Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwNone_GeomW3P1_avx_128_fma_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW3P1_VF_avx_128_fma_single
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            None
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwNone_GeomW3P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
98     real             *vftab;
99     __m128           dummy_mask,cutoff_mask;
100     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
101     __m128           one     = _mm_set1_ps(1.0);
102     __m128           two     = _mm_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_ps(fr->ic->epsfac);
115     charge           = mdatoms->chargeA;
116
117     vftab            = kernel_data->table_elec->data;
118     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
119
120     /* Setup water-specific parameters */
121     inr              = nlist->iinr[0];
122     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
123     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
124     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
157                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
158
159         fix0             = _mm_setzero_ps();
160         fiy0             = _mm_setzero_ps();
161         fiz0             = _mm_setzero_ps();
162         fix1             = _mm_setzero_ps();
163         fiy1             = _mm_setzero_ps();
164         fiz1             = _mm_setzero_ps();
165         fix2             = _mm_setzero_ps();
166         fiy2             = _mm_setzero_ps();
167         fiz2             = _mm_setzero_ps();
168
169         /* Reset potential sums */
170         velecsum         = _mm_setzero_ps();
171
172         /* Start inner kernel loop */
173         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
174         {
175
176             /* Get j neighbor index, and coordinate index */
177             jnrA             = jjnr[jidx];
178             jnrB             = jjnr[jidx+1];
179             jnrC             = jjnr[jidx+2];
180             jnrD             = jjnr[jidx+3];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183             j_coord_offsetC  = DIM*jnrC;
184             j_coord_offsetD  = DIM*jnrD;
185
186             /* load j atom coordinates */
187             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
188                                               x+j_coord_offsetC,x+j_coord_offsetD,
189                                               &jx0,&jy0,&jz0);
190
191             /* Calculate displacement vector */
192             dx00             = _mm_sub_ps(ix0,jx0);
193             dy00             = _mm_sub_ps(iy0,jy0);
194             dz00             = _mm_sub_ps(iz0,jz0);
195             dx10             = _mm_sub_ps(ix1,jx0);
196             dy10             = _mm_sub_ps(iy1,jy0);
197             dz10             = _mm_sub_ps(iz1,jz0);
198             dx20             = _mm_sub_ps(ix2,jx0);
199             dy20             = _mm_sub_ps(iy2,jy0);
200             dz20             = _mm_sub_ps(iz2,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
204             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
205             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
206
207             rinv00           = avx128fma_invsqrt_f(rsq00);
208             rinv10           = avx128fma_invsqrt_f(rsq10);
209             rinv20           = avx128fma_invsqrt_f(rsq20);
210
211             /* Load parameters for j particles */
212             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
213                                                               charge+jnrC+0,charge+jnrD+0);
214
215             fjx0             = _mm_setzero_ps();
216             fjy0             = _mm_setzero_ps();
217             fjz0             = _mm_setzero_ps();
218
219             /**************************
220              * CALCULATE INTERACTIONS *
221              **************************/
222
223             r00              = _mm_mul_ps(rsq00,rinv00);
224
225             /* Compute parameters for interactions between i and j atoms */
226             qq00             = _mm_mul_ps(iq0,jq0);
227
228             /* Calculate table index by multiplying r with table scale and truncate to integer */
229             rt               = _mm_mul_ps(r00,vftabscale);
230             vfitab           = _mm_cvttps_epi32(rt);
231 #ifdef __XOP__
232             vfeps            = _mm_frcz_ps(rt);
233 #else
234             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
235 #endif
236             twovfeps         = _mm_add_ps(vfeps,vfeps);
237             vfitab           = _mm_slli_epi32(vfitab,2);
238
239             /* CUBIC SPLINE TABLE ELECTROSTATICS */
240             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
241             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
242             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
243             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
244             _MM_TRANSPOSE4_PS(Y,F,G,H);
245             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
246             VV               = _mm_macc_ps(vfeps,Fp,Y);
247             velec            = _mm_mul_ps(qq00,VV);
248             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
249             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
250
251             /* Update potential sum for this i atom from the interaction with this j atom. */
252             velecsum         = _mm_add_ps(velecsum,velec);
