Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwNone_GeomW4P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW4P1_VF_avx_128_fma_single
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            None
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwNone_GeomW4P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     __m128i          vfitab;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
101     real             *vftab;
102     __m128           dummy_mask,cutoff_mask;
103     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104     __m128           one     = _mm_set1_ps(1.0);
105     __m128           two     = _mm_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119
120     vftab            = kernel_data->table_elec->data;
121     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
122
123     /* Setup water-specific parameters */
124     inr              = nlist->iinr[0];
125     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
126     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
127     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = jnrC = jnrD = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133     j_coord_offsetC = 0;
134     j_coord_offsetD = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     for(iidx=0;iidx<4*DIM;iidx++)
140     {
141         scratch[iidx] = 0.0;
142     }
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
160                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
161
162         fix1             = _mm_setzero_ps();
163         fiy1             = _mm_setzero_ps();
164         fiz1             = _mm_setzero_ps();
165         fix2             = _mm_setzero_ps();
166         fiy2             = _mm_setzero_ps();
167         fiz2             = _mm_setzero_ps();
168         fix3             = _mm_setzero_ps();
169         fiy3             = _mm_setzero_ps();
170         fiz3             = _mm_setzero_ps();
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_ps();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             jnrC             = jjnr[jidx+2];
183             jnrD             = jjnr[jidx+3];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186             j_coord_offsetC  = DIM*jnrC;
187             j_coord_offsetD  = DIM*jnrD;
188
189             /* load j atom coordinates */
190             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
191                                               x+j_coord_offsetC,x+j_coord_offsetD,
192                                               &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx10             = _mm_sub_ps(ix1,jx0);
196             dy10             = _mm_sub_ps(iy1,jy0);
197             dz10             = _mm_sub_ps(iz1,jz0);
198             dx20             = _mm_sub_ps(ix2,jx0);
199             dy20             = _mm_sub_ps(iy2,jy0);
200             dz20             = _mm_sub_ps(iz2,jz0);
201             dx30             = _mm_sub_ps(ix3,jx0);
202             dy30             = _mm_sub_ps(iy3,jy0);
203             dz30             = _mm_sub_ps(iz3,jz0);
204
205             /* Calculate squared distance and things based on it */
206             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
207             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
208             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
209
210             rinv10           = gmx_mm_invsqrt_ps(rsq10);
211             rinv20           = gmx_mm_invsqrt_ps(rsq20);
212             rinv30           = gmx_mm_invsqrt_ps(rsq30);
213
214             /* Load parameters for j particles */
215             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
216                                                               charge+jnrC+0,charge+jnrD+0);
217
218             fjx0             = _mm_setzero_ps();
219             fjy0             = _mm_setzero_ps();
220             fjz0             = _mm_setzero_ps();
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             r10              = _mm_mul_ps(rsq10,rinv10);
227
228             /* Compute parameters for interactions between i and j atoms */
229             qq10             = _mm_mul_ps(iq1,jq0);
230
231             /* Calculate table index by multiplying r with table scale and truncate to integer */
232             rt               = _mm_mul_ps(r10,vftabscale);
233             vfitab           = _mm_cvttps_epi32(rt);
234 #ifdef __XOP__
235             vfeps            = _mm_frcz_ps(rt);
236 #else
237             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
238 #endif
239             twovfeps         = _mm_add_ps(vfeps,vfeps);
240             vfitab           = _mm_slli_epi32(vfitab,2);
241
242             /* CUBIC SPLINE TABLE ELECTROSTATICS */
243             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
244             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
245             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
246             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
247             _MM_TRANSPOSE4_PS(Y,F,G,H);
248             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
249             VV               = _mm_macc_ps(vfeps,Fp,Y);
250             velec            = _mm_mul_ps(qq10,VV);
251             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
252             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
253
254             /* Update potential sum for this i atom from the interaction with this j atom. */
255             velecsum         = _mm_add_ps(velecsum,velec);
256
257             fscal            = felec;
258
259              /* Update vectorial force */
260             fix1             = _mm_macc_ps(dx10,fscal,fix1);
261             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
262             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
263
264             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
265             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
266             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
267
268             /**************************
269              * CALCULATE INTERACTIONS *
270              **************************/
271
272             r20              = _mm_mul_ps(rsq20,rinv20);
273
274             /* Compute parameters for interactions between i and j atoms */
275             qq20             = _mm_mul_ps(iq2,jq0);
276
277             /* Calculate table index by multiplying r with table scale and truncate to integer */
