Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_avx_128_fma_single
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwioffset3;
92     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
106     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
107     __m128i          vfitab;
108     __m128i          ifour       = _mm_set1_epi32(4);
109     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
110     real             *vftab;
111     __m128           dummy_mask,cutoff_mask;
112     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
113     __m128           one     = _mm_set1_ps(1.0);
114     __m128           two     = _mm_set1_ps(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_ps(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_elec->data;
133     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
138     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
139     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
173                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
174
175         fix0             = _mm_setzero_ps();
176         fiy0             = _mm_setzero_ps();
177         fiz0             = _mm_setzero_ps();
178         fix1             = _mm_setzero_ps();
179         fiy1             = _mm_setzero_ps();
180         fiz1             = _mm_setzero_ps();
181         fix2             = _mm_setzero_ps();
182         fiy2             = _mm_setzero_ps();
183         fiz2             = _mm_setzero_ps();
184         fix3             = _mm_setzero_ps();
185         fiy3             = _mm_setzero_ps();
186         fiz3             = _mm_setzero_ps();
187
188         /* Reset potential sums */
189         velecsum         = _mm_setzero_ps();
190         vvdwsum          = _mm_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203             j_coord_offsetC  = DIM*jnrC;
204             j_coord_offsetD  = DIM*jnrD;
205
206             /* load j atom coordinates */
207             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               x+j_coord_offsetC,x+j_coord_offsetD,
209                                               &jx0,&jy0,&jz0);
210
211             /* Calculate displacement vector */
212             dx00             = _mm_sub_ps(ix0,jx0);
213             dy00             = _mm_sub_ps(iy0,jy0);
214             dz00             = _mm_sub_ps(iz0,jz0);
215             dx10             = _mm_sub_ps(ix1,jx0);
216             dy10             = _mm_sub_ps(iy1,jy0);
217             dz10             = _mm_sub_ps(iz1,jz0);
218             dx20             = _mm_sub_ps(ix2,jx0);
219             dy20             = _mm_sub_ps(iy2,jy0);
220             dz20             = _mm_sub_ps(iz2,jz0);
221             dx30             = _mm_sub_ps(ix3,jx0);
222             dy30             = _mm_sub_ps(iy3,jy0);
223             dz30             = _mm_sub_ps(iz3,jz0);
224
225             /* Calculate squared distance and things based on it */
226             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
227             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
228             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
229             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
230
231             rinv10           = gmx_mm_invsqrt_ps(rsq10);
232             rinv20           = gmx_mm_invsqrt_ps(rsq20);
233             rinv30           = gmx_mm_invsqrt_ps(rsq30);
234
235             rinvsq00         = gmx_mm_inv_ps(rsq00);
236
237             /* Load parameters for j particles */
238             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
239                                                               charge+jnrC+0,charge+jnrD+0);
240             vdwjidx0A        = 2*vdwtype[jnrA+0];
241             vdwjidx0B        = 2*vdwtype[jnrB+0];
242             vdwjidx0C        = 2*vdwtype[jnrC+0];
243             vdwjidx0D        = 2*vdwtype[jnrD+0];
244
245             fjx0             = _mm_setzero_ps();
246             fjy0             = _mm_setzero_ps();
247             fjz0             = _mm_setzero_ps();
248
249             /**************************
250              * CALCULATE INTERACTIONS *
251              **************************/
252
253             /* Compute parameters for interactions between i and j atoms */
254             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
255                                          vdwparam+vdwioffset0+vdwjidx0B,
256                                          vdwparam+vdwioffset0+vdwjidx0C,
257                                          vdwparam+vdwioffset0+vdwjidx0D,
258                                          &c6_00,&c12_00);
259
260             /* LENNARD-JONES DISPERSION/REPULSION */
261
262             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
263             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
264             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
265             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
266             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
267
268             /* Update potential sum for this i atom from the interaction with this j atom. */
269             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
270
271             fscal            = fvdw;
272
273              /* Update vectorial force */
274             fix0             = _mm_macc_ps(dx00,fscal,fix0);
275             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
276             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
277
278             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
279             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
280             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             r10              = _mm_mul_ps(rsq10,rinv10);
287
288             /* Compute parameters for interactions between i and j atoms */
289             qq10             = _mm_mul_ps(iq1,jq0);
290
291             /* Calculate table index by multiplying r with table scale and truncate to integer */
292             rt               = _mm_mul_ps(r10,vftabscale);
293             vfitab           = _mm_cvttps_epi32(rt);
294 #ifdef __XOP__
295             vfeps            = _mm_frcz_ps(rt);
296 #else
297             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
298 #endif
299             twovfeps         = _mm_add_ps(vfeps,vfeps);