253
254             fscal            = felec;
255
256              /* Update vectorial force */
257             fix0             = _mm_macc_ps(dx00,fscal,fix0);
258             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
259             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
260
261             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
262             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
263             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
264
265             /**************************
266              * CALCULATE INTERACTIONS *
267              **************************/
268
269             r10              = _mm_mul_ps(rsq10,rinv10);
270
271             /* Compute parameters for interactions between i and j atoms */
272             qq10             = _mm_mul_ps(iq1,jq0);
273
274             /* Calculate table index by multiplying r with table scale and truncate to integer */
275             rt               = _mm_mul_ps(r10,vftabscale);
276             vfitab           = _mm_cvttps_epi32(rt);
277 #ifdef __XOP__
278             vfeps            = _mm_frcz_ps(rt);
279 #else
280             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
281 #endif
282             twovfeps         = _mm_add_ps(vfeps,vfeps);
283             vfitab           = _mm_slli_epi32(vfitab,2);
284
285             /* CUBIC SPLINE TABLE ELECTROSTATICS */
286             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
287             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
288             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
289             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
290             _MM_TRANSPOSE4_PS(Y,F,G,H);
291             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
292             VV               = _mm_macc_ps(vfeps,Fp,Y);
293             velec            = _mm_mul_ps(qq10,VV);
294             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
295             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velecsum         = _mm_add_ps(velecsum,velec);
299
300             fscal            = felec;
301
302              /* Update vectorial force */
303             fix1             = _mm_macc_ps(dx10,fscal,fix1);
304             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
305             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
306
307             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
308             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
309             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
310
311             /**************************
312              * CALCULATE INTERACTIONS *
313              **************************/
314
315             r20              = _mm_mul_ps(rsq20,rinv20);
316
317             /* Compute parameters for interactions between i and j atoms */
318             qq20             = _mm_mul_ps(iq2,jq0);
319
320             /* Calculate table index by multiplying r with table scale and truncate to integer */
321             rt               = _mm_mul_ps(r20,vftabscale);
322             vfitab           = _mm_cvttps_epi32(rt);
323 #ifdef __XOP__
324             vfeps            = _mm_frcz_ps(rt);
325 #else
326             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
327 #endif
328             twovfeps         = _mm_add_ps(vfeps,vfeps);
329             vfitab           = _mm_slli_epi32(vfitab,2);
330
331             /* CUBIC SPLINE TABLE ELECTROSTATICS */
332             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
333             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
334             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
335             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
336             _MM_TRANSPOSE4_PS(Y,F,G,H);
337             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
338             VV               = _mm_macc_ps(vfeps,Fp,Y);
339             velec            = _mm_mul_ps(qq20,VV);
340             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
341             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velecsum         = _mm_add_ps(velecsum,velec);
345
346             fscal            = felec;
347
348              /* Update vectorial force */
349             fix2             = _mm_macc_ps(dx20,fscal,fix2);
350             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
351             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
352
353             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
354             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
355             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
356
357             fjptrA             = f+j_coord_offsetA;
358             fjptrB             = f+j_coord_offsetB;
359             fjptrC             = f+j_coord_offsetC;
360             fjptrD             = f+j_coord_offsetD;
361
362             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
363
364             /* Inner loop uses 138 flops */
365         }
366
367         if(jidx<j_index_end)
368         {
369
370             /* Get j neighbor index, and coordinate index */
371             jnrlistA         = jjnr[jidx];
372             jnrlistB         = jjnr[jidx+1];
373             jnrlistC         = jjnr[jidx+2];
374             jnrlistD         = jjnr[jidx+3];
375             /* Sign of each element will be negative for non-real atoms.
