3410075d6aac36d7d30a961cfb04ea336a822efc
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwNone_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW3P1_VF_avx_128_fma_single
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            None
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwNone_GeomW3P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     __m128i          vfitab;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
99     real             *vftab;
100     __m128           dummy_mask,cutoff_mask;
101     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
102     __m128           one     = _mm_set1_ps(1.0);
103     __m128           two     = _mm_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_ps(fr->epsfac);
116     charge           = mdatoms->chargeA;
117
118     vftab            = kernel_data->table_elec->data;
119     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
120
121     /* Setup water-specific parameters */
122     inr              = nlist->iinr[0];
123     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
124     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
125     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = jnrC = jnrD = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131     j_coord_offsetC = 0;
132     j_coord_offsetD = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     for(iidx=0;iidx<4*DIM;iidx++)
138     {
139         scratch[iidx] = 0.0;
140     }
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
158                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
159
160         fix0             = _mm_setzero_ps();
161         fiy0             = _mm_setzero_ps();
162         fiz0             = _mm_setzero_ps();
163         fix1             = _mm_setzero_ps();
164         fiy1             = _mm_setzero_ps();
165         fiz1             = _mm_setzero_ps();
166         fix2             = _mm_setzero_ps();
167         fiy2             = _mm_setzero_ps();
168         fiz2             = _mm_setzero_ps();
169
170         /* Reset potential sums */
171         velecsum         = _mm_setzero_ps();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             jnrC             = jjnr[jidx+2];
181             jnrD             = jjnr[jidx+3];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184             j_coord_offsetC  = DIM*jnrC;
185             j_coord_offsetD  = DIM*jnrD;
186
187             /* load j atom coordinates */
188             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
189                                               x+j_coord_offsetC,x+j_coord_offsetD,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _mm_sub_ps(ix0,jx0);
194             dy00             = _mm_sub_ps(iy0,jy0);
195             dz00             = _mm_sub_ps(iz0,jz0);
196             dx10             = _mm_sub_ps(ix1,jx0);
197             dy10             = _mm_sub_ps(iy1,jy0);
198             dz10             = _mm_sub_ps(iz1,jz0);
199             dx20             = _mm_sub_ps(ix2,jx0);
200             dy20             = _mm_sub_ps(iy2,jy0);
201             dz20             = _mm_sub_ps(iz2,jz0);
202
203             /* Calculate squared distance and things based on it */
204             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
205             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
206             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
207
208             rinv00           = gmx_mm_invsqrt_ps(rsq00);
209             rinv10           = gmx_mm_invsqrt_ps(rsq10);
210             rinv20           = gmx_mm_invsqrt_ps(rsq20);
211
212             /* Load parameters for j particles */
213             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
214                                                               charge+jnrC+0,charge+jnrD+0);
215
216             fjx0             = _mm_setzero_ps();
217             fjy0             = _mm_setzero_ps();
218             fjz0             = _mm_setzero_ps();
219
220             /**************************
221              * CALCULATE INTERACTIONS *
222              **************************/
223
224             r00              = _mm_mul_ps(rsq00,rinv00);
225
226             /* Compute parameters for interactions between i and j atoms */
227             qq00             = _mm_mul_ps(iq0,jq0);
228
229             /* Calculate table index by multiplying r with table scale and truncate to integer */
230             rt               = _mm_mul_ps(r00,vftabscale);
231             vfitab           = _mm_cvttps_epi32(rt);
232 #ifdef __XOP__
233             vfeps            = _mm_frcz_ps(rt);
234 #else
235             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
236 #endif
237             twovfeps         = _mm_add_ps(vfeps,vfeps);
238             vfitab           = _mm_slli_epi32(vfitab,2);
239
240             /* CUBIC SPLINE TABLE ELECTROSTATICS */
241             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
242             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
243             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
244             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
245             _MM_TRANSPOSE4_PS(Y,F,G,H);
246             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
247             VV               = _mm_macc_ps(vfeps,Fp,Y);
248             velec            = _mm_mul_ps(qq00,VV);
249             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
250             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
251
