1f7dac3096e5225306731586d30490777015d5d7
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_avx_128_fma_single
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
104     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
105     __m128i          vfitab;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
108     real             *vftab;
109     __m128           dummy_mask,cutoff_mask;
110     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
111     __m128           one     = _mm_set1_ps(1.0);
112     __m128           two     = _mm_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_ps(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_elec->data;
131     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
136     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
137     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = jnrC = jnrD = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144     j_coord_offsetC = 0;
145     j_coord_offsetD = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
171                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
172
173         fix0             = _mm_setzero_ps();
174         fiy0             = _mm_setzero_ps();
175         fiz0             = _mm_setzero_ps();
176         fix1             = _mm_setzero_ps();
177         fiy1             = _mm_setzero_ps();
178         fiz1             = _mm_setzero_ps();
179         fix2             = _mm_setzero_ps();
180         fiy2             = _mm_setzero_ps();
181         fiz2             = _mm_setzero_ps();
182         fix3             = _mm_setzero_ps();
183         fiy3             = _mm_setzero_ps();
184         fiz3             = _mm_setzero_ps();
185
186         /* Reset potential sums */
187         velecsum         = _mm_setzero_ps();
188         vvdwsum          = _mm_setzero_ps();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203
204             /* load j atom coordinates */
205             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               x+j_coord_offsetC,x+j_coord_offsetD,
207                                               &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _mm_sub_ps(ix0,jx0);
211             dy00             = _mm_sub_ps(iy0,jy0);
212             dz00             = _mm_sub_ps(iz0,jz0);
213             dx10             = _mm_sub_ps(ix1,jx0);
214             dy10             = _mm_sub_ps(iy1,jy0);
215             dz10             = _mm_sub_ps(iz1,jz0);
216             dx20             = _mm_sub_ps(ix2,jx0);
217             dy20             = _mm_sub_ps(iy2,jy0);
218             dz20             = _mm_sub_ps(iz2,jz0);
219             dx30             = _mm_sub_ps(ix3,jx0);
220             dy30             = _mm_sub_ps(iy3,jy0);
221             dz30             = _mm_sub_ps(iz3,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
225             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
226             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
227             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
228
229             rinv10           = gmx_mm_invsqrt_ps(rsq10);
230             rinv20           = gmx_mm_invsqrt_ps(rsq20);
231             rinv30           = gmx_mm_invsqrt_ps(rsq30);
232
233             rinvsq00         = gmx_mm_inv_ps(rsq00);
234
235             /* Load parameters for j particles */
236             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
237                                                               charge+jnrC+0,charge+jnrD+0);
238             vdwjidx0A        = 2*vdwtype[jnrA+0];
239             vdwjidx0B        = 2*vdwtype[jnrB+0];
240             vdwjidx0C        = 2*vdwtype[jnrC+0];
241             vdwjidx0D        = 2*vdwtype[jnrD+0];
242
243             fjx0             = _mm_setzero_ps();
244             fjy0             = _mm_setzero_ps();
245             fjz0             = _mm_setzero_ps();
246
247             /**************************
248              * CALCULATE INTERACTIONS *
249              **************************/
250
251             /* Compute parameters for interactions between i and j atoms */
252             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
253                                          vdwparam+vdwioffset0+vdwjidx0B,
254                                          vdwparam+vdwioffset0+vdwjidx0C,
255                                          vdwparam+vdwioffset0+vdwjidx0D,
256                                          &c6_00,&c12_00);
257
258             /* LENNARD-JONES DISPERSION/REPULSION */
259
260             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
261             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
262             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
263             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
264             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
265
266             /* Update potential sum for this i atom from the interaction with this j atom. */
267             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
268
269             fscal            = fvdw;
270
271              /* Update vectorial force */
272             fix0             = _mm_macc_ps(dx00,fscal,fix0);
273             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
274             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
275
276             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
277             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
278             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
279
280             /**************************
281              * CALCULATE INTERACTIONS *
282              **************************/
283
284             r10              = _mm_mul_ps(rsq10,rinv10);
285
286             /* Compute parameters for interactions between i and j atoms */
287             qq10             = _mm_mul_ps(iq1,jq0);
288
289             /* Calculate table index by multiplying r with table scale and truncate to integer */
290             rt               = _mm_mul_ps(r10,vftabscale);
291             vfitab           = _mm_cvttps_epi32(rt);
292 #ifdef __XOP__
293             vfeps            = _mm_frcz_ps(rt);
294 #else
295             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
296 #endif
297             twovfeps         = _mm_add_ps(vfeps,vfeps);