376              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
377              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
378              */
379             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
380             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
381             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
382             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
383             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
384             j_coord_offsetA  = DIM*jnrA;
385             j_coord_offsetB  = DIM*jnrB;
386             j_coord_offsetC  = DIM*jnrC;
387             j_coord_offsetD  = DIM*jnrD;
388
389             /* load j atom coordinates */
390             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
391                                               x+j_coord_offsetC,x+j_coord_offsetD,
392                                               &jx0,&jy0,&jz0);
393
394             /* Calculate displacement vector */
395             dx00             = _mm_sub_ps(ix0,jx0);
396             dy00             = _mm_sub_ps(iy0,jy0);
397             dz00             = _mm_sub_ps(iz0,jz0);
398             dx10             = _mm_sub_ps(ix1,jx0);
399             dy10             = _mm_sub_ps(iy1,jy0);
400             dz10             = _mm_sub_ps(iz1,jz0);
401             dx20             = _mm_sub_ps(ix2,jx0);
402             dy20             = _mm_sub_ps(iy2,jy0);
403             dz20             = _mm_sub_ps(iz2,jz0);
404
405             /* Calculate squared distance and things based on it */
406             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
407             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
408             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
409
410             rinv00           = avx128fma_invsqrt_f(rsq00);
411             rinv10           = avx128fma_invsqrt_f(rsq10);
412             rinv20           = avx128fma_invsqrt_f(rsq20);
413
414             /* Load parameters for j particles */
415             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
416                                                               charge+jnrC+0,charge+jnrD+0);
417
418             fjx0             = _mm_setzero_ps();
419             fjy0             = _mm_setzero_ps();
420             fjz0             = _mm_setzero_ps();
421
422             /**************************
423              * CALCULATE INTERACTIONS *
424              **************************/
425
426             r00              = _mm_mul_ps(rsq00,rinv00);
427             r00              = _mm_andnot_ps(dummy_mask,r00);
428
429             /* Compute parameters for interactions between i and j atoms */
430             qq00             = _mm_mul_ps(iq0,jq0);
431
432             /* Calculate table index by multiplying r with table scale and truncate to integer */
433             rt               = _mm_mul_ps(r00,vftabscale);
434             vfitab           = _mm_cvttps_epi32(rt);
435 #ifdef __XOP__
436             vfeps            = _mm_frcz_ps(rt);
437 #else
438             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
439 #endif
440             twovfeps         = _mm_add_ps(vfeps,vfeps);
441             vfitab           = _mm_slli_epi32(vfitab,2);
442
443             /* CUBIC SPLINE TABLE ELECTROSTATICS */
444             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
445             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
446             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
447             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
448             _MM_TRANSPOSE4_PS(Y,F,G,H);
449             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
450             VV               = _mm_macc_ps(vfeps,Fp,Y);
451             velec            = _mm_mul_ps(qq00,VV);
452             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
453             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
454
455             /* Update potential sum for this i atom from the interaction with this j atom. */
456             velec            = _mm_andnot_ps(dummy_mask,velec);
457             velecsum         = _mm_add_ps(velecsum,velec);
458
459             fscal            = felec;
460
461             fscal            = _mm_andnot_ps(dummy_mask,fscal);
462
463              /* Update vectorial force */
464             fix0             = _mm_macc_ps(dx00,fscal,fix0);
465             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
466             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
467
468             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
469             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
470             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
471
472             /**************************
473              * CALCULATE INTERACTIONS *
474              **************************/
475
476             r10              = _mm_mul_ps(rsq10,rinv10);
477             r10              = _mm_andnot_ps(dummy_mask,r10);
478
479             /* Compute parameters for interactions between i and j atoms */
480             qq10             = _mm_mul_ps(iq1,jq0);
481
482             /* Calculate table index by multiplying r with table scale and truncate to integer */
483             rt               = _mm_mul_ps(r10,vftabscale);
484             vfitab           = _mm_cvttps_epi32(rt);
485 #ifdef __XOP__
486             vfeps            = _mm_frcz_ps(rt);
487 #else
488             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
489 #endif
490             twovfeps         = _mm_add_ps(vfeps,vfeps);
491             vfitab           = _mm_slli_epi32(vfitab,2);
492
493             /* CUBIC SPLINE TABLE ELECTROSTATICS */
494             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
495             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