300             vfitab           = _mm_slli_epi32(vfitab,2);
301
302             /* CUBIC SPLINE TABLE ELECTROSTATICS */
303             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
304             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
305             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
306             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
307             _MM_TRANSPOSE4_PS(Y,F,G,H);
308             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
309             VV               = _mm_macc_ps(vfeps,Fp,Y);
310             velec            = _mm_mul_ps(qq10,VV);
311             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
312             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velecsum         = _mm_add_ps(velecsum,velec);
316
317             fscal            = felec;
318
319              /* Update vectorial force */
320             fix1             = _mm_macc_ps(dx10,fscal,fix1);
321             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
322             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
323
324             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
325             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
326             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             r20              = _mm_mul_ps(rsq20,rinv20);
333
334             /* Compute parameters for interactions between i and j atoms */
335             qq20             = _mm_mul_ps(iq2,jq0);
336
337             /* Calculate table index by multiplying r with table scale and truncate to integer */
338             rt               = _mm_mul_ps(r20,vftabscale);
339             vfitab           = _mm_cvttps_epi32(rt);
340 #ifdef __XOP__
341             vfeps            = _mm_frcz_ps(rt);
342 #else
343             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
344 #endif
345             twovfeps         = _mm_add_ps(vfeps,vfeps);
346             vfitab           = _mm_slli_epi32(vfitab,2);
347
348             /* CUBIC SPLINE TABLE ELECTROSTATICS */
349             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
350             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
351             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
352             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
353             _MM_TRANSPOSE4_PS(Y,F,G,H);
354             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
355             VV               = _mm_macc_ps(vfeps,Fp,Y);
356             velec            = _mm_mul_ps(qq20,VV);
357             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
358             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
359
360             /* Update potential sum for this i atom from the interaction with this j atom. */
361             velecsum         = _mm_add_ps(velecsum,velec);
362
363             fscal            = felec;
364
365              /* Update vectorial force */
366             fix2             = _mm_macc_ps(dx20,fscal,fix2);
367             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
368             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
369
370             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
371             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
372             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
373
374             /**************************
375              * CALCULATE INTERACTIONS *
376              **************************/
377
378             r30              = _mm_mul_ps(rsq30,rinv30);
379
380             /* Compute parameters for interactions between i and j atoms */
381             qq30             = _mm_mul_ps(iq3,jq0);
382
383             /* Calculate table index by multiplying r with table scale and truncate to integer */
384             rt               = _mm_mul_ps(r30,vftabscale);
385             vfitab           = _mm_cvttps_epi32(rt);
386 #ifdef __XOP__
387             vfeps            = _mm_frcz_ps(rt);
388 #else
389             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
390 #endif
391             twovfeps         = _mm_add_ps(vfeps,vfeps);
392             vfitab           = _mm_slli_epi32(vfitab,2);
393
394             /* CUBIC SPLINE TABLE ELECTROSTATICS */
395             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
396             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
397             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
398             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
399             _MM_TRANSPOSE4_PS(Y,F,G,H);
400             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
401             VV               = _mm_macc_ps(vfeps,Fp,Y);
402             velec            = _mm_mul_ps(qq30,VV);
403             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
404             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
405
406             /* Update potential sum for this i atom from the interaction with this j atom. */
407             velecsum         = _mm_add_ps(velecsum,velec);
408
409             fscal            = felec;
410
411              /* Update vectorial force */
412             fix3             = _mm_macc_ps(dx30,fscal,fix3);
413             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
414             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
415
416             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
417             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
418             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
419
420             fjptrA             = f+j_coord_offsetA;
421             fjptrB             = f+j_coord_offsetB;
422             fjptrC             = f+j_coord_offsetC;
423             fjptrD             = f+j_coord_offsetD;
424
425             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
426
427             /* Inner loop uses 173 flops */
428         }
429
430         if(jidx<j_index_end)
431         {
432
433             /* Get j neighbor index, and coordinate index */
434             jnrlistA         = jjnr[jidx];
435             jnrlistB         = jjnr[jidx+1];
436             jnrlistC         = jjnr[jidx+2];
437             jnrlistD         = jjnr[jidx+3];
438             /* Sign of each element will be negative for non-real atoms.