298             vfitab           = _mm_slli_epi32(vfitab,2);
299
300             /* CUBIC SPLINE TABLE ELECTROSTATICS */
301             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
302             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
303             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
304             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
305             _MM_TRANSPOSE4_PS(Y,F,G,H);
306             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
307             VV               = _mm_macc_ps(vfeps,Fp,Y);
308             velec            = _mm_mul_ps(qq10,VV);
309             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
310             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
311
312             /* Update potential sum for this i atom from the interaction with this j atom. */
313             velecsum         = _mm_add_ps(velecsum,velec);
314
315             fscal            = felec;
316
317              /* Update vectorial force */
318             fix1             = _mm_macc_ps(dx10,fscal,fix1);
319             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
320             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
321
322             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
323             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
324             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             r20              = _mm_mul_ps(rsq20,rinv20);
331
332             /* Compute parameters for interactions between i and j atoms */
333             qq20             = _mm_mul_ps(iq2,jq0);
334
335             /* Calculate table index by multiplying r with table scale and truncate to integer */
336             rt               = _mm_mul_ps(r20,vftabscale);
337             vfitab           = _mm_cvttps_epi32(rt);
338 #ifdef __XOP__
339             vfeps            = _mm_frcz_ps(rt);
340 #else
341             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
342 #endif
343             twovfeps         = _mm_add_ps(vfeps,vfeps);
344             vfitab           = _mm_slli_epi32(vfitab,2);
345
346             /* CUBIC SPLINE TABLE ELECTROSTATICS */
347             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
348             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
349             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
350             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
351             _MM_TRANSPOSE4_PS(Y,F,G,H);
352             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
353             VV               = _mm_macc_ps(vfeps,Fp,Y);
354             velec            = _mm_mul_ps(qq20,VV);
355             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
356             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
357
358             /* Update potential sum for this i atom from the interaction with this j atom. */
359             velecsum         = _mm_add_ps(velecsum,velec);
360
361             fscal            = felec;
362
363              /* Update vectorial force */
364             fix2             = _mm_macc_ps(dx20,fscal,fix2);
365             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
366             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
367
368             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
369             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
370             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
371
372             /**************************
373              * CALCULATE INTERACTIONS *
374              **************************/
375
376             r30              = _mm_mul_ps(rsq30,rinv30);
377
378             /* Compute parameters for interactions between i and j atoms */
379             qq30             = _mm_mul_ps(iq3,jq0);
380
381             /* Calculate table index by multiplying r with table scale and truncate to integer */
382             rt               = _mm_mul_ps(r30,vftabscale);
383             vfitab           = _mm_cvttps_epi32(rt);
384 #ifdef __XOP__
385             vfeps            = _mm_frcz_ps(rt);
386 #else
387             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
388 #endif
389             twovfeps         = _mm_add_ps(vfeps,vfeps);
390             vfitab           = _mm_slli_epi32(vfitab,2);
391
392             /* CUBIC SPLINE TABLE ELECTROSTATICS */
393             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
394             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
395             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
396             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
397             _MM_TRANSPOSE4_PS(Y,F,G,H);
398             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
399             VV               = _mm_macc_ps(vfeps,Fp,Y);
400             velec            = _mm_mul_ps(qq30,VV);
401             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
402             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velecsum         = _mm_add_ps(velecsum,velec);
406
407             fscal            = felec;
408
409              /* Update vectorial force */
410             fix3             = _mm_macc_ps(dx30,fscal,fix3);
411             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
412             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
413
414             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
415             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
416             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
417
418             fjptrA             = f+j_coord_offsetA;
419             fjptrB             = f+j_coord_offsetB;
420             fjptrC             = f+j_coord_offsetC;
421             fjptrD             = f+j_coord_offsetD;
422
423             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
424
425             /* Inner loop uses 173 flops */
426         }
427
428         if(jidx<j_index_end)
429         {
430
431             /* Get j neighbor index, and coordinate index */
432             jnrlistA         = jjnr[jidx];
433             jnrlistB         = jjnr[jidx+1];
434             jnrlistC         = jjnr[jidx+2];
435             jnrlistD         = jjnr[jidx+3];
436             /* Sign of each element will be negative for non-real atoms.
