Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_128_fma_single
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
107     real             *vftab;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_elec->data;
130     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
135     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
136     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
171
172         fix0             = _mm_setzero_ps();
173         fiy0             = _mm_setzero_ps();
174         fiz0             = _mm_setzero_ps();
175         fix1             = _mm_setzero_ps();
176         fiy1             = _mm_setzero_ps();
177         fiz1             = _mm_setzero_ps();
178         fix2             = _mm_setzero_ps();
179         fiy2             = _mm_setzero_ps();
180         fiz2             = _mm_setzero_ps();
181
182         /* Reset potential sums */
183         velecsum         = _mm_setzero_ps();
184         vvdwsum          = _mm_setzero_ps();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197             j_coord_offsetC  = DIM*jnrC;
198             j_coord_offsetD  = DIM*jnrD;
199
200             /* load j atom coordinates */
201             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
202                                               x+j_coord_offsetC,x+j_coord_offsetD,
203                                               &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm_sub_ps(ix0,jx0);
207             dy00             = _mm_sub_ps(iy0,jy0);
208             dz00             = _mm_sub_ps(iz0,jz0);
209             dx10             = _mm_sub_ps(ix1,jx0);
210             dy10             = _mm_sub_ps(iy1,jy0);
211             dz10             = _mm_sub_ps(iz1,jz0);
212             dx20             = _mm_sub_ps(ix2,jx0);
213             dy20             = _mm_sub_ps(iy2,jy0);
214             dz20             = _mm_sub_ps(iz2,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
218             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
219             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
220
221             rinv00           = gmx_mm_invsqrt_ps(rsq00);
222             rinv10           = gmx_mm_invsqrt_ps(rsq10);
223             rinv20           = gmx_mm_invsqrt_ps(rsq20);
224
225             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
226
227             /* Load parameters for j particles */
228             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
229                                                               charge+jnrC+0,charge+jnrD+0);
230             vdwjidx0A        = 2*vdwtype[jnrA+0];
231             vdwjidx0B        = 2*vdwtype[jnrB+0];
232             vdwjidx0C        = 2*vdwtype[jnrC+0];
233             vdwjidx0D        = 2*vdwtype[jnrD+0];
234
235             fjx0             = _mm_setzero_ps();
236             fjy0             = _mm_setzero_ps();
237             fjz0             = _mm_setzero_ps();
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             r00              = _mm_mul_ps(rsq00,rinv00);
244
245             /* Compute parameters for interactions between i and j atoms */
246             qq00             = _mm_mul_ps(iq0,jq0);
247             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
248                                          vdwparam+vdwioffset0+vdwjidx0B,
249                                          vdwparam+vdwioffset0+vdwjidx0C,
250                                          vdwparam+vdwioffset0+vdwjidx0D,
251                                          &c6_00,&c12_00);
252
253             /* Calculate table index by multiplying r with table scale and truncate to integer */
254             rt               = _mm_mul_ps(r00,vftabscale);
255             vfitab           = _mm_cvttps_epi32(rt);
256 #ifdef __XOP__
257             vfeps            = _mm_frcz_ps(rt);
258 #else
259             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
260 #endif
261             twovfeps         = _mm_add_ps(vfeps,vfeps);
262             vfitab           = _mm_slli_epi32(vfitab,2);
263
264             /* CUBIC SPLINE TABLE ELECTROSTATICS */
265             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
266             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
267             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
268             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
269             _MM_TRANSPOSE4_PS(Y,F,G,H);
270             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
271             VV               = _mm_macc_ps(vfeps,Fp,Y);
272             velec            = _mm_mul_ps(qq00,VV);
273             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
274             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
275
276             /* LENNARD-JONES DISPERSION/REPULSION */
277
278             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
279             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
280             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
281             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
282             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
283
284             /* Update potential sum for this i atom from the interaction with this j atom. */
285             velecsum         = _mm_add_ps(velecsum,velec);
286             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
287
288             fscal            = _mm_add_ps(felec,fvdw);
289
290              /* Update vectorial force */
291             fix0             = _mm_macc_ps(dx00,fscal,fix0);
292             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
293             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
294
295             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
296             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
297             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             r10              = _mm_mul_ps(rsq10,rinv10);
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq10             = _mm_mul_ps(iq1,jq0);
307
308             /* Calculate table index by multiplying r with table scale and truncate to integer */
309             rt               = _mm_mul_ps(r10,vftabscale);
310             vfitab           = _mm_cvttps_epi32(rt);
311 #ifdef __XOP__
312             vfeps            = _mm_frcz_ps(rt);
313 #else
314             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