439              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
440              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
441              */
442             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
443             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
444             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
445             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
446             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
447             j_coord_offsetA  = DIM*jnrA;
448             j_coord_offsetB  = DIM*jnrB;
449             j_coord_offsetC  = DIM*jnrC;
450             j_coord_offsetD  = DIM*jnrD;
451
452             /* load j atom coordinates */
453             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
454                                               x+j_coord_offsetC,x+j_coord_offsetD,
455                                               &jx0,&jy0,&jz0);
456
457             /* Calculate displacement vector */
458             dx00             = _mm_sub_ps(ix0,jx0);
459             dy00             = _mm_sub_ps(iy0,jy0);
460             dz00             = _mm_sub_ps(iz0,jz0);
461             dx10             = _mm_sub_ps(ix1,jx0);
462             dy10             = _mm_sub_ps(iy1,jy0);
463             dz10             = _mm_sub_ps(iz1,jz0);
464             dx20             = _mm_sub_ps(ix2,jx0);
465             dy20             = _mm_sub_ps(iy2,jy0);
466             dz20             = _mm_sub_ps(iz2,jz0);
467             dx30             = _mm_sub_ps(ix3,jx0);
468             dy30             = _mm_sub_ps(iy3,jy0);
469             dz30             = _mm_sub_ps(iz3,jz0);
470
471             /* Calculate squared distance and things based on it */
472             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
473             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
474             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
475             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
476
477             rinv10           = gmx_mm_invsqrt_ps(rsq10);
478             rinv20           = gmx_mm_invsqrt_ps(rsq20);
479             rinv30           = gmx_mm_invsqrt_ps(rsq30);
480
481             rinvsq00         = gmx_mm_inv_ps(rsq00);
482
483             /* Load parameters for j particles */
484             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
485                                                               charge+jnrC+0,charge+jnrD+0);
486             vdwjidx0A        = 2*vdwtype[jnrA+0];
487             vdwjidx0B        = 2*vdwtype[jnrB+0];
488             vdwjidx0C        = 2*vdwtype[jnrC+0];
489             vdwjidx0D        = 2*vdwtype[jnrD+0];
490
491             fjx0             = _mm_setzero_ps();
492             fjy0             = _mm_setzero_ps();
493             fjz0             = _mm_setzero_ps();
494
495             /**************************
496              * CALCULATE INTERACTIONS *
497              **************************/
498
499             /* Compute parameters for interactions between i and j atoms */
500             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
501                                          vdwparam+vdwioffset0+vdwjidx0B,
502                                          vdwparam+vdwioffset0+vdwjidx0C,
503                                          vdwparam+vdwioffset0+vdwjidx0D,
504                                          &c6_00,&c12_00);
505
506             /* LENNARD-JONES DISPERSION/REPULSION */
507
508             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
509             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
510             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
511             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
512             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
513
514             /* Update potential sum for this i atom from the interaction with this j atom. */
515             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
516             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
517
518             fscal            = fvdw;
519
520             fscal            = _mm_andnot_ps(dummy_mask,fscal);
521
522              /* Update vectorial force */
523             fix0             = _mm_macc_ps(dx00,fscal,fix0);
524             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
525             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
526
527             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
528             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
529             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
530
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             r10              = _mm_mul_ps(rsq10,rinv10);
536             r10              = _mm_andnot_ps(dummy_mask,r10);
537
538             /* Compute parameters for interactions between i and j atoms */
539             qq10             = _mm_mul_ps(iq1,jq0);
540
541             /* Calculate table index by multiplying r with table scale and truncate to integer */
542             rt               = _mm_mul_ps(r10,vftabscale);
543             vfitab           = _mm_cvttps_epi32(rt);
544 #ifdef __XOP__
545             vfeps            = _mm_frcz_ps(rt);
546 #else
547             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
548 #endif
549             twovfeps         = _mm_add_ps(vfeps,vfeps);
550             vfitab           = _mm_slli_epi32(vfitab,2);
551
552             /* CUBIC SPLINE TABLE ELECTROSTATICS */
553             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
554             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
555             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
556             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
557             _MM_TRANSPOSE4_PS(Y,F,G,H);
558             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
559             VV               = _mm_macc_ps(vfeps,Fp,Y);
560             velec            = _mm_mul_ps(qq10,VV);
561             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
562             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
563
564             /* Update potential sum for this i atom from the interaction with this j atom. */
565             velec            = _mm_andnot_ps(dummy_mask,velec);
566             velecsum         = _mm_add_ps(velecsum,velec);
567
568             fscal            = felec;
569
570             fscal            = _mm_andnot_ps(dummy_mask,fscal);
571
572              /* Update vectorial force */
573             fix1             = _mm_macc_ps(dx10,fscal,fix1);
574             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
575             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
576
577             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
578             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
579             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
580
581             /**************************
