66c8838d88f64cc78fa3b7f64bee0c6cd95be1c5
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwNone_GeomP1P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_128_fma_single
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     __m128i          vfitab;
77     __m128i          ifour       = _mm_set1_epi32(4);
78     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
79     real             *vftab;
80     __m128           dummy_mask,cutoff_mask;
81     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
82     __m128           one     = _mm_set1_ps(1.0);
83     __m128           two     = _mm_set1_ps(2.0);
84     x                = xx[0];
85     f                = ff[0];
86
87     nri              = nlist->nri;
88     iinr             = nlist->iinr;
89     jindex           = nlist->jindex;
90     jjnr             = nlist->jjnr;
91     shiftidx         = nlist->shift;
92     gid              = nlist->gid;
93     shiftvec         = fr->shift_vec[0];
94     fshift           = fr->fshift[0];
95     facel            = _mm_set1_ps(fr->epsfac);
96     charge           = mdatoms->chargeA;
97
98     vftab            = kernel_data->table_elec->data;
99     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
100
101     /* Avoid stupid compiler warnings */
102     jnrA = jnrB = jnrC = jnrD = 0;
103     j_coord_offsetA = 0;
104     j_coord_offsetB = 0;
105     j_coord_offsetC = 0;
106     j_coord_offsetD = 0;
107
108     outeriter        = 0;
109     inneriter        = 0;
110
111     for(iidx=0;iidx<4*DIM;iidx++)
112     {
113         scratch[iidx] = 0.0;
114     }
115
116     /* Start outer loop over neighborlists */
117     for(iidx=0; iidx<nri; iidx++)
118     {
119         /* Load shift vector for this list */
120         i_shift_offset   = DIM*shiftidx[iidx];
121
122         /* Load limits for loop over neighbors */
123         j_index_start    = jindex[iidx];
124         j_index_end      = jindex[iidx+1];
125
126         /* Get outer coordinate index */
127         inr              = iinr[iidx];
128         i_coord_offset   = DIM*inr;
129
130         /* Load i particle coords and add shift vector */
131         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
132
133         fix0             = _mm_setzero_ps();
134         fiy0             = _mm_setzero_ps();
135         fiz0             = _mm_setzero_ps();
136
137         /* Load parameters for i particles */
138         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
139
140         /* Reset potential sums */
141         velecsum         = _mm_setzero_ps();
142
143         /* Start inner kernel loop */
144         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
145         {
146
147             /* Get j neighbor index, and coordinate index */
148             jnrA             = jjnr[jidx];
149             jnrB             = jjnr[jidx+1];
150             jnrC             = jjnr[jidx+2];
151             jnrD             = jjnr[jidx+3];
152             j_coord_offsetA  = DIM*jnrA;
153             j_coord_offsetB  = DIM*jnrB;
154             j_coord_offsetC  = DIM*jnrC;
155             j_coord_offsetD  = DIM*jnrD;
156
157             /* load j atom coordinates */
158             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
159                                               x+j_coord_offsetC,x+j_coord_offsetD,
160                                               &jx0,&jy0,&jz0);
161
162             /* Calculate displacement vector */
163             dx00             = _mm_sub_ps(ix0,jx0);
164             dy00             = _mm_sub_ps(iy0,jy0);
165             dz00             = _mm_sub_ps(iz0,jz0);
166
167             /* Calculate squared distance and things based on it */
168             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
169
170             rinv00           = gmx_mm_invsqrt_ps(rsq00);
171
172             /* Load parameters for j particles */
173             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
174                                                               charge+jnrC+0,charge+jnrD+0);
175
176             /**************************
177              * CALCULATE INTERACTIONS *
178              **************************/
179
180             r00              = _mm_mul_ps(rsq00,rinv00);
181
182             /* Compute parameters for interactions between i and j atoms */
183             qq00             = _mm_mul_ps(iq0,jq0);
184
185             /* Calculate table index by multiplying r with table scale and truncate to integer */
186             rt               = _mm_mul_ps(r00,vftabscale);
187             vfitab           = _mm_cvttps_epi32(rt);
188 #ifdef __XOP__
189             vfeps            = _mm_frcz_ps(rt);
190 #else
191             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
192 #endif
193             twovfeps         = _mm_add_ps(vfeps,vfeps);
194             vfitab           = _mm_slli_epi32(vfitab,2);
195
196             /* CUBIC SPLINE TABLE ELECTROSTATICS */
197             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
198             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
199             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
200             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
201             _MM_TRANSPOSE4_PS(Y,F,G,H);
202             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
203             VV               = _mm_macc_ps(vfeps,Fp,Y);
204             velec            = _mm_mul_ps(qq00,VV);
205             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
206             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
207
208             /* Update potential sum for this i atom from the interaction with this j atom. */
209             velecsum         = _mm_add_ps(velecsum,velec);
210
211             fscal            = felec;
212
213              /* Update vectorial force */
214             fix0             = _mm_macc_ps(dx00,fscal,fix0);
215             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
216             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
217
218             fjptrA             = f+j_coord_offsetA;
219             fjptrB             = f+j_coord_offsetB;
220             fjptrC             = f+j_coord_offsetC;
221             fjptrD             = f+j_coord_offsetD;
222             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
223                                                    _mm_mul_ps(dx00,fscal),
224                                                    _mm_mul_ps(dy00,fscal),
225                                                    _mm_mul_ps(dz00,fscal));
226
227             /* Inner loop uses 46 flops */
228         }
229
230         if(jidx<j_index_end)
231         {
232
233             /* Get j neighbor index, and coordinate index */
234             jnrlistA         = jjnr[jidx];
235             jnrlistB         = jjnr[jidx+1];
236             jnrlistC         = jjnr[jidx+2];
237             jnrlistD         = jjnr[jidx+3];
238             /* Sign of each element will be negative for non-real atoms.