496             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
497             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
498             _MM_TRANSPOSE4_PS(Y,F,G,H);
499             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
500             VV               = _mm_macc_ps(vfeps,Fp,Y);
501             velec            = _mm_mul_ps(qq10,VV);
502             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
503             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
504
505             /* Update potential sum for this i atom from the interaction with this j atom. */
506             velec            = _mm_andnot_ps(dummy_mask,velec);
507             velecsum         = _mm_add_ps(velecsum,velec);
508
509             fscal            = felec;
510
511             fscal            = _mm_andnot_ps(dummy_mask,fscal);
512
513              /* Update vectorial force */
514             fix1             = _mm_macc_ps(dx10,fscal,fix1);
515             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
516             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
517
518             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
519             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
520             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
521
522             /**************************
523              * CALCULATE INTERACTIONS *
524              **************************/
525
526             r20              = _mm_mul_ps(rsq20,rinv20);
527             r20              = _mm_andnot_ps(dummy_mask,r20);
528
529             /* Compute parameters for interactions between i and j atoms */
530             qq20             = _mm_mul_ps(iq2,jq0);
531
532             /* Calculate table index by multiplying r with table scale and truncate to integer */
533             rt               = _mm_mul_ps(r20,vftabscale);
534             vfitab           = _mm_cvttps_epi32(rt);
535 #ifdef __XOP__
536             vfeps            = _mm_frcz_ps(rt);
537 #else
538             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
539 #endif
540             twovfeps         = _mm_add_ps(vfeps,vfeps);
541             vfitab           = _mm_slli_epi32(vfitab,2);
542
543             /* CUBIC SPLINE TABLE ELECTROSTATICS */
544             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
545             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
546             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
547             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
548             _MM_TRANSPOSE4_PS(Y,F,G,H);
549             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
550             VV               = _mm_macc_ps(vfeps,Fp,Y);
551             velec            = _mm_mul_ps(qq20,VV);
552             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
553             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
554
555             /* Update potential sum for this i atom from the interaction with this j atom. */
556             velec            = _mm_andnot_ps(dummy_mask,velec);
557             velecsum         = _mm_add_ps(velecsum,velec);
558
559             fscal            = felec;
560
561             fscal            = _mm_andnot_ps(dummy_mask,fscal);
562
563              /* Update vectorial force */
564             fix2             = _mm_macc_ps(dx20,fscal,fix2);
565             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
566             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
567
568             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
569             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
570             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
571
572             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
573             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
574             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
575             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
576
577             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
578
579             /* Inner loop uses 141 flops */
580         }
581
582         /* End of innermost loop */
583
584         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
585                                               f+i_coord_offset,fshift+i_shift_offset);
586
587         ggid                        = gid[iidx];
588         /* Update potential energies */
589         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
590
591         /* Increment number of inner iterations */
592         inneriter                  += j_index_end - j_index_start;
593
594         /* Outer loop uses 19 flops */
595     }
596
597     /* Increment number of outer iterations */
598     outeriter        += nri;
599
600     /* Update outer/inner flops */
601
602     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*141);
603 }
604 /*
605  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW3P1_F_avx_128_fma_single
606  * Electrostatics interaction: CubicSplineTable
607  * VdW interaction:            None
608  * Geometry:                   Water3-Particle
609  * Calculate force/pot:        Force
610  */
611 void
612 nb_kernel_ElecCSTab_VdwNone_GeomW3P1_F_avx_128_fma_single
613                     (t_nblist                    * gmx_restrict       nlist,
614                      rvec                        * gmx_restrict          xx,
615                      rvec                        * gmx_restrict          ff,
616                      struct t_forcerec           * gmx_restrict          fr,
617                      t_mdatoms                   * gmx_restrict     mdatoms,
618                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
619                      t_nrnb                      * gmx_restrict        nrnb)
620 {
621     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
622      * just 0 for non-waters.