582              * CALCULATE INTERACTIONS *
583              **************************/
584
585             r20              = _mm_mul_ps(rsq20,rinv20);
586             r20              = _mm_andnot_ps(dummy_mask,r20);
587
588             /* Compute parameters for interactions between i and j atoms */
589             qq20             = _mm_mul_ps(iq2,jq0);
590
591             /* Calculate table index by multiplying r with table scale and truncate to integer */
592             rt               = _mm_mul_ps(r20,vftabscale);
593             vfitab           = _mm_cvttps_epi32(rt);
594 #ifdef __XOP__
595             vfeps            = _mm_frcz_ps(rt);
596 #else
597             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
598 #endif
599             twovfeps         = _mm_add_ps(vfeps,vfeps);
600             vfitab           = _mm_slli_epi32(vfitab,2);
601
602             /* CUBIC SPLINE TABLE ELECTROSTATICS */
603             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
604             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
605             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
606             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
607             _MM_TRANSPOSE4_PS(Y,F,G,H);
608             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
609             VV               = _mm_macc_ps(vfeps,Fp,Y);
610             velec            = _mm_mul_ps(qq20,VV);
611             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
612             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
613
614             /* Update potential sum for this i atom from the interaction with this j atom. */
615             velec            = _mm_andnot_ps(dummy_mask,velec);
616             velecsum         = _mm_add_ps(velecsum,velec);
617
618             fscal            = felec;
619
620             fscal            = _mm_andnot_ps(dummy_mask,fscal);
621
622              /* Update vectorial force */
623             fix2             = _mm_macc_ps(dx20,fscal,fix2);
624             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
625             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
626
627             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
628             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
629             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
630
631             /**************************
632              * CALCULATE INTERACTIONS *
633              **************************/
634
635             r30              = _mm_mul_ps(rsq30,rinv30);
636             r30              = _mm_andnot_ps(dummy_mask,r30);
637
638             /* Compute parameters for interactions between i and j atoms */
639             qq30             = _mm_mul_ps(iq3,jq0);
640
641             /* Calculate table index by multiplying r with table scale and truncate to integer */
642             rt               = _mm_mul_ps(r30,vftabscale);
643             vfitab           = _mm_cvttps_epi32(rt);
644 #ifdef __XOP__
645             vfeps            = _mm_frcz_ps(rt);
646 #else
647             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
648 #endif
649             twovfeps         = _mm_add_ps(vfeps,vfeps);
650             vfitab           = _mm_slli_epi32(vfitab,2);
651
652             /* CUBIC SPLINE TABLE ELECTROSTATICS */
653             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
654             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
655             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
656             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
657             _MM_TRANSPOSE4_PS(Y,F,G,H);
658             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
659             VV               = _mm_macc_ps(vfeps,Fp,Y);
660             velec            = _mm_mul_ps(qq30,VV);
661             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
662             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
663
664             /* Update potential sum for this i atom from the interaction with this j atom. */
665             velec            = _mm_andnot_ps(dummy_mask,velec);
666             velecsum         = _mm_add_ps(velecsum,velec);
667
668             fscal            = felec;
669
670             fscal            = _mm_andnot_ps(dummy_mask,fscal);
671
672              /* Update vectorial force */
673             fix3             = _mm_macc_ps(dx30,fscal,fix3);
674             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
675             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
676
677             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
678             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
679             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
680
681             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
682             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
683             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
684             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
685
686             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
687
688             /* Inner loop uses 176 flops */
689         }
690
691         /* End of innermost loop */
692
693         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
694                                               f+i_coord_offset,fshift+i_shift_offset);
695
696         ggid                        = gid[iidx];
697         /* Update potential energies */
698         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
699         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
700
701         /* Increment number of inner iterations */
702         inneriter                  += j_index_end - j_index_start;
703
704         /* Outer loop uses 26 flops */
705     }
706
707     /* Increment number of outer iterations */
708     outeriter        += nri;
709
710     /* Update outer/inner flops */
711
712     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*176);
713 }
714 /*
715  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_avx_128_fma_single
716  * Electrostatics interaction: CubicSplineTable
717  * VdW interaction:            LennardJones
718  * Geometry:                   Water4-Particle
719  * Calculate force/pot:        Force
720  */
721 void
722 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_avx_128_fma_single
723                     (t_nblist                    * gmx_restrict       nlist,
724                      rvec                        * gmx_restrict          xx,
725                      rvec                        * gmx_restrict          ff,
726                      t_forcerec                  * gmx_restrict          fr,
727                      t_mdatoms                   * gmx_restrict     mdatoms,
728                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
729                      t_nrnb                      * gmx_restrict        nrnb)
730 {
731     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
732      * just 0 for non-waters.