252             /* Update potential sum for this i atom from the interaction with this j atom. */
253             velecsum         = _mm_add_ps(velecsum,velec);
254
255             fscal            = felec;
256
257              /* Update vectorial force */
258             fix0             = _mm_macc_ps(dx00,fscal,fix0);
259             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
260             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
261
262             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
263             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
264             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
265
266             /**************************
267              * CALCULATE INTERACTIONS *
268              **************************/
269
270             r10              = _mm_mul_ps(rsq10,rinv10);
271
272             /* Compute parameters for interactions between i and j atoms */
273             qq10             = _mm_mul_ps(iq1,jq0);
274
275             /* Calculate table index by multiplying r with table scale and truncate to integer */
276             rt               = _mm_mul_ps(r10,vftabscale);
277             vfitab           = _mm_cvttps_epi32(rt);
278 #ifdef __XOP__
279             vfeps            = _mm_frcz_ps(rt);
280 #else
281             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
282 #endif
283             twovfeps         = _mm_add_ps(vfeps,vfeps);
284             vfitab           = _mm_slli_epi32(vfitab,2);
285
286             /* CUBIC SPLINE TABLE ELECTROSTATICS */
287             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
288             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
289             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
290             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
291             _MM_TRANSPOSE4_PS(Y,F,G,H);
292             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
293             VV               = _mm_macc_ps(vfeps,Fp,Y);
294             velec            = _mm_mul_ps(qq10,VV);
295             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
296             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
297
298             /* Update potential sum for this i atom from the interaction with this j atom. */
299             velecsum         = _mm_add_ps(velecsum,velec);
300
301             fscal            = felec;
302
303              /* Update vectorial force */
304             fix1             = _mm_macc_ps(dx10,fscal,fix1);
305             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
306             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
307
308             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
309             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
310             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             r20              = _mm_mul_ps(rsq20,rinv20);
317
318             /* Compute parameters for interactions between i and j atoms */
319             qq20             = _mm_mul_ps(iq2,jq0);
320
321             /* Calculate table index by multiplying r with table scale and truncate to integer */
322             rt               = _mm_mul_ps(r20,vftabscale);
323             vfitab           = _mm_cvttps_epi32(rt);
324 #ifdef __XOP__
325             vfeps            = _mm_frcz_ps(rt);
326 #else
327             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
328 #endif
329             twovfeps         = _mm_add_ps(vfeps,vfeps);
330             vfitab           = _mm_slli_epi32(vfitab,2);
331
332             /* CUBIC SPLINE TABLE ELECTROSTATICS */
333             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
334             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
335             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
336             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
337             _MM_TRANSPOSE4_PS(Y,F,G,H);
338             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
339             VV               = _mm_macc_ps(vfeps,Fp,Y);
340             velec            = _mm_mul_ps(qq20,VV);
341             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
342             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velecsum         = _mm_add_ps(velecsum,velec);
346
347             fscal            = felec;
348
349              /* Update vectorial force */
350             fix2             = _mm_macc_ps(dx20,fscal,fix2);
351             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
352             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
353
354             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
355             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
356             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
357
358             fjptrA             = f+j_coord_offsetA;
359             fjptrB             = f+j_coord_offsetB;
360             fjptrC             = f+j_coord_offsetC;
361             fjptrD             = f+j_coord_offsetD;
362
363             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
364
365             /* Inner loop uses 138 flops */
366         }
367
368         if(jidx<j_index_end)
369         {
370
371             /* Get j neighbor index, and coordinate index */
372             jnrlistA         = jjnr[jidx];
373             jnrlistB         = jjnr[jidx+1];
374             jnrlistC         = jjnr[jidx+2];
375             jnrlistD         = jjnr[jidx+3];
376             /* Sign of each element will be negative for non-real atoms.