437              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
438              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
439              */
440             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
441             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
442             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
443             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
444             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
445             j_coord_offsetA  = DIM*jnrA;
446             j_coord_offsetB  = DIM*jnrB;
447             j_coord_offsetC  = DIM*jnrC;
448             j_coord_offsetD  = DIM*jnrD;
449
450             /* load j atom coordinates */
451             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
452                                               x+j_coord_offsetC,x+j_coord_offsetD,
453                                               &jx0,&jy0,&jz0);
454
455             /* Calculate displacement vector */
456             dx00             = _mm_sub_ps(ix0,jx0);
457             dy00             = _mm_sub_ps(iy0,jy0);
458             dz00             = _mm_sub_ps(iz0,jz0);
459             dx10             = _mm_sub_ps(ix1,jx0);
460             dy10             = _mm_sub_ps(iy1,jy0);
461             dz10             = _mm_sub_ps(iz1,jz0);
462             dx20             = _mm_sub_ps(ix2,jx0);
463             dy20             = _mm_sub_ps(iy2,jy0);
464             dz20             = _mm_sub_ps(iz2,jz0);
465             dx30             = _mm_sub_ps(ix3,jx0);
466             dy30             = _mm_sub_ps(iy3,jy0);
467             dz30             = _mm_sub_ps(iz3,jz0);
468
469             /* Calculate squared distance and things based on it */
470             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
471             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
472             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
473             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
474
475             rinv10           = gmx_mm_invsqrt_ps(rsq10);
476             rinv20           = gmx_mm_invsqrt_ps(rsq20);
477             rinv30           = gmx_mm_invsqrt_ps(rsq30);
478
479             rinvsq00         = gmx_mm_inv_ps(rsq00);
480
481             /* Load parameters for j particles */
482             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
483                                                               charge+jnrC+0,charge+jnrD+0);
484             vdwjidx0A        = 2*vdwtype[jnrA+0];
485             vdwjidx0B        = 2*vdwtype[jnrB+0];
486             vdwjidx0C        = 2*vdwtype[jnrC+0];
487             vdwjidx0D        = 2*vdwtype[jnrD+0];
488
489             fjx0             = _mm_setzero_ps();
490             fjy0             = _mm_setzero_ps();
491             fjz0             = _mm_setzero_ps();
492
493             /**************************
494              * CALCULATE INTERACTIONS *
495              **************************/
496
497             /* Compute parameters for interactions between i and j atoms */
498             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
499                                          vdwparam+vdwioffset0+vdwjidx0B,
500                                          vdwparam+vdwioffset0+vdwjidx0C,
501                                          vdwparam+vdwioffset0+vdwjidx0D,
502                                          &c6_00,&c12_00);
503
504             /* LENNARD-JONES DISPERSION/REPULSION */
505
506             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
507             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
508             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
509             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
510             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
511
512             /* Update potential sum for this i atom from the interaction with this j atom. */
513             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
514             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
515
516             fscal            = fvdw;
517
518             fscal            = _mm_andnot_ps(dummy_mask,fscal);
519
520              /* Update vectorial force */
521             fix0             = _mm_macc_ps(dx00,fscal,fix0);
522             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
523             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
524
525             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
526             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
527             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
528
529             /**************************
530              * CALCULATE INTERACTIONS *
531              **************************/
532
533             r10              = _mm_mul_ps(rsq10,rinv10);
534             r10              = _mm_andnot_ps(dummy_mask,r10);
535
536             /* Compute parameters for interactions between i and j atoms */
537             qq10             = _mm_mul_ps(iq1,jq0);
538
539             /* Calculate table index by multiplying r with table scale and truncate to integer */
540             rt               = _mm_mul_ps(r10,vftabscale);
541             vfitab           = _mm_cvttps_epi32(rt);
542 #ifdef __XOP__
543             vfeps            = _mm_frcz_ps(rt);
544 #else
545             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
546 #endif
547             twovfeps         = _mm_add_ps(vfeps,vfeps);
548             vfitab           = _mm_slli_epi32(vfitab,2);
549
550             /* CUBIC SPLINE TABLE ELECTROSTATICS */
551             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
552             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
553             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
554             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
555             _MM_TRANSPOSE4_PS(Y,F,G,H);
556             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
557             VV               = _mm_macc_ps(vfeps,Fp,Y);
558             velec            = _mm_mul_ps(qq10,VV);
559             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
560             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
561
562             /* Update potential sum for this i atom from the interaction with this j atom. */
563             velec            = _mm_andnot_ps(dummy_mask,velec);
564             velecsum         = _mm_add_ps(velecsum,velec);
565
566             fscal            = felec;
567
568             fscal            = _mm_andnot_ps(dummy_mask,fscal);
569
570              /* Update vectorial force */
571             fix1             = _mm_macc_ps(dx10,fscal,fix1);
572             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
573             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
574
575             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
576             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