733      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
734      * jnr indices corresponding to data put in the four positions in the SIMD register.
735      */
736     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
737     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
738     int              jnrA,jnrB,jnrC,jnrD;
739     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
740     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
741     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
742     real             rcutoff_scalar;
743     real             *shiftvec,*fshift,*x,*f;
744     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
745     real             scratch[4*DIM];
746     __m128           fscal,rcutoff,rcutoff2,jidxall;
747     int              vdwioffset0;
748     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
749     int              vdwioffset1;
750     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
751     int              vdwioffset2;
752     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
753     int              vdwioffset3;
754     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
755     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
756     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
757     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
758     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
759     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
760     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
761     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
762     real             *charge;
763     int              nvdwtype;
764     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
765     int              *vdwtype;
766     real             *vdwparam;
767     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
768     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
769     __m128i          vfitab;
770     __m128i          ifour       = _mm_set1_epi32(4);
771     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
772     real             *vftab;
773     __m128           dummy_mask,cutoff_mask;
774     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
775     __m128           one     = _mm_set1_ps(1.0);
776     __m128           two     = _mm_set1_ps(2.0);
777     x                = xx[0];
778     f                = ff[0];
779
780     nri              = nlist->nri;
781     iinr             = nlist->iinr;
782     jindex           = nlist->jindex;
783     jjnr             = nlist->jjnr;
784     shiftidx         = nlist->shift;
785     gid              = nlist->gid;
786     shiftvec         = fr->shift_vec[0];
787     fshift           = fr->fshift[0];
788     facel            = _mm_set1_ps(fr->epsfac);
789     charge           = mdatoms->chargeA;
790     nvdwtype         = fr->ntype;
791     vdwparam         = fr->nbfp;
792     vdwtype          = mdatoms->typeA;
793
794     vftab            = kernel_data->table_elec->data;
795     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
796
797     /* Setup water-specific parameters */
798     inr              = nlist->iinr[0];
799     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
800     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
801     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
802     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
803
804     /* Avoid stupid compiler warnings */
805     jnrA = jnrB = jnrC = jnrD = 0;
806     j_coord_offsetA = 0;
807     j_coord_offsetB = 0;
808     j_coord_offsetC = 0;
809     j_coord_offsetD = 0;
810
811     outeriter        = 0;
812     inneriter        = 0;
813
814     for(iidx=0;iidx<4*DIM;iidx++)
815     {
816         scratch[iidx] = 0.0;
817     }
818
819     /* Start outer loop over neighborlists */
820     for(iidx=0; iidx<nri; iidx++)
821     {
822         /* Load shift vector for this list */
823         i_shift_offset   = DIM*shiftidx[iidx];
824
825         /* Load limits for loop over neighbors */
826         j_index_start    = jindex[iidx];
827         j_index_end      = jindex[iidx+1];
828
829         /* Get outer coordinate index */
830         inr              = iinr[iidx];
831         i_coord_offset   = DIM*inr;
832
833         /* Load i particle coords and add shift vector */
834         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
835                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
836
837         fix0             = _mm_setzero_ps();
838         fiy0             = _mm_setzero_ps();
839         fiz0             = _mm_setzero_ps();
840         fix1             = _mm_setzero_ps();
841         fiy1             = _mm_setzero_ps();
842         fiz1             = _mm_setzero_ps();
843         fix2             = _mm_setzero_ps();
844         fiy2             = _mm_setzero_ps();
845         fiz2             = _mm_setzero_ps();
846         fix3             = _mm_setzero_ps();
847         fiy3             = _mm_setzero_ps();
848         fiz3             = _mm_setzero_ps();
849
850         /* Start inner kernel loop */
851         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
852         {
853
854             /* Get j neighbor index, and coordinate index */
855             jnrA             = jjnr[jidx];
856             jnrB             = jjnr[jidx+1];
857             jnrC             = jjnr[jidx+2];
858             jnrD             = jjnr[jidx+3];
859             j_coord_offsetA  = DIM*jnrA;
860             j_coord_offsetB  = DIM*jnrB;
861             j_coord_offsetC  = DIM*jnrC;
862             j_coord_offsetD  = DIM*jnrD;
863
864             /* load j atom coordinates */
865             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
866                                               x+j_coord_offsetC,x+j_coord_offsetD,
867                                               &jx0,&jy0,&jz0);
868
869             /* Calculate displacement vector */
870             dx00             = _mm_sub_ps(ix0,jx0);
871             dy00             = _mm_sub_ps(iy0,jy0);
872             dz00             = _mm_sub_ps(iz0,jz0);
873             dx10             = _mm_sub_ps(ix1,jx0);
874             dy10             = _mm_sub_ps(iy1,jy0);
875             dz10             = _mm_sub_ps(iz1,jz0);
876             dx20             = _mm_sub_ps(ix2,jx0);
877             dy20             = _mm_sub_ps(iy2,jy0);
878             dz20             = _mm_sub_ps(iz2,jz0);
879             dx30             = _mm_sub_ps(ix3,jx0);
880             dy30             = _mm_sub_ps(iy3,jy0);
881             dz30             = _mm_sub_ps(iz3,jz0);
882
883             /* Calculate squared distance and things based on it */
884             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
885             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
886             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