377              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
378              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
379              */
380             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
381             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
382             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
383             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
384             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
385             j_coord_offsetA  = DIM*jnrA;
386             j_coord_offsetB  = DIM*jnrB;
387             j_coord_offsetC  = DIM*jnrC;
388             j_coord_offsetD  = DIM*jnrD;
389
390             /* load j atom coordinates */
391             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
392                                               x+j_coord_offsetC,x+j_coord_offsetD,
393                                               &jx0,&jy0,&jz0);
394
395             /* Calculate displacement vector */
396             dx00             = _mm_sub_ps(ix0,jx0);
397             dy00             = _mm_sub_ps(iy0,jy0);
398             dz00             = _mm_sub_ps(iz0,jz0);
399             dx10             = _mm_sub_ps(ix1,jx0);
400             dy10             = _mm_sub_ps(iy1,jy0);
401             dz10             = _mm_sub_ps(iz1,jz0);
402             dx20             = _mm_sub_ps(ix2,jx0);
403             dy20             = _mm_sub_ps(iy2,jy0);
404             dz20             = _mm_sub_ps(iz2,jz0);
405
406             /* Calculate squared distance and things based on it */
407             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
408             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
409             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
410
411             rinv00           = gmx_mm_invsqrt_ps(rsq00);
412             rinv10           = gmx_mm_invsqrt_ps(rsq10);
413             rinv20           = gmx_mm_invsqrt_ps(rsq20);
414
415             /* Load parameters for j particles */
416             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
417                                                               charge+jnrC+0,charge+jnrD+0);
418
419             fjx0             = _mm_setzero_ps();
420             fjy0             = _mm_setzero_ps();
421             fjz0             = _mm_setzero_ps();
422
423             /**************************
424              * CALCULATE INTERACTIONS *
425              **************************/
426
427             r00              = _mm_mul_ps(rsq00,rinv00);
428             r00              = _mm_andnot_ps(dummy_mask,r00);
429
430             /* Compute parameters for interactions between i and j atoms */
431             qq00             = _mm_mul_ps(iq0,jq0);
432
433             /* Calculate table index by multiplying r with table scale and truncate to integer */
434             rt               = _mm_mul_ps(r00,vftabscale);
435             vfitab           = _mm_cvttps_epi32(rt);
436 #ifdef __XOP__
437             vfeps            = _mm_frcz_ps(rt);
438 #else
439             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
440 #endif
441             twovfeps         = _mm_add_ps(vfeps,vfeps);
442             vfitab           = _mm_slli_epi32(vfitab,2);
443
444             /* CUBIC SPLINE TABLE ELECTROSTATICS */
445             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
446             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
447             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
448             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
449             _MM_TRANSPOSE4_PS(Y,F,G,H);
450             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
451             VV               = _mm_macc_ps(vfeps,Fp,Y);
452             velec            = _mm_mul_ps(qq00,VV);
453             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
454             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
455
456             /* Update potential sum for this i atom from the interaction with this j atom. */
457             velec            = _mm_andnot_ps(dummy_mask,velec);
458             velecsum         = _mm_add_ps(velecsum,velec);
459
460             fscal            = felec;
461
462             fscal            = _mm_andnot_ps(dummy_mask,fscal);
463
464              /* Update vectorial force */
465             fix0             = _mm_macc_ps(dx00,fscal,fix0);
466             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
467             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
468
469             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
470             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
471             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
472
473             /**************************
474              * CALCULATE INTERACTIONS *
475              **************************/
476
477             r10              = _mm_mul_ps(rsq10,rinv10);
478             r10              = _mm_andnot_ps(dummy_mask,r10);
479
480             /* Compute parameters for interactions between i and j atoms */
481             qq10             = _mm_mul_ps(iq1,jq0);
482
483             /* Calculate table index by multiplying r with table scale and truncate to integer */
484             rt               = _mm_mul_ps(r10,vftabscale);
485             vfitab           = _mm_cvttps_epi32(rt);
486 #ifdef __XOP__
487             vfeps            = _mm_frcz_ps(rt);
488 #else
489             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
490 #endif
491             twovfeps         = _mm_add_ps(vfeps,vfeps);
492             vfitab           = _mm_slli_epi32(vfitab,2);
493
494             /* CUBIC SPLINE TABLE ELECTROSTATICS */
495             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
496             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