623      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
624      * jnr indices corresponding to data put in the four positions in the SIMD register.
625      */
626     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
627     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
628     int              jnrA,jnrB,jnrC,jnrD;
629     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
630     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
631     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
632     real             rcutoff_scalar;
633     real             *shiftvec,*fshift,*x,*f;
634     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
635     real             scratch[4*DIM];
636     __m128           fscal,rcutoff,rcutoff2,jidxall;
637     int              vdwioffset0;
638     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
639     int              vdwioffset1;
640     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
641     int              vdwioffset2;
642     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
643     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
644     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
645     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
646     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
647     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
648     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
649     real             *charge;
650     __m128i          vfitab;
651     __m128i          ifour       = _mm_set1_epi32(4);
652     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
653     real             *vftab;
654     __m128           dummy_mask,cutoff_mask;
655     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
656     __m128           one     = _mm_set1_ps(1.0);
657     __m128           two     = _mm_set1_ps(2.0);
658     x                = xx[0];
659     f                = ff[0];
660
661     nri              = nlist->nri;
662     iinr             = nlist->iinr;
663     jindex           = nlist->jindex;
664     jjnr             = nlist->jjnr;
665     shiftidx         = nlist->shift;
666     gid              = nlist->gid;
667     shiftvec         = fr->shift_vec[0];
668     fshift           = fr->fshift[0];
669     facel            = _mm_set1_ps(fr->ic->epsfac);
670     charge           = mdatoms->chargeA;
671
672     vftab            = kernel_data->table_elec->data;
673     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
674
675     /* Setup water-specific parameters */
676     inr              = nlist->iinr[0];
677     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
678     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
679     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
680
681     /* Avoid stupid compiler warnings */
682     jnrA = jnrB = jnrC = jnrD = 0;
683     j_coord_offsetA = 0;
684     j_coord_offsetB = 0;
685     j_coord_offsetC = 0;
686     j_coord_offsetD = 0;
687
688     outeriter        = 0;
689     inneriter        = 0;
690
691     for(iidx=0;iidx<4*DIM;iidx++)
692     {
693         scratch[iidx] = 0.0;
694     }
695
696     /* Start outer loop over neighborlists */
697     for(iidx=0; iidx<nri; iidx++)
698     {
699         /* Load shift vector for this list */
700         i_shift_offset   = DIM*shiftidx[iidx];
701
702         /* Load limits for loop over neighbors */
703         j_index_start    = jindex[iidx];
704         j_index_end      = jindex[iidx+1];
705
706         /* Get outer coordinate index */
707         inr              = iinr[iidx];
708         i_coord_offset   = DIM*inr;
709
710         /* Load i particle coords and add shift vector */
711         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
712                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
713
714         fix0             = _mm_setzero_ps();
715         fiy0             = _mm_setzero_ps();
716         fiz0             = _mm_setzero_ps();
717         fix1             = _mm_setzero_ps();
718         fiy1             = _mm_setzero_ps();
719         fiz1             = _mm_setzero_ps();
720         fix2             = _mm_setzero_ps();
721         fiy2             = _mm_setzero_ps();
722         fiz2             = _mm_setzero_ps();
723
724         /* Start inner kernel loop */
725         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
726         {
727
728             /* Get j neighbor index, and coordinate index */
729             jnrA             = jjnr[jidx];
730             jnrB             = jjnr[jidx+1];
731             jnrC             = jjnr[jidx+2];
732             jnrD             = jjnr[jidx+3];
733             j_coord_offsetA  = DIM*jnrA;
734             j_coord_offsetB  = DIM*jnrB;
735             j_coord_offsetC  = DIM*jnrC;
736             j_coord_offsetD  = DIM*jnrD;
737
738             /* load j atom coordinates */
739             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
740                                               x+j_coord_offsetC,x+j_coord_offsetD,
741                                               &jx0,&jy0,&jz0);
742
743             /* Calculate displacement vector */
744             dx00             = _mm_sub_ps(ix0,jx0);
745             dy00             = _mm_sub_ps(iy0,jy0);
746             dz00             = _mm_sub_ps(iz0,jz0);
747             dx10             = _mm_sub_ps(ix1,jx0);
748             dy10             = _mm_sub_ps(iy1,jy0);
749             dz10             = _mm_sub_ps(iz1,jz0);
750             dx20             = _mm_sub_ps(ix2,jx0);
751             dy20             = _mm_sub_ps(iy2,jy0);
752             dz20             = _mm_sub_ps(iz2,jz0);
753
754             /* Calculate squared distance and things based on it */
