner loop uses 66 flops */
284         }
285
286         if(jidx<j_index_end)
287         {
288
289             /* Get j neighbor index, and coordinate index */
290             jnrlistA         = jjnr[jidx];
291             jnrlistB         = jjnr[jidx+1];
292             jnrlistC         = jjnr[jidx+2];
293             jnrlistD         = jjnr[jidx+3];
294             /* Sign of each element will be negative for non-real atoms.
295              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
296              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
297              */
298             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
299             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
300             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
301             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
302             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
303             j_coord_offsetA  = DIM*jnrA;
304             j_coord_offsetB  = DIM*jnrB;
305             j_coord_offsetC  = DIM*jnrC;
306             j_coord_offsetD  = DIM*jnrD;
307
308             /* load j atom coordinates */
309             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
310                                               x+j_coord_offsetC,x+j_coord_offsetD,
311                                               &jx0,&jy0,&jz0);
312
313             /* Calculate displacement vector */
314             dx00             = _mm_sub_ps(ix0,jx0);
315             dy00             = _mm_sub_ps(iy0,jy0);
316             dz00             = _mm_sub_ps(iz0,jz0);
317
318             /* Calculate squared distance and things based on it */
319             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
320
321             rinv00           = gmx_mm_invsqrt_ps(rsq00);
322
323             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
324
325             /* Load parameters for j particles */
326             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
327                                                               charge+jnrC+0,charge+jnrD+0);
328             vdwjidx0A        = 2*vdwtype[jnrA+0];
329             vdwjidx0B        = 2*vdwtype[jnrB+0];
330             vdwjidx0C        = 2*vdwtype[jnrC+0];
331             vdwjidx0D        = 2*vdwtype[jnrD+0];
332
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             r00              = _mm_mul_ps(rsq00,rinv00);
338             r00              = _mm_andnot_ps(dummy_mask,r00);
339
340             /* Compute parameters for interactions between i and j atoms */
341             qq00             = _mm_mul_ps(iq0,jq0);
342             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
343                                          vdwparam+vdwioffset0+vdwjidx0B,
344                                          vdwparam+vdwioffset0+vdwjidx0C,
345                                          vdwparam+vdwioffset0+vdwjidx0D,
346                                          &c6_00,&c12_00);
347
348             /* Calculate table index by multiplying r with table scale and truncate to integer */
349             rt               = _mm_mul_ps(r00,vftabscale);
350             vfitab           = _mm_cvttps_epi32(rt);
351 #ifdef __XOP__
352             vfeps            = _mm_frcz_ps(rt);
353 #else
354             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
355 #endif
356             twovfeps         = _mm_add_ps(vfeps,vfeps);
357             vfitab           = _mm_slli_epi32(vfitab,3);
358
359             /* COULOMB ELECTROSTATICS */
360             velec            = _mm_mul_ps(qq00,rinv00);
361             felec            = _mm_mul_ps(velec,rinvsq00);
362
363             /* CUBIC SPLINE TABLE DISPERSION */
364             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
365             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
366             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
367             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
368             _MM_TRANSPOSE4_PS(Y,F,G,H);
369             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
370             VV               = _mm_macc_ps(vfeps,Fp,Y);
371             vvdw6            = _mm_mul_ps(c6_00,VV);
372             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
373             fvdw6            = _mm_mul_ps(c6_00,FF);
374
375             /* CUBIC SPLINE TABLE REPULSION */
376             vfitab           = _mm_add_epi32(vfitab,ifour);
377             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
378             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
379             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
380             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
381             _MM_TRANSPOSE4_PS(Y,F,G,H);
382             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
383             VV               = _mm_macc_ps(vfeps,Fp,Y);
384             vvdw12           = _mm_mul_ps(c12_00,VV);
385             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
386             fvdw12           = _mm_mul_ps(c12_00,FF);
387             vvdw             = _mm_add_ps(vvdw12,vvdw6);
388             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
389
390             /* Update potential sum for this i atom from the interaction with this j atom. */
391             velec            = _mm_andnot_ps(dummy_mask,velec);
392             velecsum         = _mm_add_ps(velecsum,velec);
393             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
394             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
395
396             fscal            = _mm_add_ps(felec,fvdw);
397
398             fscal            = _mm_andnot_ps(dummy_mask,fscal);
399
400              /* Update vectorial force */
401             fix0             = _mm_macc_ps(dx00,fscal,fix0);
402             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
403             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
404