577             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
578
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             r20              = _mm_mul_ps(rsq20,rinv20);
584             r20              = _mm_andnot_ps(dummy_mask,r20);
585
586             /* Compute parameters for interactions between i and j atoms */
587             qq20             = _mm_mul_ps(iq2,jq0);
588
589             /* Calculate table index by multiplying r with table scale and truncate to integer */
590             rt               = _mm_mul_ps(r20,vftabscale);
591             vfitab           = _mm_cvttps_epi32(rt);
592 #ifdef __XOP__
593             vfeps            = _mm_frcz_ps(rt);
594 #else
595             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
596 #endif
597             twovfeps         = _mm_add_ps(vfeps,vfeps);
598             vfitab           = _mm_slli_epi32(vfitab,2);
599
600             /* CUBIC SPLINE TABLE ELECTROSTATICS */
601             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
602             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
603             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
604             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
605             _MM_TRANSPOSE4_PS(Y,F,G,H);
606             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
607             VV               = _mm_macc_ps(vfeps,Fp,Y);
608             velec            = _mm_mul_ps(qq20,VV);
609             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
610             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
611
612             /* Update potential sum for this i atom from the interaction with this j atom. */
613             velec            = _mm_andnot_ps(dummy_mask,velec);
614             velecsum         = _mm_add_ps(velecsum,velec);
615
616             fscal            = felec;
617
618             fscal            = _mm_andnot_ps(dummy_mask,fscal);
619
620              /* Update vectorial force */
621             fix2             = _mm_macc_ps(dx20,fscal,fix2);
622             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
623             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
624
625             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
626             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
627             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
628
629             /**************************
630              * CALCULATE INTERACTIONS *
631              **************************/
632
633             r30              = _mm_mul_ps(rsq30,rinv30);
634             r30              = _mm_andnot_ps(dummy_mask,r30);
635
636             /* Compute parameters for interactions between i and j atoms */
637             qq30             = _mm_mul_ps(iq3,jq0);
638
639             /* Calculate table index by multiplying r with table scale and truncate to integer */
640             rt               = _mm_mul_ps(r30,vftabscale);
641             vfitab           = _mm_cvttps_epi32(rt);
642 #ifdef __XOP__
643             vfeps            = _mm_frcz_ps(rt);
644 #else
645             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
646 #endif
647             twovfeps         = _mm_add_ps(vfeps,vfeps);
648             vfitab           = _mm_slli_epi32(vfitab,2);
649
650             /* CUBIC SPLINE TABLE ELECTROSTATICS */
651             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
652             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
653             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
654             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
655             _MM_TRANSPOSE4_PS(Y,F,G,H);
656             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
657             VV               = _mm_macc_ps(vfeps,Fp,Y);
658             velec            = _mm_mul_ps(qq30,VV);
659             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
660             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
661
662             /* Update potential sum for this i atom from the interaction with this j atom. */
663             velec            = _mm_andnot_ps(dummy_mask,velec);
664             velecsum         = _mm_add_ps(velecsum,velec);
665
666             fscal            = felec;
667
668             fscal            = _mm_andnot_ps(dummy_mask,fscal);
669
670              /* Update vectorial force */
671             fix3             = _mm_macc_ps(dx30,fscal,fix3);
672             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
673             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
674
675             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
676             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
677             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
678
679             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
680             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
681             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
682             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
683
684             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
685
686             /* Inner loop uses 176 flops */
687         }
688
689         /* End of innermost loop */
690
691         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
692                                               f+i_coord_offset,fshift+i_shift_offset);
693
694         ggid                        = gid[iidx];
695         /* Update potential energies */
696         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
697         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
698
699         /* Increment number of inner iterations */
700         inneriter                  += j_index_end - j_index_start;
701
702         /* Outer loop uses 26 flops */
703     }
704
705     /* Increment number of outer iterations */
706     outeriter        += nri;
707
708     /* Update outer/inner flops */
709
710     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*176);
711 }
712 /*
713  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_avx_128_fma_single
714  * Electrostatics interaction: CubicSplineTable
715  * VdW interaction:            LennardJones
716  * Geometry:                   Water4-Particle
717  * Calculate force/pot:        Force
718  */
719 void
720 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_avx_128_fma_single
721                     (t_nblist                    * gmx_restrict       nlist,
722                      rvec                        * gmx_restrict          xx,
723                      rvec                        * gmx_restrict          ff,
724                      t_forcerec                  * gmx_restrict          fr,
725                      t_mdatoms                   * gmx_restrict     mdatoms,
726                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
727                      t_nrnb                      * gmx_restrict        nrnb)
728 {
729     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
730      * just 0 for non-waters.