755             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
756             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
757             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
758
759             rinv00           = avx128fma_invsqrt_f(rsq00);
760             rinv10           = avx128fma_invsqrt_f(rsq10);
761             rinv20           = avx128fma_invsqrt_f(rsq20);
762
763             /* Load parameters for j particles */
764             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
765                                                               charge+jnrC+0,charge+jnrD+0);
766
767             fjx0             = _mm_setzero_ps();
768             fjy0             = _mm_setzero_ps();
769             fjz0             = _mm_setzero_ps();
770
771             /**************************
772              * CALCULATE INTERACTIONS *
773              **************************/
774
775             r00              = _mm_mul_ps(rsq00,rinv00);
776
777             /* Compute parameters for interactions between i and j atoms */
778             qq00             = _mm_mul_ps(iq0,jq0);
779
780             /* Calculate table index by multiplying r with table scale and truncate to integer */
781             rt               = _mm_mul_ps(r00,vftabscale);
782             vfitab           = _mm_cvttps_epi32(rt);
783 #ifdef __XOP__
784             vfeps            = _mm_frcz_ps(rt);
785 #else
786             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
787 #endif
788             twovfeps         = _mm_add_ps(vfeps,vfeps);
789             vfitab           = _mm_slli_epi32(vfitab,2);
790
791             /* CUBIC SPLINE TABLE ELECTROSTATICS */
792             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
793             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
794             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
795             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
796             _MM_TRANSPOSE4_PS(Y,F,G,H);
797             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
798             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
799             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
800
801             fscal            = felec;
802
803              /* Update vectorial force */
804             fix0             = _mm_macc_ps(dx00,fscal,fix0);
805             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
806             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
807
808             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
809             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
810             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
811
812             /**************************
813              * CALCULATE INTERACTIONS *
814              **************************/
815
816             r10              = _mm_mul_ps(rsq10,rinv10);
817
818             /* Compute parameters for interactions between i and j atoms */
819             qq10             = _mm_mul_ps(iq1,jq0);
820
821             /* Calculate table index by multiplying r with table scale and truncate to integer */
822             rt               = _mm_mul_ps(r10,vftabscale);
823             vfitab           = _mm_cvttps_epi32(rt);
824 #ifdef __XOP__
825             vfeps            = _mm_frcz_ps(rt);
826 #else
827             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
828 #endif
829             twovfeps         = _mm_add_ps(vfeps,vfeps);
830             vfitab           = _mm_slli_epi32(vfitab,2);
831
832             /* CUBIC SPLINE TABLE ELECTROSTATICS */
833             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
834             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
835             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
836             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
837             _MM_TRANSPOSE4_PS(Y,F,G,H);
838             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
839             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
840             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
841
842             fscal            = felec;
843
844              /* Update vectorial force */
845             fix1             = _mm_macc_ps(dx10,fscal,fix1);
846             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
847             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
848
849             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
850             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
851             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
852
853             /**************************
854              * CALCULATE INTERACTIONS *
855              **************************/
856
857             r20              = _mm_mul_ps(rsq20,rinv20);
858
859             /* Compute parameters for interactions between i and j atoms */
860             qq20             = _mm_mul_ps(iq2,jq0);
861
862             /* Calculate table index by multiplying r with table scale and truncate to integer */
863             rt               = _mm_mul_ps(r20,vftabscale);
864             vfitab           = _mm_cvttps_epi32(rt);
865 #ifdef __XOP__
866             vfeps            = _mm_frcz_ps(rt);
867 #else
868             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
869 #endif
870             twovfeps         = _mm_add_ps(vfeps,vfeps);
871             vfitab           = _mm_slli_epi32(vfitab,2);
872
873             /* CUBIC SPLINE TABLE ELECTROSTATICS */
874             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
875             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