239              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
240              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
241              */
242             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
243             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
244             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
245             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
246             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
247             j_coord_offsetA  = DIM*jnrA;
248             j_coord_offsetB  = DIM*jnrB;
249             j_coord_offsetC  = DIM*jnrC;
250             j_coord_offsetD  = DIM*jnrD;
251
252             /* load j atom coordinates */
253             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
254                                               x+j_coord_offsetC,x+j_coord_offsetD,
255                                               &jx0,&jy0,&jz0);
256
257             /* Calculate displacement vector */
258             dx00             = _mm_sub_ps(ix0,jx0);
259             dy00             = _mm_sub_ps(iy0,jy0);
260             dz00             = _mm_sub_ps(iz0,jz0);
261
262             /* Calculate squared distance and things based on it */
263             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
264
265             rinv00           = gmx_mm_invsqrt_ps(rsq00);
266
267             /* Load parameters for j particles */
268             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
269                                                               charge+jnrC+0,charge+jnrD+0);
270
271             /**************************
272              * CALCULATE INTERACTIONS *
273              **************************/
274
275             r00              = _mm_mul_ps(rsq00,rinv00);
276             r00              = _mm_andnot_ps(dummy_mask,r00);
277
278             /* Compute parameters for interactions between i and j atoms */
279             qq00             = _mm_mul_ps(iq0,jq0);
280
281             /* Calculate table index by multiplying r with table scale and truncate to integer */
282             rt               = _mm_mul_ps(r00,vftabscale);
283             vfitab           = _mm_cvttps_epi32(rt);
284 #ifdef __XOP__
285             vfeps            = _mm_frcz_ps(rt);
286 #else
287             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
288 #endif
289             twovfeps         = _mm_add_ps(vfeps,vfeps);
290             vfitab           = _mm_slli_epi32(vfitab,2);
291
292             /* CUBIC SPLINE TABLE ELECTROSTATICS */
293             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
294             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
295             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
296             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
297             _MM_TRANSPOSE4_PS(Y,F,G,H);
298             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
299             VV               = _mm_macc_ps(vfeps,Fp,Y);
300             velec            = _mm_mul_ps(qq00,VV);
301             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
302             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
303
304             /* Update potential sum for this i atom from the interaction with this j atom. */
305             velec            = _mm_andnot_ps(dummy_mask,velec);
306             velecsum         = _mm_add_ps(velecsum,velec);
307
308             fscal            = felec;
309
310             fscal            = _mm_andnot_ps(dummy_mask,fscal);
311
312              /* Update vectorial force */
313             fix0             = _mm_macc_ps(dx00,fscal,fix0);
314             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
315             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
316
317             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
318             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
319             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
320             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
321             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
322                                                    _mm_mul_ps(dx00,fscal),
323                                                    _mm_mul_ps(dy00,fscal),
324                                                    _mm_mul_ps(dz00,fscal));
325
326             /* Inner loop uses 47 flops */
327         }
328
329         /* End of innermost loop */
330
331         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
332                                               f+i_coord_offset,fshift+i_shift_offset);
333
334         ggid                        = gid[iidx];
335         /* Update potential energies */
336         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
337
338         /* Increment number of inner iterations */
339         inneriter                  += j_index_end - j_index_start;
340
341         /* Outer loop uses 8 flops */
342     }
343
344     /* Increment number of outer iterations */
345     outeriter        += nri;
346
347     /* Update outer/inner flops */
348
349     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*47);
350 }
351 /*
352  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_128_fma_single
353  * Electrostatics interaction: CubicSplineTable
354  * VdW interaction:            None
355  * Geometry:                   Particle-Particle
356  * Calculate force/pot:        Force
357  */
358 void
359 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_128_fma_single
360                     (t_nblist * gmx_restrict                nlist,
361                      rvec * gmx_restrict                    xx,
362                      rvec * gmx_restrict                    ff,
363                      t_forcerec * gmx_restrict              fr,
364                      t_mdatoms * gmx_restrict               mdatoms,
365                      nb_kernel_data_t * gmx_restrict        kernel_data,
366                      t_nrnb * gmx_restrict                  nrnb)
367 {
368     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
369      * just 0 for non-waters.