315 #endif
316             twovfeps         = _mm_add_ps(vfeps,vfeps);
317             vfitab           = _mm_slli_epi32(vfitab,2);
318
319             /* CUBIC SPLINE TABLE ELECTROSTATICS */
320             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
321             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
322             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
323             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
324             _MM_TRANSPOSE4_PS(Y,F,G,H);
325             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
326             VV               = _mm_macc_ps(vfeps,Fp,Y);
327             velec            = _mm_mul_ps(qq10,VV);
328             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
329             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
330
331             /* Update potential sum for this i atom from the interaction with this j atom. */
332             velecsum         = _mm_add_ps(velecsum,velec);
333
334             fscal            = felec;
335
336              /* Update vectorial force */
337             fix1             = _mm_macc_ps(dx10,fscal,fix1);
338             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
339             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
340
341             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
342             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
343             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
344
345             /**************************
346              * CALCULATE INTERACTIONS *
347              **************************/
348
349             r20              = _mm_mul_ps(rsq20,rinv20);
350
351             /* Compute parameters for interactions between i and j atoms */
352             qq20             = _mm_mul_ps(iq2,jq0);
353
354             /* Calculate table index by multiplying r with table scale and truncate to integer */
355             rt               = _mm_mul_ps(r20,vftabscale);
356             vfitab           = _mm_cvttps_epi32(rt);
357 #ifdef __XOP__
358             vfeps            = _mm_frcz_ps(rt);
359 #else
360             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
361 #endif
362             twovfeps         = _mm_add_ps(vfeps,vfeps);
363             vfitab           = _mm_slli_epi32(vfitab,2);
364
365             /* CUBIC SPLINE TABLE ELECTROSTATICS */
366             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
367             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
368             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
369             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
370             _MM_TRANSPOSE4_PS(Y,F,G,H);
371             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
372             VV               = _mm_macc_ps(vfeps,Fp,Y);
373             velec            = _mm_mul_ps(qq20,VV);
374             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
375             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
376
377             /* Update potential sum for this i atom from the interaction with this j atom. */
378             velecsum         = _mm_add_ps(velecsum,velec);
379
380             fscal            = felec;
381
382              /* Update vectorial force */
383             fix2             = _mm_macc_ps(dx20,fscal,fix2);
384             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
385             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
386
387             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
388             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
389             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
390
391             fjptrA             = f+j_coord_offsetA;
392             fjptrB             = f+j_coord_offsetB;
393             fjptrC             = f+j_coord_offsetC;
394             fjptrD             = f+j_coord_offsetD;
395
396             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
397
398             /* Inner loop uses 151 flops */
399         }
400
401         if(jidx<j_index_end)
402         {
403
404             /* Get j neighbor index, and coordinate index */
405             jnrlistA         = jjnr[jidx];
406             jnrlistB         = jjnr[jidx+1];
407             jnrlistC         = jjnr[jidx+2];
408             jnrlistD         = jjnr[jidx+3];
409             /* Sign of each element will be negative for non-real atoms.
410              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
411              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
412              */
413             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
414             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
415             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
416             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
417             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
418             j_coord_offsetA  = DIM*jnrA;
419             j_coord_offsetB  = DIM*jnrB;
420             j_coord_offsetC  = DIM*jnrC;
421             j_coord_offsetD  = DIM*jnrD;
422
423             /* load j atom coordinates */
424             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
425                                               x+j_coord_offsetC,x+j_coord_offsetD,
426                                               &jx0,&jy0,&jz0);
427
428             /* Calculate displacement vector */
429             dx00             = _mm_sub_ps(ix0,jx0);
430             dy00             = _mm_sub_ps(iy0,jy0);
431             dz00             = _mm_sub_ps(iz0,jz0);
432             dx10             = _mm_sub_ps(ix1,jx0);
433             dy10             = _mm_sub_ps(iy1,jy0);
434             dz10             = _mm_sub_ps(iz1,jz0);
435             dx20             = _mm_sub_ps(ix2,jx0);
436             dy20             = _mm_sub_ps(iy2,jy0);
437             dz20             = _mm_sub_ps(iz2,jz0);
438
439             /* Calculate squared distance and things based on it */
440             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
441             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
442             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
443
444             rinv00           = gmx_mm_invsqrt_ps(rsq00);
445             rinv10           = gmx_mm_invsqrt_ps(rsq10);