405             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
406             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
407             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
408             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
409             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
410                                                    _mm_mul_ps(dx00,fscal),
411                                                    _mm_mul_ps(dy00,fscal),
412                                                    _mm_mul_ps(dz00,fscal));
413
414             /* Inner loop uses 67 flops */
415         }
416
417         /* End of innermost loop */
418
419         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
420                                               f+i_coord_offset,fshift+i_shift_offset);
421
422         ggid                        = gid[iidx];
423         /* Update potential energies */
424         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
425         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
426
427         /* Increment number of inner iterations */
428         inneriter                  += j_index_end - j_index_start;
429
430         /* Outer loop uses 9 flops */
431     }
432
433     /* Increment number of outer iterations */
434     outeriter        += nri;
435
436     /* Update outer/inner flops */
437
438     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*67);
439 }
440 /*
441  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_avx_128_fma_single
442  * Electrostatics interaction: Coulomb
443  * VdW interaction:            CubicSplineTable
444  * Geometry:                   Particle-Particle
445  * Calculate force/pot:        Force
446  */
447 void
448 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_avx_128_fma_single
449                     (t_nblist                    * gmx_restrict       nlist,
450                      rvec                        * gmx_restrict          xx,
451                      rvec                        * gmx_restrict          ff,
452                      t_forcerec                  * gmx_restrict          fr,
453                      t_mdatoms                   * gmx_restrict     mdatoms,
454                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
455                      t_nrnb                      * gmx_restrict        nrnb)
456 {
457     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
458      * just 0 for non-waters.
459      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
460      * jnr indices corresponding to data put in the four positions in the SIMD register.
461      */
462     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
463     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
464     int              jnrA,jnrB,jnrC,jnrD;
465     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
466     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
467     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
468     real             rcutoff_scalar;
469     real             *shiftvec,*fshift,*x,*f;
470     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
471     real             scratch[4*DIM];
472     __m128           fscal,rcutoff,rcutoff2,jidxall;
473     int              vdwioffset0;
474     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
475     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
476     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
477     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
478     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
479     real             *charge;
480     int              nvdwtype;
481     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
482     int              *vdwtype;
483     real             *vdwparam;
484     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
485     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
486     __m128i          vfitab;
487     __m128i          ifour       = _mm_set1_epi32(4);
488     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
489     real             *vftab;
490     __m128           dummy_mask,cutoff_mask;
491     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
492     __m128           one     = _mm_set1_ps(1.0);
493     __m128           two     = _mm_set1_ps(2.0);
494     x                = xx[0];
495     f                = ff[0];
496
497     nri              = nlist->nri;
498     iinr             = nlist->iinr;
499     jindex           = nlist->jindex;
500     jjnr             = nlist->jjnr;
501     shiftidx         = nlist->shift;
502     gid              = nlist->gid;
503     shiftvec         = fr->shift_vec[0];
504     fshift           = fr->fshift[0];
505     facel            = _mm_set1_ps(fr->epsfac);
506     charge           = mdatoms->chargeA;
507     nvdwtype         = fr->ntype;
508     vdwparam         = fr->nbfp;
509     vdwtype          = mdatoms->typeA;
510
511     vftab            = kernel_data->table_vdw->data;
512     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
513
514     /* Avoid stupid compiler warnings */
515     jnrA = jnrB = jnrC = jnrD = 0;
516     j_coord_offsetA = 0;
517     j_coord_offsetB = 0;
518     j_coord_offsetC = 0;
519     j_coord_offsetD = 0;
520
521     outeriter        = 0;
522     inneriter        = 0;
523
524     for(iidx=0;iidx<4*DIM;iidx++)
525     {
526         scratch[iidx] = 0.0;
527     }
528
529     /* Start outer loop over neighborlists */
530     for(iidx=0; iidx<nri; iidx++)
531     {
532         /* Load shift vector for this list */
533         i_shift_offset   = DIM*shiftidx[iidx];
534
535         /* Load limits for loop over neighbors */
536         j_index_start    = jindex[iidx];
537         j_index_end      = jindex[iidx+1];
538
539         /* Get outer coordinate index */
540         inr              = iinr[iidx];
541         i_coord_offset   = DIM*inr;
542
543         /* Load i particle coords and add shift vector */
544         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
545