731      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
732      * jnr indices corresponding to data put in the four positions in the SIMD register.
733      */
734     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
735     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
736     int              jnrA,jnrB,jnrC,jnrD;
737     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
738     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
739     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
740     real             rcutoff_scalar;
741     real             *shiftvec,*fshift,*x,*f;
742     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
743     real             scratch[4*DIM];
744     __m128           fscal,rcutoff,rcutoff2,jidxall;
745     int              vdwioffset0;
746     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
747     int              vdwioffset1;
748     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
749     int              vdwioffset2;
750     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
751     int              vdwioffset3;
752     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
753     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
754     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
755     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
756     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
757     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
758     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
759     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
760     real             *charge;
761     int              nvdwtype;
762     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
763     int              *vdwtype;
764     real             *vdwparam;
765     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
766     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
767     __m128i          vfitab;
768     __m128i          ifour       = _mm_set1_epi32(4);
769     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
770     real             *vftab;
771     __m128           dummy_mask,cutoff_mask;
772     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
773     __m128           one     = _mm_set1_ps(1.0);
774     __m128           two     = _mm_set1_ps(2.0);
775     x                = xx[0];
776     f                = ff[0];
777
778     nri              = nlist->nri;
779     iinr             = nlist->iinr;
780     jindex           = nlist->jindex;
781     jjnr             = nlist->jjnr;
782     shiftidx         = nlist->shift;
783     gid              = nlist->gid;
784     shiftvec         = fr->shift_vec[0];
785     fshift           = fr->fshift[0];
786     facel            = _mm_set1_ps(fr->epsfac);
787     charge           = mdatoms->chargeA;
788     nvdwtype         = fr->ntype;
789     vdwparam         = fr->nbfp;
790     vdwtype          = mdatoms->typeA;
791
792     vftab            = kernel_data->table_elec->data;
793     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
794
795     /* Setup water-specific parameters */
796     inr              = nlist->iinr[0];
797     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
798     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
799     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
800     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
801
802     /* Avoid stupid compiler warnings */
803     jnrA = jnrB = jnrC = jnrD = 0;
804     j_coord_offsetA = 0;
805     j_coord_offsetB = 0;
806     j_coord_offsetC = 0;
807     j_coord_offsetD = 0;
808
809     outeriter        = 0;
810     inneriter        = 0;
811
812     for(iidx=0;iidx<4*DIM;iidx++)
813     {
814         scratch[iidx] = 0.0;
815     }
816
817     /* Start outer loop over neighborlists */
818     for(iidx=0; iidx<nri; iidx++)
819     {
820         /* Load shift vector for this list */
821         i_shift_offset   = DIM*shiftidx[iidx];
822
823         /* Load limits for loop over neighbors */
824         j_index_start    = jindex[iidx];
825         j_index_end      = jindex[iidx+1];
826
827         /* Get outer coordinate index */
828         inr              = iinr[iidx];
829         i_coord_offset   = DIM*inr;
830
831         /* Load i particle coords and add shift vector */
832         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
833                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
834
835         fix0             = _mm_setzero_ps();
836         fiy0             = _mm_setzero_ps();
837         fiz0             = _mm_setzero_ps();
838         fix1             = _mm_setzero_ps();
839         fiy1             = _mm_setzero_ps();
840         fiz1             = _mm_setzero_ps();
841         fix2             = _mm_setzero_ps();
842         fiy2             = _mm_setzero_ps();
843         fiz2             = _mm_setzero_ps();
844         fix3             = _mm_setzero_ps();
845         fiy3             = _mm_setzero_ps();
846         fiz3             = _mm_setzero_ps();
847
848         /* Start inner kernel loop */
849         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
850         {
851
852             /* Get j neighbor index, and coordinate index */
853             jnrA             = jjnr[jidx];
854             jnrB             = jjnr[jidx+1];
855             jnrC             = jjnr[jidx+2];
856             jnrD             = jjnr[jidx+3];
857             j_coord_offsetA  = DIM*jnrA;
858             j_coord_offsetB  = DIM*jnrB;
859             j_coord_offsetC  = DIM*jnrC;
860             j_coord_offsetD  = DIM*jnrD;
861
862             /* load j atom coordinates */
863             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
864                                               x+j_coord_offsetC,x+j_coord_offsetD,
865                                               &jx0,&jy0,&jz0);
866
867             /* Calculate displacement vector */
868             dx00             = _mm_sub_ps(ix0,jx0);
869             dy00             = _mm_sub_ps(iy0,jy0);
870             dz00             = _mm_sub_ps(iz0,jz0);
871             dx10             = _mm_sub_ps(ix1,jx0);
872             dy10             = _mm_sub_ps(iy1,jy0);
873             dz10             = _mm_sub_ps(iz1,jz0);
874             dx20             = _mm_sub_ps(ix2,jx0);
875             dy20             = _mm_sub_ps(iy2,jy0);
876             dz20             = _mm_sub_ps(iz2,jz0);
877             dx30             = _mm_sub_ps(ix3,jx0);
878             dy30             = _mm_sub_ps(iy3,jy0);
879             dz30             = _mm_sub_ps(iz3,jz0);
880
881             /* Calculate squared distance and things based on it */
882             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
883             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
884             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