446             rinv20           = gmx_mm_invsqrt_ps(rsq20);
447
448             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
449
450             /* Load parameters for j particles */
451             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
452                                                               charge+jnrC+0,charge+jnrD+0);
453             vdwjidx0A        = 2*vdwtype[jnrA+0];
454             vdwjidx0B        = 2*vdwtype[jnrB+0];
455             vdwjidx0C        = 2*vdwtype[jnrC+0];
456             vdwjidx0D        = 2*vdwtype[jnrD+0];
457
458             fjx0             = _mm_setzero_ps();
459             fjy0             = _mm_setzero_ps();
460             fjz0             = _mm_setzero_ps();
461
462             /**************************
463              * CALCULATE INTERACTIONS *
464              **************************/
465
466             r00              = _mm_mul_ps(rsq00,rinv00);
467             r00              = _mm_andnot_ps(dummy_mask,r00);
468
469             /* Compute parameters for interactions between i and j atoms */
470             qq00             = _mm_mul_ps(iq0,jq0);
471             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
472                                          vdwparam+vdwioffset0+vdwjidx0B,
473                                          vdwparam+vdwioffset0+vdwjidx0C,
474                                          vdwparam+vdwioffset0+vdwjidx0D,
475                                          &c6_00,&c12_00);
476
477             /* Calculate table index by multiplying r with table scale and truncate to integer */
478             rt               = _mm_mul_ps(r00,vftabscale);
479             vfitab           = _mm_cvttps_epi32(rt);
480 #ifdef __XOP__
481             vfeps            = _mm_frcz_ps(rt);
482 #else
483             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
484 #endif
485             twovfeps         = _mm_add_ps(vfeps,vfeps);
486             vfitab           = _mm_slli_epi32(vfitab,2);
487
488             /* CUBIC SPLINE TABLE ELECTROSTATICS */
489             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
490             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
491             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
492             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
493             _MM_TRANSPOSE4_PS(Y,F,G,H);
494             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
495             VV               = _mm_macc_ps(vfeps,Fp,Y);
496             velec            = _mm_mul_ps(qq00,VV);
497             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
498             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
499
500             /* LENNARD-JONES DISPERSION/REPULSION */
501
502             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
503             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
504             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
505             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
506             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
507
508             /* Update potential sum for this i atom from the interaction with this j atom. */
509             velec            = _mm_andnot_ps(dummy_mask,velec);
510             velecsum         = _mm_add_ps(velecsum,velec);
511             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
512             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
513
514             fscal            = _mm_add_ps(felec,fvdw);
515
516             fscal            = _mm_andnot_ps(dummy_mask,fscal);
517
518              /* Update vectorial force */
519             fix0             = _mm_macc_ps(dx00,fscal,fix0);
520             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
521             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
522
523             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
524             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
525             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
526
527             /**************************
528              * CALCULATE INTERACTIONS *
529              **************************/
530
531             r10              = _mm_mul_ps(rsq10,rinv10);
532             r10              = _mm_andnot_ps(dummy_mask,r10);
533
534             /* Compute parameters for interactions between i and j atoms */
535             qq10             = _mm_mul_ps(iq1,jq0);
536
537             /* Calculate table index by multiplying r with table scale and truncate to integer */
538             rt               = _mm_mul_ps(r10,vftabscale);
539             vfitab           = _mm_cvttps_epi32(rt);
540 #ifdef __XOP__
541             vfeps            = _mm_frcz_ps(rt);
542 #else
543             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
544 #endif
545             twovfeps         = _mm_add_ps(vfeps,vfeps);
546             vfitab           = _mm_slli_epi32(vfitab,2);
547
548             /* CUBIC SPLINE TABLE ELECTROSTATICS */
549             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
550             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
551             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
552             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
553             _MM_TRANSPOSE4_PS(Y,F,G,H);
554             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
555             VV               = _mm_macc_ps(vfeps,Fp,Y);
556             velec            = _mm_mul_ps(qq10,VV);
557             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
558             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
559
560             /* Update potential sum for this i atom from the interaction with this j atom. */
561             velec            = _mm_andnot_ps(dummy_mask,velec);
562             velecsum         = _mm_add_ps(velecsum,velec);
563
564             fscal            = felec;
565
566             fscal            = _mm_andnot_ps(dummy_mask,fscal);
567
568              /* Update vectorial force */
569             fix1             = _mm_macc_ps(dx10,fscal,fix1);
570             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
571             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
572
573             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
574             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