887             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
888
889             rinv10           = gmx_mm_invsqrt_ps(rsq10);
890             rinv20           = gmx_mm_invsqrt_ps(rsq20);
891             rinv30           = gmx_mm_invsqrt_ps(rsq30);
892
893             rinvsq00         = gmx_mm_inv_ps(rsq00);
894
895             /* Load parameters for j particles */
896             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
897                                                               charge+jnrC+0,charge+jnrD+0);
898             vdwjidx0A        = 2*vdwtype[jnrA+0];
899             vdwjidx0B        = 2*vdwtype[jnrB+0];
900             vdwjidx0C        = 2*vdwtype[jnrC+0];
901             vdwjidx0D        = 2*vdwtype[jnrD+0];
902
903             fjx0             = _mm_setzero_ps();
904             fjy0             = _mm_setzero_ps();
905             fjz0             = _mm_setzero_ps();
906
907             /**************************
908              * CALCULATE INTERACTIONS *
909              **************************/
910
911             /* Compute parameters for interactions between i and j atoms */
912             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
913                                          vdwparam+vdwioffset0+vdwjidx0B,
914                                          vdwparam+vdwioffset0+vdwjidx0C,
915                                          vdwparam+vdwioffset0+vdwjidx0D,
916                                          &c6_00,&c12_00);
917
918             /* LENNARD-JONES DISPERSION/REPULSION */
919
920             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
921             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
922
923             fscal            = fvdw;
924
925              /* Update vectorial force */
926             fix0             = _mm_macc_ps(dx00,fscal,fix0);
927             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
928             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
929
930             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
931             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
932             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
933
934             /**************************
935              * CALCULATE INTERACTIONS *
936              **************************/
937
938             r10              = _mm_mul_ps(rsq10,rinv10);
939
940             /* Compute parameters for interactions between i and j atoms */
941             qq10             = _mm_mul_ps(iq1,jq0);
942
943             /* Calculate table index by multiplying r with table scale and truncate to integer */
944             rt               = _mm_mul_ps(r10,vftabscale);
945             vfitab           = _mm_cvttps_epi32(rt);
946 #ifdef __XOP__
947             vfeps            = _mm_frcz_ps(rt);
948 #else
949             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
950 #endif
951             twovfeps         = _mm_add_ps(vfeps,vfeps);
952             vfitab           = _mm_slli_epi32(vfitab,2);
953
954             /* CUBIC SPLINE TABLE ELECTROSTATICS */
955             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
956             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
957             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
958             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
959             _MM_TRANSPOSE4_PS(Y,F,G,H);
960             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
961             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
962             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
963
964             fscal            = felec;
965
966              /* Update vectorial force */
967             fix1             = _mm_macc_ps(dx10,fscal,fix1);
968             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
969             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
970
971             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
972             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
973             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
974
975             /**************************
976              * CALCULATE INTERACTIONS *
977              **************************/
978
979             r20              = _mm_mul_ps(rsq20,rinv20);
980
981             /* Compute parameters for interactions between i and j atoms */
982             qq20             = _mm_mul_ps(iq2,jq0);
983
984             /* Calculate table index by multiplying r with table scale and truncate to integer */
985             rt               = _mm_mul_ps(r20,vftabscale);
986             vfitab           = _mm_cvttps_epi32(rt);
987 #ifdef __XOP__
988             vfeps            = _mm_frcz_ps(rt);
989 #else
990             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
991 #endif
992             twovfeps         = _mm_add_ps(vfeps,vfeps);
993             vfitab           = _mm_slli_epi32(vfitab,2);
994
995             /* CUBIC SPLINE TABLE ELECTROSTATICS */
996             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
997             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
998             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
999             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1000             _MM_TRANSPOSE4_PS(Y,F,G,H);
1001             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1002             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1003             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1004
1005             fscal            = felec;
1006
1007              /* Update vectorial force */
1008             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1009             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1010             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1011
1012             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1013             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1014             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1015
1016             /**************************
1017              * CALCULATE INTERACTIONS *
1018              **************************/
1019
1020             r30              = _mm_mul_ps(rsq30,rinv30);
1021
1022             /* Compute parameters for interactions between i and j atoms */
1023             qq30             = _mm_mul_ps(iq3,jq0);
1024
1025             /* Calculate table index by multiplying r with table scale and truncate to integer */
1026             rt               = _mm_mul_ps(r30,vftabscale);
1027             vfitab           = _mm_cvttps_epi32(rt);
1028 #ifdef __XOP__
1029             vfeps            = _mm_frcz_ps(rt);
1030 #else
1031             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1032 #endif
1033             twovfeps         = _mm_add_ps(vfeps,vfeps);