885             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
886
887             rinv10           = gmx_mm_invsqrt_ps(rsq10);
888             rinv20           = gmx_mm_invsqrt_ps(rsq20);
889             rinv30           = gmx_mm_invsqrt_ps(rsq30);
890
891             rinvsq00         = gmx_mm_inv_ps(rsq00);
892
893             /* Load parameters for j particles */
894             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
895                                                               charge+jnrC+0,charge+jnrD+0);
896             vdwjidx0A        = 2*vdwtype[jnrA+0];
897             vdwjidx0B        = 2*vdwtype[jnrB+0];
898             vdwjidx0C        = 2*vdwtype[jnrC+0];
899             vdwjidx0D        = 2*vdwtype[jnrD+0];
900
901             fjx0             = _mm_setzero_ps();
902             fjy0             = _mm_setzero_ps();
903             fjz0             = _mm_setzero_ps();
904
905             /**************************
906              * CALCULATE INTERACTIONS *
907              **************************/
908
909             /* Compute parameters for interactions between i and j atoms */
910             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
911                                          vdwparam+vdwioffset0+vdwjidx0B,
912                                          vdwparam+vdwioffset0+vdwjidx0C,
913                                          vdwparam+vdwioffset0+vdwjidx0D,
914                                          &c6_00,&c12_00);
915
916             /* LENNARD-JONES DISPERSION/REPULSION */
917
918             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
919             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
920
921             fscal            = fvdw;
922
923              /* Update vectorial force */
924             fix0             = _mm_macc_ps(dx00,fscal,fix0);
925             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
926             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
927
928             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
929             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
930             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
931
932             /**************************
933              * CALCULATE INTERACTIONS *
934              **************************/
935
936             r10              = _mm_mul_ps(rsq10,rinv10);
937
938             /* Compute parameters for interactions between i and j atoms */
939             qq10             = _mm_mul_ps(iq1,jq0);
940
941             /* Calculate table index by multiplying r with table scale and truncate to integer */
942             rt               = _mm_mul_ps(r10,vftabscale);
943             vfitab           = _mm_cvttps_epi32(rt);
944 #ifdef __XOP__
945             vfeps            = _mm_frcz_ps(rt);
946 #else
947             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
948 #endif
949             twovfeps         = _mm_add_ps(vfeps,vfeps);
950             vfitab           = _mm_slli_epi32(vfitab,2);
951
952             /* CUBIC SPLINE TABLE ELECTROSTATICS */
953             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
954             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
955             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
956             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
957             _MM_TRANSPOSE4_PS(Y,F,G,H);
958             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
959             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
960             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
961
962             fscal            = felec;
963
964              /* Update vectorial force */
965             fix1             = _mm_macc_ps(dx10,fscal,fix1);
966             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
967             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
968
969             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
970             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
971             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
972
973             /**************************
974              * CALCULATE INTERACTIONS *
975              **************************/
976
977             r20              = _mm_mul_ps(rsq20,rinv20);
978
979             /* Compute parameters for interactions between i and j atoms */
980             qq20             = _mm_mul_ps(iq2,jq0);
981
982             /* Calculate table index by multiplying r with table scale and truncate to integer */
983             rt               = _mm_mul_ps(r20,vftabscale);
984             vfitab           = _mm_cvttps_epi32(rt);
985 #ifdef __XOP__
986             vfeps            = _mm_frcz_ps(rt);
987 #else
988             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
989 #endif
990             twovfeps         = _mm_add_ps(vfeps,vfeps);
991             vfitab           = _mm_slli_epi32(vfitab,2);
992
993             /* CUBIC SPLINE TABLE ELECTROSTATICS */
994             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
995             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
996             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
997             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
998             _MM_TRANSPOSE4_PS(Y,F,G,H);
999             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1000             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1001             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1002
1003             fscal            = felec;
1004
1005              /* Update vectorial force */
1006             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1007             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1008             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1009
1010             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1011             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1012             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1013
1014             /**************************
1015              * CALCULATE INTERACTIONS *
1016              **************************/
1017
1018             r30              = _mm_mul_ps(rsq30,rinv30);
1019
1020             /* Compute parameters for interactions between i and j atoms */
1021             qq30             = _mm_mul_ps(iq3,jq0);
1022
1023             /* Calculate table index by multiplying r with table scale and truncate to integer */
1024             rt               = _mm_mul_ps(r30,vftabscale);
1025             vfitab           = _mm_cvttps_epi32(rt);
1026 #ifdef __XOP__
1027             vfeps            = _mm_frcz_ps(rt);
1028 #else
1029             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1030 #endif
1031             twovfeps         = _mm_add_ps(vfeps,vfeps);