497             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
498             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
499             _MM_TRANSPOSE4_PS(Y,F,G,H);
500             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
501             VV               = _mm_macc_ps(vfeps,Fp,Y);
502             velec            = _mm_mul_ps(qq10,VV);
503             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
504             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
505
506             /* Update potential sum for this i atom from the interaction with this j atom. */
507             velec            = _mm_andnot_ps(dummy_mask,velec);
508             velecsum         = _mm_add_ps(velecsum,velec);
509
510             fscal            = felec;
511
512             fscal            = _mm_andnot_ps(dummy_mask,fscal);
513
514              /* Update vectorial force */
515             fix1             = _mm_macc_ps(dx10,fscal,fix1);
516             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
517             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
518
519             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
520             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
521             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
522
523             /**************************
524              * CALCULATE INTERACTIONS *
525              **************************/
526
527             r20              = _mm_mul_ps(rsq20,rinv20);
528             r20              = _mm_andnot_ps(dummy_mask,r20);
529
530             /* Compute parameters for interactions between i and j atoms */
531             qq20             = _mm_mul_ps(iq2,jq0);
532
533             /* Calculate table index by multiplying r with table scale and truncate to integer */
534             rt               = _mm_mul_ps(r20,vftabscale);
535             vfitab           = _mm_cvttps_epi32(rt);
536 #ifdef __XOP__
537             vfeps            = _mm_frcz_ps(rt);
538 #else
539             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
540 #endif
541             twovfeps         = _mm_add_ps(vfeps,vfeps);
542             vfitab           = _mm_slli_epi32(vfitab,2);
543
544             /* CUBIC SPLINE TABLE ELECTROSTATICS */
545             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
546             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
547             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
548             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
549             _MM_TRANSPOSE4_PS(Y,F,G,H);
550             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
551             VV               = _mm_macc_ps(vfeps,Fp,Y);
552             velec            = _mm_mul_ps(qq20,VV);
553             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
554             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
555
556             /* Update potential sum for this i atom from the interaction with this j atom. */
557             velec            = _mm_andnot_ps(dummy_mask,velec);
558             velecsum         = _mm_add_ps(velecsum,velec);
559
560             fscal            = felec;
561
562             fscal            = _mm_andnot_ps(dummy_mask,fscal);
563
564              /* Update vectorial force */
565             fix2             = _mm_macc_ps(dx20,fscal,fix2);
566             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
567             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
568
569             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
570             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
571             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
572
573             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
574             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
575             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
576             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
577
578             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
579
580             /* Inner loop uses 141 flops */
581         }
582
583         /* End of innermost loop */
584
585         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
586                                               f+i_coord_offset,fshift+i_shift_offset);
587
588         ggid                        = gid[iidx];
589         /* Update potential energies */
590         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
591
592         /* Increment number of inner iterations */
593         inneriter                  += j_index_end - j_index_start;
594
595         /* Outer loop uses 19 flops */
596     }
597
598     /* Increment number of outer iterations */
599     outeriter        += nri;
600
601     /* Update outer/inner flops */
602
603     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*141);
604 }
605 /*
606  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW3P1_F_avx_128_fma_single
607  * Electrostatics interaction: CubicSplineTable
608  * VdW interaction:            None
609  * Geometry:                   Water3-Particle
610  * Calculate force/pot:        Force
611  */
612 void
613 nb_kernel_ElecCSTab_VdwNone_GeomW3P1_F_avx_128_fma_single
614                     (t_nblist                    * gmx_restrict       nlist,
615                      rvec                        * gmx_restrict          xx,
616                      rvec                        * gmx_restrict          ff,
617                      t_forcerec                  * gmx_restrict          fr,
618                      t_mdatoms                   * gmx_restrict     mdatoms,
619                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
620                      t_nrnb                      * gmx_restrict        nrnb)
621 {
622     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
623      * just 0 for non-waters.