370      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
371      * jnr indices corresponding to data put in the four positions in the SIMD register.
372      */
373     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
374     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
375     int              jnrA,jnrB,jnrC,jnrD;
376     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
377     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
378     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
379     real             rcutoff_scalar;
380     real             *shiftvec,*fshift,*x,*f;
381     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
382     real             scratch[4*DIM];
383     __m128           fscal,rcutoff,rcutoff2,jidxall;
384     int              vdwioffset0;
385     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
386     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
387     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
388     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
389     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
390     real             *charge;
391     __m128i          vfitab;
392     __m128i          ifour       = _mm_set1_epi32(4);
393     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
394     real             *vftab;
395     __m128           dummy_mask,cutoff_mask;
396     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
397     __m128           one     = _mm_set1_ps(1.0);
398     __m128           two     = _mm_set1_ps(2.0);
399     x                = xx[0];
400     f                = ff[0];
401
402     nri              = nlist->nri;
403     iinr             = nlist->iinr;
404     jindex           = nlist->jindex;
405     jjnr             = nlist->jjnr;
406     shiftidx         = nlist->shift;
407     gid              = nlist->gid;
408     shiftvec         = fr->shift_vec[0];
409     fshift           = fr->fshift[0];
410     facel            = _mm_set1_ps(fr->epsfac);
411     charge           = mdatoms->chargeA;
412
413     vftab            = kernel_data->table_elec->data;
414     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
415
416     /* Avoid stupid compiler warnings */
417     jnrA = jnrB = jnrC = jnrD = 0;
418     j_coord_offsetA = 0;
419     j_coord_offsetB = 0;
420     j_coord_offsetC = 0;
421     j_coord_offsetD = 0;
422
423     outeriter        = 0;
424     inneriter        = 0;
425
426     for(iidx=0;iidx<4*DIM;iidx++)
427     {
428         scratch[iidx] = 0.0;
429     }
430
431     /* Start outer loop over neighborlists */
432     for(iidx=0; iidx<nri; iidx++)
433     {
434         /* Load shift vector for this list */
435         i_shift_offset   = DIM*shiftidx[iidx];
436
437         /* Load limits for loop over neighbors */
438         j_index_start    = jindex[iidx];
439         j_index_end      = jindex[iidx+1];
440
441         /* Get outer coordinate index */
442         inr              = iinr[iidx];
443         i_coord_offset   = DIM*inr;
444
445         /* Load i particle coords and add shift vector */
446         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
447
448         fix0             = _mm_setzero_ps();
449         fiy0             = _mm_setzero_ps();
450         fiz0             = _mm_setzero_ps();
451
452         /* Load parameters for i particles */
453         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
454
455         /* Start inner kernel loop */
456         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
457         {
458
459             /* Get j neighbor index, and coordinate index */
460             jnrA             = jjnr[jidx];
461             jnrB             = jjnr[jidx+1];
462             jnrC             = jjnr[jidx+2];
463             jnrD             = jjnr[jidx+3];
464             j_coord_offsetA  = DIM*jnrA;
465             j_coord_offsetB  = DIM*jnrB;
466             j_coord_offsetC  = DIM*jnrC;
467             j_coord_offsetD  = DIM*jnrD;
468
469             /* load j atom coordinates */
470             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
471                                               x+j_coord_offsetC,x+j_coord_offsetD,
472                                               &jx0,&jy0,&jz0);
473
474             /* Calculate displacement vector */
475             dx00             = _mm_sub_ps(ix0,jx0);
476             dy00             = _mm_sub_ps(iy0,jy0);
477             dz00             = _mm_sub_ps(iz0,jz0);
478
479             /* Calculate squared distance and things based on it */
480             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
481
482             rinv00           = gmx_mm_invsqrt_ps(rsq00);
483
484             /* Load parameters for j particles */
485             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
486                                                               charge+jnrC+0,charge+jnrD+0);
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             r00              = _mm_mul_ps(rsq00,rinv00);
493
494             /* Compute parameters for interactions between i and j atoms */
495             qq00             = _mm_mul_ps(iq0,jq0);
496
497             /* Calculate table index by multiplying r with table scale and truncate to integer */
498             rt               = _mm_mul_ps(r00,vftabscale);
499             vfitab           = _mm_cvttps_epi32(rt);
500 #ifdef __XOP__
501             vfeps            = _mm_frcz_ps(rt);
502 #else
503             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
504 #endif
505             twovfeps         = _mm_add_ps(vfeps,vfeps);
506             vfitab           = _mm_slli_epi32(vfitab,2);
507
508             /* CUBIC SPLINE TABLE ELECTROSTATICS */
509             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
510             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
511             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
512             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
513             _MM_TRANSPOSE4_PS(Y,F,G,H);
514             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