278             rt               = _mm_mul_ps(r20,vftabscale);
279             vfitab           = _mm_cvttps_epi32(rt);
280 #ifdef __XOP__
281             vfeps            = _mm_frcz_ps(rt);
282 #else
283             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
284 #endif
285             twovfeps         = _mm_add_ps(vfeps,vfeps);
286             vfitab           = _mm_slli_epi32(vfitab,2);
287
288             /* CUBIC SPLINE TABLE ELECTROSTATICS */
289             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
290             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
291             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
292             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
293             _MM_TRANSPOSE4_PS(Y,F,G,H);
294             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
295             VV               = _mm_macc_ps(vfeps,Fp,Y);
296             velec            = _mm_mul_ps(qq20,VV);
297             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
298             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             velecsum         = _mm_add_ps(velecsum,velec);
302
303             fscal            = felec;
304
305              /* Update vectorial force */
306             fix2             = _mm_macc_ps(dx20,fscal,fix2);
307             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
308             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
309
310             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
311             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
312             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             r30              = _mm_mul_ps(rsq30,rinv30);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq30             = _mm_mul_ps(iq3,jq0);
322
323             /* Calculate table index by multiplying r with table scale and truncate to integer */
324             rt               = _mm_mul_ps(r30,vftabscale);
325             vfitab           = _mm_cvttps_epi32(rt);
326 #ifdef __XOP__
327             vfeps            = _mm_frcz_ps(rt);
328 #else
329             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
330 #endif
331             twovfeps         = _mm_add_ps(vfeps,vfeps);
332             vfitab           = _mm_slli_epi32(vfitab,2);
333
334             /* CUBIC SPLINE TABLE ELECTROSTATICS */
335             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
336             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
337             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
338             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
339             _MM_TRANSPOSE4_PS(Y,F,G,H);
340             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
341             VV               = _mm_macc_ps(vfeps,Fp,Y);
342             velec            = _mm_mul_ps(qq30,VV);
343             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
344             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velecsum         = _mm_add_ps(velecsum,velec);
348
349             fscal            = felec;
350
351              /* Update vectorial force */
352             fix3             = _mm_macc_ps(dx30,fscal,fix3);
353             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
354             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
355
356             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
357             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
358             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
359
360             fjptrA             = f+j_coord_offsetA;
361             fjptrB             = f+j_coord_offsetB;
362             fjptrC             = f+j_coord_offsetC;
363             fjptrD             = f+j_coord_offsetD;
364
365             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
366
367             /* Inner loop uses 138 flops */
368         }
369
370         if(jidx<j_index_end)
371         {
372
373             /* Get j neighbor index, and coordinate index */
374             jnrlistA         = jjnr[jidx];
375             jnrlistB         = jjnr[jidx+1];
376             jnrlistC         = jjnr[jidx+2];
377             jnrlistD         = jjnr[jidx+3];
378             /* Sign of each element will be negative for non-real atoms.
379              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
380              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
381              */
382             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
383             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
384             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
385             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
386             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
387             j_coord_offsetA  = DIM*jnrA;
388             j_coord_offsetB  = DIM*jnrB;
389             j_coord_offsetC  = DIM*jnrC;
390             j_coord_offsetD  = DIM*jnrD;
391
392             /* load j atom coordinates */
393             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
394                                               x+j_coord_offsetC,x+j_coord_offsetD,
395                                               &jx0,&jy0,&jz0);
396
397             /* Calculate displacement vector */
398             dx10             = _mm_sub_ps(ix1,jx0);
399             dy10             = _mm_sub_ps(iy1,jy0);
400             dz10             = _mm_sub_ps(iz1,jz0);
401             dx20             = _mm_sub_ps(ix2,jx0);
402             dy20             = _mm_sub_ps(iy2,jy0);
403             dz20             = _mm_sub_ps(iz2,jz0);
404             dx30             = _mm_sub_ps(ix3,jx0);
405             dy30             = _mm_sub_ps(iy3,jy0);
406             dz30             = _mm_sub_ps(iz3,jz0);
407
408             /* Calculate squared distance and things based on it */
409             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
410             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
411             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
412
413             rinv10           = gmx_mm_invsqrt_ps(rsq10);
414             rinv20           = gmx_mm_invsqrt_ps(rsq20);
415             rinv30           = gmx_mm_invsqrt_ps(rsq30);
416
417             /* Load parameters for j particles */
418             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