624      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
625      * jnr indices corresponding to data put in the four positions in the SIMD register.
626      */
627     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
628     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
629     int              jnrA,jnrB,jnrC,jnrD;
630     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
631     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
632     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
633     real             rcutoff_scalar;
634     real             *shiftvec,*fshift,*x,*f;
635     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
636     real             scratch[4*DIM];
637     __m128           fscal,rcutoff,rcutoff2,jidxall;
638     int              vdwioffset0;
639     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
640     int              vdwioffset1;
641     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
642     int              vdwioffset2;
643     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
644     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
645     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
646     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
647     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
648     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
649     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
650     real             *charge;
651     __m128i          vfitab;
652     __m128i          ifour       = _mm_set1_epi32(4);
653     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
654     real             *vftab;
655     __m128           dummy_mask,cutoff_mask;
656     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
657     __m128           one     = _mm_set1_ps(1.0);
658     __m128           two     = _mm_set1_ps(2.0);
659     x                = xx[0];
660     f                = ff[0];
661
662     nri              = nlist->nri;
663     iinr             = nlist->iinr;
664     jindex           = nlist->jindex;
665     jjnr             = nlist->jjnr;
666     shiftidx         = nlist->shift;
667     gid              = nlist->gid;
668     shiftvec         = fr->shift_vec[0];
669     fshift           = fr->fshift[0];
670     facel            = _mm_set1_ps(fr->epsfac);
671     charge           = mdatoms->chargeA;
672
673     vftab            = kernel_data->table_elec->data;
674     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
675
676     /* Setup water-specific parameters */
677     inr              = nlist->iinr[0];
678     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
679     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
680     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
681
682     /* Avoid stupid compiler warnings */
683     jnrA = jnrB = jnrC = jnrD = 0;
684     j_coord_offsetA = 0;
685     j_coord_offsetB = 0;
686     j_coord_offsetC = 0;
687     j_coord_offsetD = 0;
688
689     outeriter        = 0;
690     inneriter        = 0;
691
692     for(iidx=0;iidx<4*DIM;iidx++)
693     {
694         scratch[iidx] = 0.0;
695     }
696
697     /* Start outer loop over neighborlists */
698     for(iidx=0; iidx<nri; iidx++)
699     {
700         /* Load shift vector for this list */
701         i_shift_offset   = DIM*shiftidx[iidx];
702
703         /* Load limits for loop over neighbors */
704         j_index_start    = jindex[iidx];
705         j_index_end      = jindex[iidx+1];
706
707         /* Get outer coordinate index */
708         inr              = iinr[iidx];
709         i_coord_offset   = DIM*inr;
710
711         /* Load i particle coords and add shift vector */
712         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
713                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
714
715         fix0             = _mm_setzero_ps();
716         fiy0             = _mm_setzero_ps();
717         fiz0             = _mm_setzero_ps();
718         fix1             = _mm_setzero_ps();
719         fiy1             = _mm_setzero_ps();
720         fiz1             = _mm_setzero_ps();
721         fix2             = _mm_setzero_ps();
722         fiy2             = _mm_setzero_ps();
723         fiz2             = _mm_setzero_ps();
724
725         /* Start inner kernel loop */
726         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
727         {
728
729             /* Get j neighbor index, and coordinate index */
730             jnrA             = jjnr[jidx];
731             jnrB             = jjnr[jidx+1];
732             jnrC             = jjnr[jidx+2];
733             jnrD             = jjnr[jidx+3];
734             j_coord_offsetA  = DIM*jnrA;
735             j_coord_offsetB  = DIM*jnrB;
736             j_coord_offsetC  = DIM*jnrC;
737             j_coord_offsetD  = DIM*jnrD;
738
739             /* load j atom coordinates */
740             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
741                                               x+j_coord_offsetC,x+j_coord_offsetD,
742                                               &jx0,&jy0,&jz0);
743
744             /* Calculate displacement vector */
745             dx00             = _mm_sub_ps(ix0,jx0);
746             dy00             = _mm_sub_ps(iy0,jy0);
747             dz00             = _mm_sub_ps(iz0,jz0);
748             dx10             = _mm_sub_ps(ix1,jx0);
749             dy10             = _mm_sub_ps(iy1,jy0);
750             dz10             = _mm_sub_ps(iz1,jz0);
751             dx20             = _mm_sub_ps(ix2,jx0);
752             dy20             = _mm_sub_ps(iy2,jy0);
753             dz20             = _mm_sub_ps(iz2,jz0);
754
755             /* Calculate squared distance and things based on it */