876             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
877             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
878             _MM_TRANSPOSE4_PS(Y,F,G,H);
879             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
880             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
881             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
882
883             fscal            = felec;
884
885              /* Update vectorial force */
886             fix2             = _mm_macc_ps(dx20,fscal,fix2);
887             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
888             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
889
890             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
891             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
892             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
893
894             fjptrA             = f+j_coord_offsetA;
895             fjptrB             = f+j_coord_offsetB;
896             fjptrC             = f+j_coord_offsetC;
897             fjptrD             = f+j_coord_offsetD;
898
899             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
900
901             /* Inner loop uses 126 flops */
902         }
903
904         if(jidx<j_index_end)
905         {
906
907             /* Get j neighbor index, and coordinate index */
908             jnrlistA         = jjnr[jidx];
909             jnrlistB         = jjnr[jidx+1];
910             jnrlistC         = jjnr[jidx+2];
911             jnrlistD         = jjnr[jidx+3];
912             /* Sign of each element will be negative for non-real atoms.
913              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
914              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
915              */
916             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
917             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
918             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
919             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
920             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
921             j_coord_offsetA  = DIM*jnrA;
922             j_coord_offsetB  = DIM*jnrB;
923             j_coord_offsetC  = DIM*jnrC;
924             j_coord_offsetD  = DIM*jnrD;
925
926             /* load j atom coordinates */
927             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
928                                               x+j_coord_offsetC,x+j_coord_offsetD,
929                                               &jx0,&jy0,&jz0);
930
931             /* Calculate displacement vector */
932             dx00             = _mm_sub_ps(ix0,jx0);
933             dy00             = _mm_sub_ps(iy0,jy0);
934             dz00             = _mm_sub_ps(iz0,jz0);
935             dx10             = _mm_sub_ps(ix1,jx0);
936             dy10             = _mm_sub_ps(iy1,jy0);
937             dz10             = _mm_sub_ps(iz1,jz0);
938             dx20             = _mm_sub_ps(ix2,jx0);
939             dy20             = _mm_sub_ps(iy2,jy0);
940             dz20             = _mm_sub_ps(iz2,jz0);
941
942             /* Calculate squared distance and things based on it */
943             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
944             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
945             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
946
947             rinv00           = avx128fma_invsqrt_f(rsq00);
948             rinv10           = avx128fma_invsqrt_f(rsq10);
949             rinv20           = avx128fma_invsqrt_f(rsq20);
950
951             /* Load parameters for j particles */
952             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
953                                                               charge+jnrC+0,charge+jnrD+0);
954
955             fjx0             = _mm_setzero_ps();
956             fjy0             = _mm_setzero_ps();
957             fjz0             = _mm_setzero_ps();
958
959             /**************************
960              * CALCULATE INTERACTIONS *
961              **************************/
962
963             r00              = _mm_mul_ps(rsq00,rinv00);
964             r00              = _mm_andnot_ps(dummy_mask,r00);
965
966             /* Compute parameters for interactions between i and j atoms */
967             qq00             = _mm_mul_ps(iq0,jq0);
968
969             /* Calculate table index by multiplying r with table scale and truncate to integer */
970             rt               = _mm_mul_ps(r00,vftabscale);
971             vfitab           = _mm_cvttps_epi32(rt);
972 #ifdef __XOP__
973             vfeps            = _mm_frcz_ps(rt);
974 #else
975             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
976 #endif
977             twovfeps         = _mm_add_ps(vfeps,vfeps);
978             vfitab           = _mm_slli_epi32(vfitab,2);
979
980             /* CUBIC SPLINE TABLE ELECTROSTATICS */
981             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
982             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
983             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
984             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
985             _MM_TRANSPOSE4_PS(Y,F,G,H);
986             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
987             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
988             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
989
990             fscal            = felec;
991
992             fscal            = _mm_andnot_ps(dummy_mask,fscal);
993
994              /* Update vectorial force */