419                                                               charge+jnrC+0,charge+jnrD+0);
420
421             fjx0             = _mm_setzero_ps();
422             fjy0             = _mm_setzero_ps();
423             fjz0             = _mm_setzero_ps();
424
425             /**************************
426              * CALCULATE INTERACTIONS *
427              **************************/
428
429             r10              = _mm_mul_ps(rsq10,rinv10);
430             r10              = _mm_andnot_ps(dummy_mask,r10);
431
432             /* Compute parameters for interactions between i and j atoms */
433             qq10             = _mm_mul_ps(iq1,jq0);
434
435             /* Calculate table index by multiplying r with table scale and truncate to integer */
436             rt               = _mm_mul_ps(r10,vftabscale);
437             vfitab           = _mm_cvttps_epi32(rt);
438 #ifdef __XOP__
439             vfeps            = _mm_frcz_ps(rt);
440 #else
441             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
442 #endif
443             twovfeps         = _mm_add_ps(vfeps,vfeps);
444             vfitab           = _mm_slli_epi32(vfitab,2);
445
446             /* CUBIC SPLINE TABLE ELECTROSTATICS */
447             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
448             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
449             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
450             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
451             _MM_TRANSPOSE4_PS(Y,F,G,H);
452             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
453             VV               = _mm_macc_ps(vfeps,Fp,Y);
454             velec            = _mm_mul_ps(qq10,VV);
455             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
456             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
457
458             /* Update potential sum for this i atom from the interaction with this j atom. */
459             velec            = _mm_andnot_ps(dummy_mask,velec);
460             velecsum         = _mm_add_ps(velecsum,velec);
461
462             fscal            = felec;
463
464             fscal            = _mm_andnot_ps(dummy_mask,fscal);
465
466              /* Update vectorial force */
467             fix1             = _mm_macc_ps(dx10,fscal,fix1);
468             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
469             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
470
471             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
472             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
473             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
474
475             /**************************
476              * CALCULATE INTERACTIONS *
477              **************************/
478
479             r20              = _mm_mul_ps(rsq20,rinv20);
480             r20              = _mm_andnot_ps(dummy_mask,r20);
481
482             /* Compute parameters for interactions between i and j atoms */
483             qq20             = _mm_mul_ps(iq2,jq0);
484
485             /* Calculate table index by multiplying r with table scale and truncate to integer */
486             rt               = _mm_mul_ps(r20,vftabscale);
487             vfitab           = _mm_cvttps_epi32(rt);
488 #ifdef __XOP__
489             vfeps            = _mm_frcz_ps(rt);
490 #else
491             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
492 #endif
493             twovfeps         = _mm_add_ps(vfeps,vfeps);
494             vfitab           = _mm_slli_epi32(vfitab,2);
495
496             /* CUBIC SPLINE TABLE ELECTROSTATICS */
497             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
498             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
499             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
500             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
501             _MM_TRANSPOSE4_PS(Y,F,G,H);
502             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
503             VV               = _mm_macc_ps(vfeps,Fp,Y);
504             velec            = _mm_mul_ps(qq20,VV);
505             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
506             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
507
508             /* Update potential sum for this i atom from the interaction with this j atom. */
509             velec            = _mm_andnot_ps(dummy_mask,velec);
510             velecsum         = _mm_add_ps(velecsum,velec);
511
512             fscal            = felec;
513
514             fscal            = _mm_andnot_ps(dummy_mask,fscal);
515
516              /* Update vectorial force */
517             fix2             = _mm_macc_ps(dx20,fscal,fix2);
518             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
519             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
520
521             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
522             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
523             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
524
525             /**************************
526              * CALCULATE INTERACTIONS *
527              **************************/
528
529             r30              = _mm_mul_ps(rsq30,rinv30);
530             r30              = _mm_andnot_ps(dummy_mask,r30);
531
532             /* Compute parameters for interactions between i and j atoms */
533             qq30             = _mm_mul_ps(iq3,jq0);
534
535             /* Calculate table index by multiplying r with table scale and truncate to integer */
536             rt               = _mm_mul_ps(r30,vftabscale);
537             vfitab           = _mm_cvttps_epi32(rt);
538 #ifdef __XOP__
539             vfeps            = _mm_frcz_ps(rt);
540 #else
541             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
542 #endif
543             twovfeps         = _mm_add_ps(vfeps,vfeps);
544             vfitab           = _mm_slli_epi32(vfitab,2);
545
546             /* CUBIC SPLINE TABLE ELECTROSTATICS */
547             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
548             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
549             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
550             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
551             _MM_TRANSPOSE4_PS(Y,F,G,H);
552             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
553             VV               = _mm_macc_ps(vfeps,Fp,Y);