1032             vfitab           = _mm_slli_epi32(vfitab,2);
1033
1034             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1035             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1036             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1037             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1038             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1039             _MM_TRANSPOSE4_PS(Y,F,G,H);
1040             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1041             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1042             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1043
1044             fscal            = felec;
1045
1046              /* Update vectorial force */
1047             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1048             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1049             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1050
1051             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1052             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1053             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1054
1055             fjptrA             = f+j_coord_offsetA;
1056             fjptrB             = f+j_coord_offsetB;
1057             fjptrC             = f+j_coord_offsetC;
1058             fjptrD             = f+j_coord_offsetD;
1059
1060             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1061
1062             /* Inner loop uses 156 flops */
1063         }
1064
1065         if(jidx<j_index_end)
1066         {
1067
1068             /* Get j neighbor index, and coordinate index */
1069             jnrlistA         = jjnr[jidx];
1070             jnrlistB         = jjnr[jidx+1];
1071             jnrlistC         = jjnr[jidx+2];
1072             jnrlistD         = jjnr[jidx+3];
1073             /* Sign of each element will be negative for non-real atoms.
1074              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1075              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1076              */
1077             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1078             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1079             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1080             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1081             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1082             j_coord_offsetA  = DIM*jnrA;
1083             j_coord_offsetB  = DIM*jnrB;
1084             j_coord_offsetC  = DIM*jnrC;
1085             j_coord_offsetD  = DIM*jnrD;
1086
1087             /* load j atom coordinates */
1088             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1089                                               x+j_coord_offsetC,x+j_coord_offsetD,
1090                                               &jx0,&jy0,&jz0);
1091
1092             /* Calculate displacement vector */
1093             dx00             = _mm_sub_ps(ix0,jx0);
1094             dy00             = _mm_sub_ps(iy0,jy0);
1095             dz00             = _mm_sub_ps(iz0,jz0);
1096             dx10             = _mm_sub_ps(ix1,jx0);
1097             dy10             = _mm_sub_ps(iy1,jy0);
1098             dz10             = _mm_sub_ps(iz1,jz0);
1099             dx20             = _mm_sub_ps(ix2,jx0);
1100             dy20             = _mm_sub_ps(iy2,jy0);
1101             dz20             = _mm_sub_ps(iz2,jz0);
1102             dx30             = _mm_sub_ps(ix3,jx0);
1103             dy30             = _mm_sub_ps(iy3,jy0);
1104             dz30             = _mm_sub_ps(iz3,jz0);
1105
1106             /* Calculate squared distance and things based on it */
1107             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1108             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1109             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1110             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1111
1112             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1113             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1114             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1115
1116             rinvsq00         = gmx_mm_inv_ps(rsq00);
1117
1118             /* Load parameters for j particles */
1119             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1120                                                               charge+jnrC+0,charge+jnrD+0);
1121             vdwjidx0A        = 2*vdwtype[jnrA+0];
1122             vdwjidx0B        = 2*vdwtype[jnrB+0];
1123             vdwjidx0C        = 2*vdwtype[jnrC+0];
1124             vdwjidx0D        = 2*vdwtype[jnrD+0];
1125
1126             fjx0             = _mm_setzero_ps();
1127             fjy0             = _mm_setzero_ps();
1128             fjz0             = _mm_setzero_ps();
1129
1130             /**************************
1131              * CALCULATE INTERACTIONS *
1132              **************************/
1133
1134             /* Compute parameters for interactions between i and j atoms */
1135             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1136                                          vdwparam+vdwioffset0+vdwjidx0B,
1137                                          vdwparam+vdwioffset0+vdwjidx0C,
1138                                          vdwparam+vdwioffset0+vdwjidx0D,
1139                                          &c6_00,&c12_00);
1140
1141             /* LENNARD-JONES DISPERSION/REPULSION */
1142
1143             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1144             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1145
1146             fscal            = fvdw;
1147
1148             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1149
1150              /* Update vectorial force */
1151             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1152             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1153             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1154
1155             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1156             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1157             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1158
1159             /**************************
1160              * CALCULATE INTERACTIONS *
1161              **************************/
1162
1163             r10              = _mm_mul_ps(rsq10,rinv10);
1164             r10              = _mm_andnot_ps(dummy_mask,r10);
1165
1166             /* Compute parameters for interactions between i and j atoms */
1167             qq10             = _mm_mul_ps(iq1,jq0);
1168
1169             /* Calculate table index by multiplying r with table scale and truncate to integer */
1170             rt               = _mm_mul_ps(r10,vftabscale);