575             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
576
577             /**************************
578              * CALCULATE INTERACTIONS *
579              **************************/
580
581             r20              = _mm_mul_ps(rsq20,rinv20);
582             r20              = _mm_andnot_ps(dummy_mask,r20);
583
584             /* Compute parameters for interactions between i and j atoms */
585             qq20             = _mm_mul_ps(iq2,jq0);
586
587             /* Calculate table index by multiplying r with table scale and truncate to integer */
588             rt               = _mm_mul_ps(r20,vftabscale);
589             vfitab           = _mm_cvttps_epi32(rt);
590 #ifdef __XOP__
591             vfeps            = _mm_frcz_ps(rt);
592 #else
593             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
594 #endif
595             twovfeps         = _mm_add_ps(vfeps,vfeps);
596             vfitab           = _mm_slli_epi32(vfitab,2);
597
598             /* CUBIC SPLINE TABLE ELECTROSTATICS */
599             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
600             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
601             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
602             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
603             _MM_TRANSPOSE4_PS(Y,F,G,H);
604             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
605             VV               = _mm_macc_ps(vfeps,Fp,Y);
606             velec            = _mm_mul_ps(qq20,VV);
607             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
608             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
609
610             /* Update potential sum for this i atom from the interaction with this j atom. */
611             velec            = _mm_andnot_ps(dummy_mask,velec);
612             velecsum         = _mm_add_ps(velecsum,velec);
613
614             fscal            = felec;
615
616             fscal            = _mm_andnot_ps(dummy_mask,fscal);
617
618              /* Update vectorial force */
619             fix2             = _mm_macc_ps(dx20,fscal,fix2);
620             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
621             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
622
623             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
624             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
625             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
626
627             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
628             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
629             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
630             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
631
632             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
633
634             /* Inner loop uses 154 flops */
635         }
636
637         /* End of innermost loop */
638
639         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
640                                               f+i_coord_offset,fshift+i_shift_offset);
641
642         ggid                        = gid[iidx];
643         /* Update potential energies */
644         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
645         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
646
647         /* Increment number of inner iterations */
648         inneriter                  += j_index_end - j_index_start;
649
650         /* Outer loop uses 20 flops */
651     }
652
653     /* Increment number of outer iterations */
654     outeriter        += nri;
655
656     /* Update outer/inner flops */
657
658     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154);
659 }
660 /*
661  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_128_fma_single
662  * Electrostatics interaction: CubicSplineTable
663  * VdW interaction:            LennardJones
664  * Geometry:                   Water3-Particle
665  * Calculate force/pot:        Force
666  */
667 void
668 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_128_fma_single
669                     (t_nblist                    * gmx_restrict       nlist,
670                      rvec                        * gmx_restrict          xx,
671                      rvec                        * gmx_restrict          ff,
672                      t_forcerec                  * gmx_restrict          fr,
673                      t_mdatoms                   * gmx_restrict     mdatoms,
674                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
675                      t_nrnb                      * gmx_restrict        nrnb)
676 {
677     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
678      * just 0 for non-waters.
679      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
680      * jnr indices corresponding to data put in the four positions in the SIMD register.
681      */
682     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
683     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
684     int              jnrA,jnrB,jnrC,jnrD;
685     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
686     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
687     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
688     real             rcutoff_scalar;
689     real             *shiftvec,*fshift,*x,*f;
690     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
691     real             scratch[4*DIM];
692     __m128           fscal,rcutoff,rcutoff2,jidxall;
693     int              vdwioffset0;
694     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
695     int              vdwioffset1;
696     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
697     int              vdwioffset2;
698     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
699     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
700     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
701     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
702     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
703     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
704     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
705     real             *charge;
706     int              nvdwtype;
707     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
708     int              *vdwtype;
709     real             *vdwparam;
710     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