554             velec            = _mm_mul_ps(qq30,VV);
555             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
556             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
557
558             /* Update potential sum for this i atom from the interaction with this j atom. */
559             velec            = _mm_andnot_ps(dummy_mask,velec);
560             velecsum         = _mm_add_ps(velecsum,velec);
561
562             fscal            = felec;
563
564             fscal            = _mm_andnot_ps(dummy_mask,fscal);
565
566              /* Update vectorial force */
567             fix3             = _mm_macc_ps(dx30,fscal,fix3);
568             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
569             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
570
571             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
572             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
573             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
574
575             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
576             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
577             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
578             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
579
580             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
581
582             /* Inner loop uses 141 flops */
583         }
584
585         /* End of innermost loop */
586
587         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
588                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
589
590         ggid                        = gid[iidx];
591         /* Update potential energies */
592         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
593
594         /* Increment number of inner iterations */
595         inneriter                  += j_index_end - j_index_start;
596
597         /* Outer loop uses 19 flops */
598     }
599
600     /* Increment number of outer iterations */
601     outeriter        += nri;
602
603     /* Update outer/inner flops */
604
605     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*141);
606 }
607 /*
608  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW4P1_F_avx_128_fma_single
609  * Electrostatics interaction: CubicSplineTable
610  * VdW interaction:            None
611  * Geometry:                   Water4-Particle
612  * Calculate force/pot:        Force
613  */
614 void
615 nb_kernel_ElecCSTab_VdwNone_GeomW4P1_F_avx_128_fma_single
616                     (t_nblist                    * gmx_restrict       nlist,
617                      rvec                        * gmx_restrict          xx,
618                      rvec                        * gmx_restrict          ff,
619                      t_forcerec                  * gmx_restrict          fr,
620                      t_mdatoms                   * gmx_restrict     mdatoms,
621                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
622                      t_nrnb                      * gmx_restrict        nrnb)
623 {
624     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
625      * just 0 for non-waters.
626      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
627      * jnr indices corresponding to data put in the four positions in the SIMD register.
628      */
629     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
630     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
631     int              jnrA,jnrB,jnrC,jnrD;
632     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
633     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
634     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
635     real             rcutoff_scalar;
636     real             *shiftvec,*fshift,*x,*f;
637     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
638     real             scratch[4*DIM];
639     __m128           fscal,rcutoff,rcutoff2,jidxall;
640     int              vdwioffset1;
641     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
642     int              vdwioffset2;
643     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
644     int              vdwioffset3;
645     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
646     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
647     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
648     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
649     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
650     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
651     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
652     real             *charge;
653     __m128i          vfitab;
654     __m128i          ifour       = _mm_set1_epi32(4);
655     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
656     real             *vftab;
657     __m128           dummy_mask,cutoff_mask;
658     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
659     __m128           one     = _mm_set1_ps(1.0);
660     __m128           two     = _mm_set1_ps(2.0);
661     x                = xx[0];
662     f                = ff[0];
663
664     nri              = nlist->nri;
665     iinr             = nlist->iinr;
666     jindex           = nlist->jindex;
667     jjnr             = nlist->jjnr;
668     shiftidx         = nlist->shift;
669     gid              = nlist->gid;
670     shiftvec         = fr->shift_vec[0];
671     fshift           = fr->fshift[0];
672     facel            = _mm_set1_ps(fr->epsfac);
673     charge           = mdatoms->chargeA;
674
675     vftab            = kernel_data->table_elec->data;
676     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
677
678     /* Setup water-specific parameters */
679     inr              = nlist->iinr[0];
680     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
681     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
682     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
683
684     /* Avoid stupid compiler warnings */
685     jnrA = jnrB = jnrC = jnrD = 0;
686     j_coord_offsetA = 0;
687     j_coord_offsetB = 0;
688     j_coord_offsetC = 0;
689     j_coord_offsetD = 0;
690
691     outeriter        = 0;
692     inneriter        = 0;
693
694     for(iidx=0;iidx<4*DIM;iidx++)
695     {
696         scratch[iidx] = 0.0;
697     }
698
699     /* Start outer loop over neighborlists */
700     for(iidx=0; iidx<nri; iidx++)
701     {
702         /* Load shift vector for this list */
703         i_shift_offset   = DIM*shiftidx[iidx];