1034             vfitab           = _mm_slli_epi32(vfitab,2);
1035
1036             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1037             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1038             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1039             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1040             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1041             _MM_TRANSPOSE4_PS(Y,F,G,H);
1042             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1043             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1044             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1045
1046             fscal            = felec;
1047
1048              /* Update vectorial force */
1049             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1050             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1051             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1052
1053             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1054             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1055             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1056
1057             fjptrA             = f+j_coord_offsetA;
1058             fjptrB             = f+j_coord_offsetB;
1059             fjptrC             = f+j_coord_offsetC;
1060             fjptrD             = f+j_coord_offsetD;
1061
1062             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1063
1064             /* Inner loop uses 156 flops */
1065         }
1066
1067         if(jidx<j_index_end)
1068         {
1069
1070             /* Get j neighbor index, and coordinate index */
1071             jnrlistA         = jjnr[jidx];
1072             jnrlistB         = jjnr[jidx+1];
1073             jnrlistC         = jjnr[jidx+2];
1074             jnrlistD         = jjnr[jidx+3];
1075             /* Sign of each element will be negative for non-real atoms.
1076              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1077              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1078              */
1079             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1080             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1081             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1082             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1083             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1084             j_coord_offsetA  = DIM*jnrA;
1085             j_coord_offsetB  = DIM*jnrB;
1086             j_coord_offsetC  = DIM*jnrC;
1087             j_coord_offsetD  = DIM*jnrD;
1088
1089             /* load j atom coordinates */
1090             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1091                                               x+j_coord_offsetC,x+j_coord_offsetD,
1092                                               &jx0,&jy0,&jz0);
1093
1094             /* Calculate displacement vector */
1095             dx00             = _mm_sub_ps(ix0,jx0);
1096             dy00             = _mm_sub_ps(iy0,jy0);
1097             dz00             = _mm_sub_ps(iz0,jz0);
1098             dx10             = _mm_sub_ps(ix1,jx0);
1099             dy10             = _mm_sub_ps(iy1,jy0);
1100             dz10             = _mm_sub_ps(iz1,jz0);
1101             dx20             = _mm_sub_ps(ix2,jx0);
1102             dy20             = _mm_sub_ps(iy2,jy0);
1103             dz20             = _mm_sub_ps(iz2,jz0);
1104             dx30             = _mm_sub_ps(ix3,jx0);
1105             dy30             = _mm_sub_ps(iy3,jy0);
1106             dz30             = _mm_sub_ps(iz3,jz0);
1107
1108             /* Calculate squared distance and things based on it */
1109             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1110             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1111             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1112             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1113
1114             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1115             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1116             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1117
1118             rinvsq00         = gmx_mm_inv_ps(rsq00);
1119
1120             /* Load parameters for j particles */
1121             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1122                                                               charge+jnrC+0,charge+jnrD+0);
1123             vdwjidx0A        = 2*vdwtype[jnrA+0];
1124             vdwjidx0B        = 2*vdwtype[jnrB+0];
1125             vdwjidx0C        = 2*vdwtype[jnrC+0];
1126             vdwjidx0D        = 2*vdwtype[jnrD+0];
1127
1128             fjx0             = _mm_setzero_ps();
1129             fjy0             = _mm_setzero_ps();
1130             fjz0             = _mm_setzero_ps();
1131
1132             /**************************
1133              * CALCULATE INTERACTIONS *
1134              **************************/
1135
1136             /* Compute parameters for interactions between i and j atoms */
1137             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1138                                          vdwparam+vdwioffset0+vdwjidx0B,
1139                                          vdwparam+vdwioffset0+vdwjidx0C,
1140                                          vdwparam+vdwioffset0+vdwjidx0D,
1141                                          &c6_00,&c12_00);
1142
1143             /* LENNARD-JONES DISPERSION/REPULSION */
1144
1145             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1146             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1147
1148             fscal            = fvdw;
1149
1150             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1151
1152              /* Update vectorial force */
1153             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1154             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1155             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1156
1157             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1158             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1159             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1160
1161             /**************************
1162              * CALCULATE INTERACTIONS *
1163              **************************/
1164
1165             r10              = _mm_mul_ps(rsq10,rinv10);
1166             r10              = _mm_andnot_ps(dummy_mask,r10);
1167
1168             /* Compute parameters for interactions between i and j atoms */
1169             qq10             = _mm_mul_ps(iq1,jq0);
1170
1171             /* Calculate table index by multiplying r with table scale and truncate to integer */
1172             rt               = _mm_mul_ps(r10,vftabscale);