756             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
757             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
758             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
759
760             rinv00           = gmx_mm_invsqrt_ps(rsq00);
761             rinv10           = gmx_mm_invsqrt_ps(rsq10);
762             rinv20           = gmx_mm_invsqrt_ps(rsq20);
763
764             /* Load parameters for j particles */
765             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
766                                                               charge+jnrC+0,charge+jnrD+0);
767
768             fjx0             = _mm_setzero_ps();
769             fjy0             = _mm_setzero_ps();
770             fjz0             = _mm_setzero_ps();
771
772             /**************************
773              * CALCULATE INTERACTIONS *
774              **************************/
775
776             r00              = _mm_mul_ps(rsq00,rinv00);
777
778             /* Compute parameters for interactions between i and j atoms */
779             qq00             = _mm_mul_ps(iq0,jq0);
780
781             /* Calculate table index by multiplying r with table scale and truncate to integer */
782             rt               = _mm_mul_ps(r00,vftabscale);
783             vfitab           = _mm_cvttps_epi32(rt);
784 #ifdef __XOP__
785             vfeps            = _mm_frcz_ps(rt);
786 #else
787             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
788 #endif
789             twovfeps         = _mm_add_ps(vfeps,vfeps);
790             vfitab           = _mm_slli_epi32(vfitab,2);
791
792             /* CUBIC SPLINE TABLE ELECTROSTATICS */
793             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
794             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
795             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
796             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
797             _MM_TRANSPOSE4_PS(Y,F,G,H);
798             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
799             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
800             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
801
802             fscal            = felec;
803
804              /* Update vectorial force */
805             fix0             = _mm_macc_ps(dx00,fscal,fix0);
806             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
807             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
808
809             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
810             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
811             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
812
813             /**************************
814              * CALCULATE INTERACTIONS *
815              **************************/
816
817             r10              = _mm_mul_ps(rsq10,rinv10);
818
819             /* Compute parameters for interactions between i and j atoms */
820             qq10             = _mm_mul_ps(iq1,jq0);
821
822             /* Calculate table index by multiplying r with table scale and truncate to integer */
823             rt               = _mm_mul_ps(r10,vftabscale);
824             vfitab           = _mm_cvttps_epi32(rt);
825 #ifdef __XOP__
826             vfeps            = _mm_frcz_ps(rt);
827 #else
828             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
829 #endif
830             twovfeps         = _mm_add_ps(vfeps,vfeps);
831             vfitab           = _mm_slli_epi32(vfitab,2);
832
833             /* CUBIC SPLINE TABLE ELECTROSTATICS */
834             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
835             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
836             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
837             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
838             _MM_TRANSPOSE4_PS(Y,F,G,H);
839             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
840             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
841             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
842
843             fscal            = felec;
844
845              /* Update vectorial force */
846             fix1             = _mm_macc_ps(dx10,fscal,fix1);
847             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
848             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
849
850             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
851             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
852             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
853
854             /**************************
855              * CALCULATE INTERACTIONS *
856              **************************/
857
858             r20              = _mm_mul_ps(rsq20,rinv20);
859
860             /* Compute parameters for interactions between i and j atoms */
861             qq20             = _mm_mul_ps(iq2,jq0);
862
863             /* Calculate table index by multiplying r with table scale and truncate to integer */
864             rt               = _mm_mul_ps(r20,vftabscale);
865             vfitab           = _mm_cvttps_epi32(rt);
866 #ifdef __XOP__
867             vfeps            = _mm_frcz_ps(rt);
868 #else
869             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
870 #endif
871             twovfeps         = _mm_add_ps(vfeps,vfeps);
872             vfitab           = _mm_slli_epi32(vfitab,2);
873
874             /* CUBIC SPLINE TABLE ELECTROSTATICS */
875             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
876             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