704
705         /* Load limits for loop over neighbors */
706         j_index_start    = jindex[iidx];
707         j_index_end      = jindex[iidx+1];
708
709         /* Get outer coordinate index */
710         inr              = iinr[iidx];
711         i_coord_offset   = DIM*inr;
712
713         /* Load i particle coords and add shift vector */
714         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
715                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
716
717         fix1             = _mm_setzero_ps();
718         fiy1             = _mm_setzero_ps();
719         fiz1             = _mm_setzero_ps();
720         fix2             = _mm_setzero_ps();
721         fiy2             = _mm_setzero_ps();
722         fiz2             = _mm_setzero_ps();
723         fix3             = _mm_setzero_ps();
724         fiy3             = _mm_setzero_ps();
725         fiz3             = _mm_setzero_ps();
726
727         /* Start inner kernel loop */
728         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
729         {
730
731             /* Get j neighbor index, and coordinate index */
732             jnrA             = jjnr[jidx];
733             jnrB             = jjnr[jidx+1];
734             jnrC             = jjnr[jidx+2];
735             jnrD             = jjnr[jidx+3];
736             j_coord_offsetA  = DIM*jnrA;
737             j_coord_offsetB  = DIM*jnrB;
738             j_coord_offsetC  = DIM*jnrC;
739             j_coord_offsetD  = DIM*jnrD;
740
741             /* load j atom coordinates */
742             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
743                                               x+j_coord_offsetC,x+j_coord_offsetD,
744                                               &jx0,&jy0,&jz0);
745
746             /* Calculate displacement vector */
747             dx10             = _mm_sub_ps(ix1,jx0);
748             dy10             = _mm_sub_ps(iy1,jy0);
749             dz10             = _mm_sub_ps(iz1,jz0);
750             dx20             = _mm_sub_ps(ix2,jx0);
751             dy20             = _mm_sub_ps(iy2,jy0);
752             dz20             = _mm_sub_ps(iz2,jz0);
753             dx30             = _mm_sub_ps(ix3,jx0);
754             dy30             = _mm_sub_ps(iy3,jy0);
755             dz30             = _mm_sub_ps(iz3,jz0);
756
757             /* Calculate squared distance and things based on it */
758             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
759             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
760             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
761
762             rinv10           = gmx_mm_invsqrt_ps(rsq10);
763             rinv20           = gmx_mm_invsqrt_ps(rsq20);
764             rinv30           = gmx_mm_invsqrt_ps(rsq30);
765
766             /* Load parameters for j particles */
767             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
768                                                               charge+jnrC+0,charge+jnrD+0);
769
770             fjx0             = _mm_setzero_ps();
771             fjy0             = _mm_setzero_ps();
772             fjz0             = _mm_setzero_ps();
773
774             /**************************
775              * CALCULATE INTERACTIONS *
776              **************************/
777
778             r10              = _mm_mul_ps(rsq10,rinv10);
779
780             /* Compute parameters for interactions between i and j atoms */
781             qq10             = _mm_mul_ps(iq1,jq0);
782
783             /* Calculate table index by multiplying r with table scale and truncate to integer */
784             rt               = _mm_mul_ps(r10,vftabscale);
785             vfitab           = _mm_cvttps_epi32(rt);
786 #ifdef __XOP__
787             vfeps            = _mm_frcz_ps(rt);
788 #else
789             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
790 #endif
791             twovfeps         = _mm_add_ps(vfeps,vfeps);
792             vfitab           = _mm_slli_epi32(vfitab,2);
793
794             /* CUBIC SPLINE TABLE ELECTROSTATICS */
795             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
796             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
797             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
798             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
799             _MM_TRANSPOSE4_PS(Y,F,G,H);
800             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
801             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
802             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
803
804             fscal            = felec;
805
806              /* Update vectorial force */
807             fix1             = _mm_macc_ps(dx10,fscal,fix1);
808             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
809             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
810
811             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
812             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
813             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
814
815             /**************************
816              * CALCULATE INTERACTIONS *
817              **************************/
818
819             r20              = _mm_mul_ps(rsq20,rinv20);
820
821             /* Compute parameters for interactions between i and j atoms */
822             qq20             = _mm_mul_ps(iq2,jq0);
823
824             /* Calculate table index by multiplying r with table scale and truncate to integer */
825             rt               = _mm_mul_ps(r20,vftabscale);
826             vfitab           = _mm_cvttps_epi32(rt);
827 #ifdef __XOP__
828             vfeps            = _mm_frcz_ps(rt);
829 #else
830             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
831 #endif
832             twovfeps         = _mm_add_ps(vfeps,vfeps);
833             vfitab           = _mm_slli_epi32(vfitab,2);
834
835             /* CUBIC SPLINE TABLE ELECTROSTATICS */
836             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
837             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
838             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
839             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
840             _MM_TRANSPOSE4_PS(Y,F,G,H);
841             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
842             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