1173             vfitab           = _mm_cvttps_epi32(rt);
1174 #ifdef __XOP__
1175             vfeps            = _mm_frcz_ps(rt);
1176 #else
1177             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1178 #endif
1179             twovfeps         = _mm_add_ps(vfeps,vfeps);
1180             vfitab           = _mm_slli_epi32(vfitab,2);
1181
1182             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1183             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1184             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1185             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1186             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1187             _MM_TRANSPOSE4_PS(Y,F,G,H);
1188             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1189             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1190             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1191
1192             fscal            = felec;
1193
1194             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1195
1196              /* Update vectorial force */
1197             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1198             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1199             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1200
1201             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1202             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1203             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1204
1205             /**************************
1206              * CALCULATE INTERACTIONS *
1207              **************************/
1208
1209             r20              = _mm_mul_ps(rsq20,rinv20);
1210             r20              = _mm_andnot_ps(dummy_mask,r20);
1211
1212             /* Compute parameters for interactions between i and j atoms */
1213             qq20             = _mm_mul_ps(iq2,jq0);
1214
1215             /* Calculate table index by multiplying r with table scale and truncate to integer */
1216             rt               = _mm_mul_ps(r20,vftabscale);
1217             vfitab           = _mm_cvttps_epi32(rt);
1218 #ifdef __XOP__
1219             vfeps            = _mm_frcz_ps(rt);
1220 #else
1221             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1222 #endif
1223             twovfeps         = _mm_add_ps(vfeps,vfeps);
1224             vfitab           = _mm_slli_epi32(vfitab,2);
1225
1226             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1227             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1228             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1229             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1230             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1231             _MM_TRANSPOSE4_PS(Y,F,G,H);
1232             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1233             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1234             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1235
1236             fscal            = felec;
1237
1238             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1239
1240              /* Update vectorial force */
1241             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1242             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1243             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1244
1245             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1246             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1247             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1248
1249             /**************************
1250              * CALCULATE INTERACTIONS *
1251              **************************/
1252
1253             r30              = _mm_mul_ps(rsq30,rinv30);
1254             r30              = _mm_andnot_ps(dummy_mask,r30);
1255
1256             /* Compute parameters for interactions between i and j atoms */
1257             qq30             = _mm_mul_ps(iq3,jq0);
1258
1259             /* Calculate table index by multiplying r with table scale and truncate to integer */
1260             rt               = _mm_mul_ps(r30,vftabscale);
1261             vfitab           = _mm_cvttps_epi32(rt);
1262 #ifdef __XOP__
1263             vfeps            = _mm_frcz_ps(rt);
1264 #else
1265             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1266 #endif
1267             twovfeps         = _mm_add_ps(vfeps,vfeps);
1268             vfitab           = _mm_slli_epi32(vfitab,2);
1269
1270             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1271             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1272             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1273             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1274             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1275             _MM_TRANSPOSE4_PS(Y,F,G,H);
1276             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1277             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1278             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1279
1280             fscal            = felec;
1281
1282             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1283
1284              /* Update vectorial force */
1285             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1286             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1287             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1288
1289             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1290             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1291             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1292
1293             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1294             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1295             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1296             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1297
1298             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1299
1300             /* Inner loop uses 159 flops */
1301         }
1302
1303         /* End of innermost loop */
1304
1305         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1306                                               f+i_coord_offset,fshift+i_shift_offset);
1307
1308         /* Increment number of inner iterations */
1309         inneriter                  += j_index_end - j_index_start;
1310
1311         /* Outer loop uses 24 flops */
1312     }
1313
1314     /* Increment number of outer iterations */
1315     outeriter        += nri;
1316
1317     /* Update outer/inner flops */
1318
1319     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*159);
1320 }