1171             vfitab           = _mm_cvttps_epi32(rt);
1172 #ifdef __XOP__
1173             vfeps            = _mm_frcz_ps(rt);
1174 #else
1175             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1176 #endif
1177             twovfeps         = _mm_add_ps(vfeps,vfeps);
1178             vfitab           = _mm_slli_epi32(vfitab,2);
1179
1180             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1181             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1182             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1183             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1184             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1185             _MM_TRANSPOSE4_PS(Y,F,G,H);
1186             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1187             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1188             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1189
1190             fscal            = felec;
1191
1192             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1193
1194              /* Update vectorial force */
1195             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1196             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1197             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1198
1199             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1200             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1201             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1202
1203             /**************************
1204              * CALCULATE INTERACTIONS *
1205              **************************/
1206
1207             r20              = _mm_mul_ps(rsq20,rinv20);
1208             r20              = _mm_andnot_ps(dummy_mask,r20);
1209
1210             /* Compute parameters for interactions between i and j atoms */
1211             qq20             = _mm_mul_ps(iq2,jq0);
1212
1213             /* Calculate table index by multiplying r with table scale and truncate to integer */
1214             rt               = _mm_mul_ps(r20,vftabscale);
1215             vfitab           = _mm_cvttps_epi32(rt);
1216 #ifdef __XOP__
1217             vfeps            = _mm_frcz_ps(rt);
1218 #else
1219             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1220 #endif
1221             twovfeps         = _mm_add_ps(vfeps,vfeps);
1222             vfitab           = _mm_slli_epi32(vfitab,2);
1223
1224             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1225             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1226             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1227             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1228             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1229             _MM_TRANSPOSE4_PS(Y,F,G,H);
1230             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1231             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1232             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1233
1234             fscal            = felec;
1235
1236             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1237
1238              /* Update vectorial force */
1239             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1240             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1241             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1242
1243             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1244             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1245             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1246
1247             /**************************
1248              * CALCULATE INTERACTIONS *
1249              **************************/
1250
1251             r30              = _mm_mul_ps(rsq30,rinv30);
1252             r30              = _mm_andnot_ps(dummy_mask,r30);
1253
1254             /* Compute parameters for interactions between i and j atoms */
1255             qq30             = _mm_mul_ps(iq3,jq0);
1256
1257             /* Calculate table index by multiplying r with table scale and truncate to integer */
1258             rt               = _mm_mul_ps(r30,vftabscale);
1259             vfitab           = _mm_cvttps_epi32(rt);
1260 #ifdef __XOP__
1261             vfeps            = _mm_frcz_ps(rt);
1262 #else
1263             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1264 #endif
1265             twovfeps         = _mm_add_ps(vfeps,vfeps);
1266             vfitab           = _mm_slli_epi32(vfitab,2);
1267
1268             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1269             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1270             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1271             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1272             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1273             _MM_TRANSPOSE4_PS(Y,F,G,H);
1274             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1275             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1276             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1277
1278             fscal            = felec;
1279
1280             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1281
1282              /* Update vectorial force */
1283             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1284             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1285             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1286
1287             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1288             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1289             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1290
1291             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1292             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1293             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1294             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1295
1296             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1297
1298             /* Inner loop uses 159 flops */
1299         }
1300
1301         /* End of innermost loop */
1302
1303         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1304                                               f+i_coord_offset,fshift+i_shift_offset);
1305
1306         /* Increment number of inner iterations */
1307         inneriter                  += j_index_end - j_index_start;
1308
1309         /* Outer loop uses 24 flops */
1310     }
1311
1312     /* Increment number of outer iterations */
1313     outeriter        += nri;
1314
1315     /* Update outer/inner flops */
1316
1317     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*159);
1318 }