843             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
844
845             fscal            = felec;
846
847              /* Update vectorial force */
848             fix2             = _mm_macc_ps(dx20,fscal,fix2);
849             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
850             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
851
852             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
853             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
854             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
855
856             /**************************
857              * CALCULATE INTERACTIONS *
858              **************************/
859
860             r30              = _mm_mul_ps(rsq30,rinv30);
861
862             /* Compute parameters for interactions between i and j atoms */
863             qq30             = _mm_mul_ps(iq3,jq0);
864
865             /* Calculate table index by multiplying r with table scale and truncate to integer */
866             rt               = _mm_mul_ps(r30,vftabscale);
867             vfitab           = _mm_cvttps_epi32(rt);
868 #ifdef __XOP__
869             vfeps            = _mm_frcz_ps(rt);
870 #else
871             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
872 #endif
873             twovfeps         = _mm_add_ps(vfeps,vfeps);
874             vfitab           = _mm_slli_epi32(vfitab,2);
875
876             /* CUBIC SPLINE TABLE ELECTROSTATICS */
877             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
878             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
879             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
880             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
881             _MM_TRANSPOSE4_PS(Y,F,G,H);
882             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
883             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
884             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
885
886             fscal            = felec;
887
888              /* Update vectorial force */
889             fix3             = _mm_macc_ps(dx30,fscal,fix3);
890             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
891             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
892
893             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
894             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
895             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
896
897             fjptrA             = f+j_coord_offsetA;
898             fjptrB             = f+j_coord_offsetB;
899             fjptrC             = f+j_coord_offsetC;
900             fjptrD             = f+j_coord_offsetD;
901
902             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
903
904             /* Inner loop uses 126 flops */
905         }
906
907         if(jidx<j_index_end)
908         {
909
910             /* Get j neighbor index, and coordinate index */
911             jnrlistA         = jjnr[jidx];
912             jnrlistB         = jjnr[jidx+1];
913             jnrlistC         = jjnr[jidx+2];
914             jnrlistD         = jjnr[jidx+3];
915             /* Sign of each element will be negative for non-real atoms.
916              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
917              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
918              */
919             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
920             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
921             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
922             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
923             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
924             j_coord_offsetA  = DIM*jnrA;
925             j_coord_offsetB  = DIM*jnrB;
926             j_coord_offsetC  = DIM*jnrC;
927             j_coord_offsetD  = DIM*jnrD;
928
929             /* load j atom coordinates */
930             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
931                                               x+j_coord_offsetC,x+j_coord_offsetD,
932                                               &jx0,&jy0,&jz0);
933
934             /* Calculate displacement vector */
935             dx10             = _mm_sub_ps(ix1,jx0);
936             dy10             = _mm_sub_ps(iy1,jy0);
937             dz10             = _mm_sub_ps(iz1,jz0);
938             dx20             = _mm_sub_ps(ix2,jx0);
939             dy20             = _mm_sub_ps(iy2,jy0);
940             dz20             = _mm_sub_ps(iz2,jz0);
941             dx30             = _mm_sub_ps(ix3,jx0);
942             dy30             = _mm_sub_ps(iy3,jy0);
943             dz30             = _mm_sub_ps(iz3,jz0);
944
945             /* Calculate squared distance and things based on it */
946             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
947             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
948             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
949
950             rinv10           = gmx_mm_invsqrt_ps(rsq10);
951             rinv20           = gmx_mm_invsqrt_ps(rsq20);
952             rinv30           = gmx_mm_invsqrt_ps(rsq30);
953
954             /* Load parameters for j particles */
955             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
956                                                               charge+jnrC+0,charge+jnrD+0);
957
958             fjx0             = _mm_setzero_ps();
959             fjy0             = _mm_setzero_ps();
960             fjz0             = _mm_setzero_ps();
961
962             /**************************
963              * CALCULATE INTERACTIONS *
964              **************************/
965
966             r10              = _mm_mul_ps(rsq10,rinv10);
967             r10              = _mm_andnot_ps(dummy_mask,r10);
968
969             /* Compute parameters for interactions between i and j atoms */
970             qq10             = _mm_mul_ps(iq1,jq0);
971
972             /* Calculate table index by multiplying r with table scale and truncate to integer */
973             rt               = _mm_mul_ps(r10,vftabscale);
974             vfitab           = _mm_cvttps_epi32(rt);
975 #ifdef __XOP__
976             vfeps            = _mm_frcz_ps(rt);
977 #else
978             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
979 #endif
980             twovfeps         = _mm_add_ps(vfeps,vfeps);