515             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
516             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
517
518             fscal            = felec;
519
520              /* Update vectorial force */
521             fix0             = _mm_macc_ps(dx00,fscal,fix0);
522             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
523             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
524
525             fjptrA             = f+j_coord_offsetA;
526             fjptrB             = f+j_coord_offsetB;
527             fjptrC             = f+j_coord_offsetC;
528             fjptrD             = f+j_coord_offsetD;
529             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
530                                                    _mm_mul_ps(dx00,fscal),
531                                                    _mm_mul_ps(dy00,fscal),
532                                                    _mm_mul_ps(dz00,fscal));
533
534             /* Inner loop uses 42 flops */
535         }
536
537         if(jidx<j_index_end)
538         {
539
540             /* Get j neighbor index, and coordinate index */
541             jnrlistA         = jjnr[jidx];
542             jnrlistB         = jjnr[jidx+1];
543             jnrlistC         = jjnr[jidx+2];
544             jnrlistD         = jjnr[jidx+3];
545             /* Sign of each element will be negative for non-real atoms.
546              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
547              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
548              */
549             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
550             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
551             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
552             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
553             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
554             j_coord_offsetA  = DIM*jnrA;
555             j_coord_offsetB  = DIM*jnrB;
556             j_coord_offsetC  = DIM*jnrC;
557             j_coord_offsetD  = DIM*jnrD;
558
559             /* load j atom coordinates */
560             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
561                                               x+j_coord_offsetC,x+j_coord_offsetD,
562                                               &jx0,&jy0,&jz0);
563
564             /* Calculate displacement vector */
565             dx00             = _mm_sub_ps(ix0,jx0);
566             dy00             = _mm_sub_ps(iy0,jy0);
567             dz00             = _mm_sub_ps(iz0,jz0);
568
569             /* Calculate squared distance and things based on it */
570             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
571
572             rinv00           = gmx_mm_invsqrt_ps(rsq00);
573
574             /* Load parameters for j particles */
575             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
576                                                               charge+jnrC+0,charge+jnrD+0);
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             r00              = _mm_mul_ps(rsq00,rinv00);
583             r00              = _mm_andnot_ps(dummy_mask,r00);
584
585             /* Compute parameters for interactions between i and j atoms */
586             qq00             = _mm_mul_ps(iq0,jq0);
587
588             /* Calculate table index by multiplying r with table scale and truncate to integer */
589             rt               = _mm_mul_ps(r00,vftabscale);
590             vfitab           = _mm_cvttps_epi32(rt);
591 #ifdef __XOP__
592             vfeps            = _mm_frcz_ps(rt);
593 #else
594             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
595 #endif
596             twovfeps         = _mm_add_ps(vfeps,vfeps);
597             vfitab           = _mm_slli_epi32(vfitab,2);
598
599             /* CUBIC SPLINE TABLE ELECTROSTATICS */
600             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
601             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
602             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
603             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
604             _MM_TRANSPOSE4_PS(Y,F,G,H);
605             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
606             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
607             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
608
609             fscal            = felec;
610
611             fscal            = _mm_andnot_ps(dummy_mask,fscal);
612
613              /* Update vectorial force */
614             fix0             = _mm_macc_ps(dx00,fscal,fix0);
615             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
616             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
617
618             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
619             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
620             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
621             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
622             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
623                                                    _mm_mul_ps(dx00,fscal),
624                                                    _mm_mul_ps(dy00,fscal),
625                                                    _mm_mul_ps(dz00,fscal));
626
627             /* Inner loop uses 43 flops */
628         }
629
630         /* End of innermost loop */
631
632         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
633                                               f+i_coord_offset,fshift+i_shift_offset);
634
635         /* Increment number of inner iterations */
636         inneriter                  += j_index_end - j_index_start;
637
638         /* Outer loop uses 7 flops */
639     }
640
641     /* Increment number of outer iterations */
642     outeriter        += nri;
643
644     /* Update outer/inner flops */
645
646     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*43);
647 }