546         fix0             = _mm_setzero_ps();
547         fiy0             = _mm_setzero_ps();
548         fiz0             = _mm_setzero_ps();
549
550         /* Load parameters for i particles */
551         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
552         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
553
554         /* Start inner kernel loop */
555         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
556         {
557
558             /* Get j neighbor index, and coordinate index */
559             jnrA             = jjnr[jidx];
560             jnrB             = jjnr[jidx+1];
561             jnrC             = jjnr[jidx+2];
562             jnrD             = jjnr[jidx+3];
563             j_coord_offsetA  = DIM*jnrA;
564             j_coord_offsetB  = DIM*jnrB;
565             j_coord_offsetC  = DIM*jnrC;
566             j_coord_offsetD  = DIM*jnrD;
567
568             /* load j atom coordinates */
569             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
570                                               x+j_coord_offsetC,x+j_coord_offsetD,
571                                               &jx0,&jy0,&jz0);
572
573             /* Calculate displacement vector */
574             dx00             = _mm_sub_ps(ix0,jx0);
575             dy00             = _mm_sub_ps(iy0,jy0);
576             dz00             = _mm_sub_ps(iz0,jz0);
577
578             /* Calculate squared distance and things based on it */
579             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
580
581             rinv00           = gmx_mm_invsqrt_ps(rsq00);
582
583             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
584
585             /* Load parameters for j particles */
586             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
587                                                               charge+jnrC+0,charge+jnrD+0);
588             vdwjidx0A        = 2*vdwtype[jnrA+0];
589             vdwjidx0B        = 2*vdwtype[jnrB+0];
590             vdwjidx0C        = 2*vdwtype[jnrC+0];
591             vdwjidx0D        = 2*vdwtype[jnrD+0];
592
593             /**************************
594              * CALCULATE INTERACTIONS *
595              **************************/
596
597             r00              = _mm_mul_ps(rsq00,rinv00);
598
599             /* Compute parameters for interactions between i and j atoms */
600             qq00             = _mm_mul_ps(iq0,jq0);
601             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
602                                          vdwparam+vdwioffset0+vdwjidx0B,
603                                          vdwparam+vdwioffset0+vdwjidx0C,
604                                          vdwparam+vdwioffset0+vdwjidx0D,
605                                          &c6_00,&c12_00);
606
607             /* Calculate table index by multiplying r with table scale and truncate to integer */
608             rt               = _mm_mul_ps(r00,vftabscale);
609             vfitab           = _mm_cvttps_epi32(rt);
610 #ifdef __XOP__
611             vfeps            = _mm_frcz_ps(rt);
612 #else
613             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
614 #endif
615             twovfeps         = _mm_add_ps(vfeps,vfeps);
616             vfitab           = _mm_slli_epi32(vfitab,3);
617
618             /* COULOMB ELECTROSTATICS */
619             velec            = _mm_mul_ps(qq00,rinv00);
620             felec            = _mm_mul_ps(velec,rinvsq00);
621
622             /* CUBIC SPLINE TABLE DISPERSION */
623             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
624             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
625             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
626             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
627             _MM_TRANSPOSE4_PS(Y,F,G,H);
628             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
629             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
630             fvdw6            = _mm_mul_ps(c6_00,FF);
631
632             /* CUBIC SPLINE TABLE REPULSION */
633             vfitab           = _mm_add_epi32(vfitab,ifour);
634             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
635             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
636             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
637             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
638             _MM_TRANSPOSE4_PS(Y,F,G,H);
639             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
640             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
641             fvdw12           = _mm_mul_ps(c12_00,FF);
642             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
643
644             fscal            = _mm_add_ps(felec,fvdw);
645
646              /* Update vectorial force */
647             fix0             = _mm_macc_ps(dx00,fscal,fix0);
648             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
649             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
650
651             fjptrA             = f+j_coord_offsetA;
652             fjptrB             = f+j_coord_offsetB;
653             fjptrC             = f+j_coord_offsetC;
654             fjptrD             = f+j_coord_offsetD;
655             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
656                                                    _mm_mul_ps(dx00,fscal),
657                                                    _mm_mul_ps(dy00,fscal),
658                                                    _mm_mul_ps(dz00,fscal));
659
660             /* Inner loop uses 57 flops */
661         }
662
663         if(jidx<j_index_end)
664         {
665
666             /* Get j neighbor index, and coordinate index */
667             jnrlistA         = jjnr[jidx];
668             jnrlistB         = jjnr[jidx+1];
669             jnrlistC         = jjnr[jidx+2];
670             jnrlistD         = jjnr[jidx+3];
671             /* Sign of each element will be negative for non-real atoms.