981             vfitab           = _mm_slli_epi32(vfitab,2);
982
983             /* CUBIC SPLINE TABLE ELECTROSTATICS */
984             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
985             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
986             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
987             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
988             _MM_TRANSPOSE4_PS(Y,F,G,H);
989             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
990             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
991             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
992
993             fscal            = felec;
994
995             fscal            = _mm_andnot_ps(dummy_mask,fscal);
996
997              /* Update vectorial force */
998             fix1             = _mm_macc_ps(dx10,fscal,fix1);
999             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1000             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1001
1002             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1003             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1004             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1005
1006             /**************************
1007              * CALCULATE INTERACTIONS *
1008              **************************/
1009
1010             r20              = _mm_mul_ps(rsq20,rinv20);
1011             r20              = _mm_andnot_ps(dummy_mask,r20);
1012
1013             /* Compute parameters for interactions between i and j atoms */
1014             qq20             = _mm_mul_ps(iq2,jq0);
1015
1016             /* Calculate table index by multiplying r with table scale and truncate to integer */
1017             rt               = _mm_mul_ps(r20,vftabscale);
1018             vfitab           = _mm_cvttps_epi32(rt);
1019 #ifdef __XOP__
1020             vfeps            = _mm_frcz_ps(rt);
1021 #else
1022             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1023 #endif
1024             twovfeps         = _mm_add_ps(vfeps,vfeps);
1025             vfitab           = _mm_slli_epi32(vfitab,2);
1026
1027             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1028             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1029             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1030             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1031             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1032             _MM_TRANSPOSE4_PS(Y,F,G,H);
1033             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1034             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1035             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1036
1037             fscal            = felec;
1038
1039             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1040
1041              /* Update vectorial force */
1042             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1043             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1044             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1045
1046             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1047             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1048             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1049
1050             /**************************
1051              * CALCULATE INTERACTIONS *
1052              **************************/
1053
1054             r30              = _mm_mul_ps(rsq30,rinv30);
1055             r30              = _mm_andnot_ps(dummy_mask,r30);
1056
1057             /* Compute parameters for interactions between i and j atoms */
1058             qq30             = _mm_mul_ps(iq3,jq0);
1059
1060             /* Calculate table index by multiplying r with table scale and truncate to integer */
1061             rt               = _mm_mul_ps(r30,vftabscale);
1062             vfitab           = _mm_cvttps_epi32(rt);
1063 #ifdef __XOP__
1064             vfeps            = _mm_frcz_ps(rt);
1065 #else
1066             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1067 #endif
1068             twovfeps         = _mm_add_ps(vfeps,vfeps);
1069             vfitab           = _mm_slli_epi32(vfitab,2);
1070
1071             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1072             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1073             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1074             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1075             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1076             _MM_TRANSPOSE4_PS(Y,F,G,H);
1077             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1078             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1079             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1080
1081             fscal            = felec;
1082
1083             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1084
1085              /* Update vectorial force */
1086             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1087             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1088             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1089
1090             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1091             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1092             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1093
1094             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1095             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1096             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1097             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1098
1099             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1100
1101             /* Inner loop uses 129 flops */
1102         }
1103
1104         /* End of innermost loop */
1105
1106         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1107                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1108
1109         /* Increment number of inner iterations */
1110         inneriter                  += j_index_end - j_index_start;
1111
1112         /* Outer loop uses 18 flops */
1113     }
1114
1115     /* Increment number of outer iterations */
1116     outeriter        += nri;
1117
1118     /* Update outer/inner flops */
1119
1120     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*129);
1121 }