877             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
878             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
879             _MM_TRANSPOSE4_PS(Y,F,G,H);
880             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
881             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
882             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
883
884             fscal            = felec;
885
886              /* Update vectorial force */
887             fix2             = _mm_macc_ps(dx20,fscal,fix2);
888             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
889             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
890
891             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
892             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
893             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
894
895             fjptrA             = f+j_coord_offsetA;
896             fjptrB             = f+j_coord_offsetB;
897             fjptrC             = f+j_coord_offsetC;
898             fjptrD             = f+j_coord_offsetD;
899
900             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
901
902             /* Inner loop uses 126 flops */
903         }
904
905         if(jidx<j_index_end)
906         {
907
908             /* Get j neighbor index, and coordinate index */
909             jnrlistA         = jjnr[jidx];
910             jnrlistB         = jjnr[jidx+1];
911             jnrlistC         = jjnr[jidx+2];
912             jnrlistD         = jjnr[jidx+3];
913             /* Sign of each element will be negative for non-real atoms.
914              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
915              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
916              */
917             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
918             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
919             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
920             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
921             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
922             j_coord_offsetA  = DIM*jnrA;
923             j_coord_offsetB  = DIM*jnrB;
924             j_coord_offsetC  = DIM*jnrC;
925             j_coord_offsetD  = DIM*jnrD;
926
927             /* load j atom coordinates */
928             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
929                                               x+j_coord_offsetC,x+j_coord_offsetD,
930                                               &jx0,&jy0,&jz0);
931
932             /* Calculate displacement vector */
933             dx00             = _mm_sub_ps(ix0,jx0);
934             dy00             = _mm_sub_ps(iy0,jy0);
935             dz00             = _mm_sub_ps(iz0,jz0);
936             dx10             = _mm_sub_ps(ix1,jx0);
937             dy10             = _mm_sub_ps(iy1,jy0);
938             dz10             = _mm_sub_ps(iz1,jz0);
939             dx20             = _mm_sub_ps(ix2,jx0);
940             dy20             = _mm_sub_ps(iy2,jy0);
941             dz20             = _mm_sub_ps(iz2,jz0);
942
943             /* Calculate squared distance and things based on it */
944             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
945             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
946             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
947
948             rinv00           = gmx_mm_invsqrt_ps(rsq00);
949             rinv10           = gmx_mm_invsqrt_ps(rsq10);
950             rinv20           = gmx_mm_invsqrt_ps(rsq20);
951
952             /* Load parameters for j particles */
953             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
954                                                               charge+jnrC+0,charge+jnrD+0);
955
956             fjx0             = _mm_setzero_ps();
957             fjy0             = _mm_setzero_ps();
958             fjz0             = _mm_setzero_ps();
959
960             /**************************
961              * CALCULATE INTERACTIONS *
962              **************************/
963
964             r00              = _mm_mul_ps(rsq00,rinv00);
965             r00              = _mm_andnot_ps(dummy_mask,r00);
966
967             /* Compute parameters for interactions between i and j atoms */
968             qq00             = _mm_mul_ps(iq0,jq0);
969
970             /* Calculate table index by multiplying r with table scale and truncate to integer */
971             rt               = _mm_mul_ps(r00,vftabscale);
972             vfitab           = _mm_cvttps_epi32(rt);
973 #ifdef __XOP__
974             vfeps            = _mm_frcz_ps(rt);
975 #else
976             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
977 #endif
978             twovfeps         = _mm_add_ps(vfeps,vfeps);
979             vfitab           = _mm_slli_epi32(vfitab,2);
980
981             /* CUBIC SPLINE TABLE ELECTROSTATICS */
982             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
983             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
984             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
985             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
986             _MM_TRANSPOSE4_PS(Y,F,G,H);
987             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
988             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
989             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
990
991             fscal            = felec;
992
993             fscal            = _mm_andnot_ps(dummy_mask,fscal);
994
995              /* Update vectorial force */