995             fix0             = _mm_macc_ps(dx00,fscal,fix0);
996             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
997             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
998
999             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1000             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1001             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1002
1003             /**************************
1004              * CALCULATE INTERACTIONS *
1005              **************************/
1006
1007             r10              = _mm_mul_ps(rsq10,rinv10);
1008             r10              = _mm_andnot_ps(dummy_mask,r10);
1009
1010             /* Compute parameters for interactions between i and j atoms */
1011             qq10             = _mm_mul_ps(iq1,jq0);
1012
1013             /* Calculate table index by multiplying r with table scale and truncate to integer */
1014             rt               = _mm_mul_ps(r10,vftabscale);
1015             vfitab           = _mm_cvttps_epi32(rt);
1016 #ifdef __XOP__
1017             vfeps            = _mm_frcz_ps(rt);
1018 #else
1019             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1020 #endif
1021             twovfeps         = _mm_add_ps(vfeps,vfeps);
1022             vfitab           = _mm_slli_epi32(vfitab,2);
1023
1024             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1025             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1026             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1027             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1028             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1029             _MM_TRANSPOSE4_PS(Y,F,G,H);
1030             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1031             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1032             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1033
1034             fscal            = felec;
1035
1036             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1037
1038              /* Update vectorial force */
1039             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1040             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1041             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1042
1043             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1044             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1045             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1046
1047             /**************************
1048              * CALCULATE INTERACTIONS *
1049              **************************/
1050
1051             r20              = _mm_mul_ps(rsq20,rinv20);
1052             r20              = _mm_andnot_ps(dummy_mask,r20);
1053
1054             /* Compute parameters for interactions between i and j atoms */
1055             qq20             = _mm_mul_ps(iq2,jq0);
1056
1057             /* Calculate table index by multiplying r with table scale and truncate to integer */
1058             rt               = _mm_mul_ps(r20,vftabscale);
1059             vfitab           = _mm_cvttps_epi32(rt);
1060 #ifdef __XOP__
1061             vfeps            = _mm_frcz_ps(rt);
1062 #else
1063             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1064 #endif
1065             twovfeps         = _mm_add_ps(vfeps,vfeps);
1066             vfitab           = _mm_slli_epi32(vfitab,2);
1067
1068             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1069             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1070             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1071             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1072             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1073             _MM_TRANSPOSE4_PS(Y,F,G,H);
1074             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1075             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1076             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1077
1078             fscal            = felec;
1079
1080             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1081
1082              /* Update vectorial force */
1083             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1084             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1085             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1086
1087             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1088             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1089             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1090
1091             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1092             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1093             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1094             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1095
1096             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1097
1098             /* Inner loop uses 129 flops */
1099         }
1100
1101         /* End of innermost loop */
1102
1103         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1104                                               f+i_coord_offset,fshift+i_shift_offset);
1105
1106         /* Increment number of inner iterations */
1107         inneriter                  += j_index_end - j_index_start;
1108
1109         /* Outer loop uses 18 flops */
1110     }
1111
1112     /* Increment number of outer iterations */
1113     outeriter        += nri;
1114
1115     /* Update outer/inner flops */
1116
1117     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*129);
1118 }