672              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
673              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
674              */
675             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
676             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
677             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
678             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
679             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
680             j_coord_offsetA  = DIM*jnrA;
681             j_coord_offsetB  = DIM*jnrB;
682             j_coord_offsetC  = DIM*jnrC;
683             j_coord_offsetD  = DIM*jnrD;
684
685             /* load j atom coordinates */
686             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
687                                               x+j_coord_offsetC,x+j_coord_offsetD,
688                                               &jx0,&jy0,&jz0);
689
690             /* Calculate displacement vector */
691             dx00             = _mm_sub_ps(ix0,jx0);
692             dy00             = _mm_sub_ps(iy0,jy0);
693             dz00             = _mm_sub_ps(iz0,jz0);
694
695             /* Calculate squared distance and things based on it */
696             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
697
698             rinv00           = gmx_mm_invsqrt_ps(rsq00);
699
700             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
701
702             /* Load parameters for j particles */
703             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
704                                                               charge+jnrC+0,charge+jnrD+0);
705             vdwjidx0A        = 2*vdwtype[jnrA+0];
706             vdwjidx0B        = 2*vdwtype[jnrB+0];
707             vdwjidx0C        = 2*vdwtype[jnrC+0];
708             vdwjidx0D        = 2*vdwtype[jnrD+0];
709
710             /**************************
711              * CALCULATE INTERACTIONS *
712              **************************/
713
714             r00              = _mm_mul_ps(rsq00,rinv00);
715             r00              = _mm_andnot_ps(dummy_mask,r00);
716
717             /* Compute parameters for interactions between i and j atoms */
718             qq00             = _mm_mul_ps(iq0,jq0);
719             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
720                                          vdwparam+vdwioffset0+vdwjidx0B,
721                                          vdwparam+vdwioffset0+vdwjidx0C,
722                                          vdwparam+vdwioffset0+vdwjidx0D,
723                                          &c6_00,&c12_00);
724
725             /* Calculate table index by multiplying r with table scale and truncate to integer */
726             rt               = _mm_mul_ps(r00,vftabscale);
727             vfitab           = _mm_cvttps_epi32(rt);
728 #ifdef __XOP__
729             vfeps            = _mm_frcz_ps(rt);
730 #else
731             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
732 #endif
733             twovfeps         = _mm_add_ps(vfeps,vfeps);
734             vfitab           = _mm_slli_epi32(vfitab,3);
735
736             /* COULOMB ELECTROSTATICS */
737             velec            = _mm_mul_ps(qq00,rinv00);
738             felec            = _mm_mul_ps(velec,rinvsq00);
739
740             /* CUBIC SPLINE TABLE DISPERSION */
741             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
742             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
743             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
744             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
745             _MM_TRANSPOSE4_PS(Y,F,G,H);
746             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
747             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
748             fvdw6            = _mm_mul_ps(c6_00,FF);
749
750             /* CUBIC SPLINE TABLE REPULSION */
751             vfitab           = _mm_add_epi32(vfitab,ifour);
752             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
753             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
754             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
755             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
756             _MM_TRANSPOSE4_PS(Y,F,G,H);
757             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
758             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
759             fvdw12           = _mm_mul_ps(c12_00,FF);
760             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
761
762             fscal            = _mm_add_ps(felec,fvdw);
763
764             fscal            = _mm_andnot_ps(dummy_mask,fscal);
765
766              /* Update vectorial force */
767             fix0             = _mm_macc_ps(dx00,fscal,fix0);
768             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
769             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
770
771             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
772             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
773             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
774             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
775             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
776                                                    _mm_mul_ps(dx00,fscal),
777                                                    _mm_mul_ps(dy00,fscal),
778                                                    _mm_mul_ps(dz00,fscal));
779
780             /* Inner loop uses 58 flops */
781         }
782
783         /* End of innermost loop */
784
785         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
786                                               f+i_coord_offset,fshift+i_shift_offset);
787
788         /* Increment number of inner iterations */
789         inneriter                  += j_index_end - j_index_start;
790
791         /* Outer loop uses 7 flops */
792     }
793
794     /* Increment number of outer iterations */
795     outeriter        += nri;
796
797     /* Update outer/inner flops */
798
799     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*58);
800 }