996             fix0             = _mm_macc_ps(dx00,fscal,fix0);
997             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
998             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
999
1000             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1001             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1002             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1003
1004             /**************************
1005              * CALCULATE INTERACTIONS *
1006              **************************/
1007
1008             r10              = _mm_mul_ps(rsq10,rinv10);
1009             r10              = _mm_andnot_ps(dummy_mask,r10);
1010
1011             /* Compute parameters for interactions between i and j atoms */
1012             qq10             = _mm_mul_ps(iq1,jq0);
1013
1014             /* Calculate table index by multiplying r with table scale and truncate to integer */
1015             rt               = _mm_mul_ps(r10,vftabscale);
1016             vfitab           = _mm_cvttps_epi32(rt);
1017 #ifdef __XOP__
1018             vfeps            = _mm_frcz_ps(rt);
1019 #else
1020             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1021 #endif
1022             twovfeps         = _mm_add_ps(vfeps,vfeps);
1023             vfitab           = _mm_slli_epi32(vfitab,2);
1024
1025             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1026             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1027             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1028             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1029             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1030             _MM_TRANSPOSE4_PS(Y,F,G,H);
1031             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1032             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1033             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1034
1035             fscal            = felec;
1036
1037             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1038
1039              /* Update vectorial force */
1040             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1041             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1042             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1043
1044             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1045             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1046             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1047
1048             /**************************
1049              * CALCULATE INTERACTIONS *
1050              **************************/
1051
1052             r20              = _mm_mul_ps(rsq20,rinv20);
1053             r20              = _mm_andnot_ps(dummy_mask,r20);
1054
1055             /* Compute parameters for interactions between i and j atoms */
1056             qq20             = _mm_mul_ps(iq2,jq0);
1057
1058             /* Calculate table index by multiplying r with table scale and truncate to integer */
1059             rt               = _mm_mul_ps(r20,vftabscale);
1060             vfitab           = _mm_cvttps_epi32(rt);
1061 #ifdef __XOP__
1062             vfeps            = _mm_frcz_ps(rt);
1063 #else
1064             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1065 #endif
1066             twovfeps         = _mm_add_ps(vfeps,vfeps);
1067             vfitab           = _mm_slli_epi32(vfitab,2);
1068
1069             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1070             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1071             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1072             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1073             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1074             _MM_TRANSPOSE4_PS(Y,F,G,H);
1075             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1076             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1077             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1078
1079             fscal            = felec;
1080
1081             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1082
1083              /* Update vectorial force */
1084             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1085             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1086             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1087
1088             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1089             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1090             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1091
1092             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1093             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1094             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1095             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1096
1097             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1098
1099             /* Inner loop uses 129 flops */
1100         }
1101
1102         /* End of innermost loop */
1103
1104         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1105                                               f+i_coord_offset,fshift+i_shift_offset);
1106
1107         /* Increment number of inner iterations */
1108         inneriter                  += j_index_end - j_index_start;
1109
1110         /* Outer loop uses 18 flops */
1111     }
1112
1113     /* Increment number of outer iterations */
1114     outeriter        += nri;
1115
1116     /* Update outer/inner flops */
1117
1118     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*129);
1119 }