711     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
712     __m128i          vfitab;
713     __m128i          ifour       = _mm_set1_epi32(4);
714     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
715     real             *vftab;
716     __m128           dummy_mask,cutoff_mask;
717     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
718     __m128           one     = _mm_set1_ps(1.0);
719     __m128           two     = _mm_set1_ps(2.0);
720     x                = xx[0];
721     f                = ff[0];
722
723     nri              = nlist->nri;
724     iinr             = nlist->iinr;
725     jindex           = nlist->jindex;
726     jjnr             = nlist->jjnr;
727     shiftidx         = nlist->shift;
728     gid              = nlist->gid;
729     shiftvec         = fr->shift_vec[0];
730     fshift           = fr->fshift[0];
731     facel            = _mm_set1_ps(fr->epsfac);
732     charge           = mdatoms->chargeA;
733     nvdwtype         = fr->ntype;
734     vdwparam         = fr->nbfp;
735     vdwtype          = mdatoms->typeA;
736
737     vftab            = kernel_data->table_elec->data;
738     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
739
740     /* Setup water-specific parameters */
741     inr              = nlist->iinr[0];
742     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
743     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
744     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
745     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
746
747     /* Avoid stupid compiler warnings */
748     jnrA = jnrB = jnrC = jnrD = 0;
749     j_coord_offsetA = 0;
750     j_coord_offsetB = 0;
751     j_coord_offsetC = 0;
752     j_coord_offsetD = 0;
753
754     outeriter        = 0;
755     inneriter        = 0;
756
757     for(iidx=0;iidx<4*DIM;iidx++)
758     {
759         scratch[iidx] = 0.0;
760     }
761
762     /* Start outer loop over neighborlists */
763     for(iidx=0; iidx<nri; iidx++)
764     {
765         /* Load shift vector for this list */
766         i_shift_offset   = DIM*shiftidx[iidx];
767
768         /* Load limits for loop over neighbors */
769         j_index_start    = jindex[iidx];
770         j_index_end      = jindex[iidx+1];
771
772         /* Get outer coordinate index */
773         inr              = iinr[iidx];
774         i_coord_offset   = DIM*inr;
775
776         /* Load i particle coords and add shift vector */
777         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
778                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
779
780         fix0             = _mm_setzero_ps();
781         fiy0             = _mm_setzero_ps();
782         fiz0             = _mm_setzero_ps();
783         fix1             = _mm_setzero_ps();
784         fiy1             = _mm_setzero_ps();
785         fiz1             = _mm_setzero_ps();
786         fix2             = _mm_setzero_ps();
787         fiy2             = _mm_setzero_ps();
788         fiz2             = _mm_setzero_ps();
789
790         /* Start inner kernel loop */
791         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
792         {
793
794             /* Get j neighbor index, and coordinate index */
795             jnrA             = jjnr[jidx];
796             jnrB             = jjnr[jidx+1];
797             jnrC             = jjnr[jidx+2];
798             jnrD             = jjnr[jidx+3];
799             j_coord_offsetA  = DIM*jnrA;
800             j_coord_offsetB  = DIM*jnrB;
801             j_coord_offsetC  = DIM*jnrC;
802             j_coord_offsetD  = DIM*jnrD;
803
804             /* load j atom coordinates */
805             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
806                                               x+j_coord_offsetC,x+j_coord_offsetD,
807                                               &jx0,&jy0,&jz0);
808
809             /* Calculate displacement vector */
810             dx00             = _mm_sub_ps(ix0,jx0);
811             dy00             = _mm_sub_ps(iy0,jy0);
812             dz00             = _mm_sub_ps(iz0,jz0);
813             dx10             = _mm_sub_ps(ix1,jx0);
814             dy10             = _mm_sub_ps(iy1,jy0);
815             dz10             = _mm_sub_ps(iz1,jz0);
816             dx20             = _mm_sub_ps(ix2,jx0);
817             dy20             = _mm_sub_ps(iy2,jy0);
818             dz20             = _mm_sub_ps(iz2,jz0);
819
820             /* Calculate squared distance and things based on it */
821             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
822             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
823             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
824
825             rinv00           = gmx_mm_invsqrt_ps(rsq00);
826             rinv10           = gmx_mm_invsqrt_ps(rsq10);
827             rinv20           = gmx_mm_invsqrt_ps(rsq20);
828
829             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
830
831             /* Load parameters for j particles */
832             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
833                                                               charge+jnrC+0,charge+jnrD+0);
834             vdwjidx0A        = 2*vdwtype[jnrA+0];
835             vdwjidx0B        = 2*vdwtype[jnrB+0];
836             vdwjidx0C        = 2*vdwtype[jnrC+0];
837             vdwjidx0D        = 2*vdwtype[jnrD+0];
838
839             fjx0             = _mm_setzero_ps();
840             fjy0             = _mm_setzero_ps();
841             fjz0             = _mm_setzero_ps();
842
843             /**************************
844              * CALCULATE INTERACTIONS *
845              **************************/
846
847             r00              = _mm_mul_ps(rsq00,rinv00);
848
849             /* Compute parameters for interactions between i and j atoms */
850             qq00             = _mm_mul_ps(iq0,jq0);
851             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
852                                          vdwparam+vdwioffset0+vdwjidx0B,
853                                          vdwparam+vdwioffset0+vdwjidx0C,
854                                          vdwparam+vdwioffset0+vdwjidx0D,
855                                          &c6_00,&c12_00);
856
857             /* Calculate table index by multiplying r with table scale and truncate to integer */
858             rt               = _mm_mul_ps(r00,vftabscale);
859             vfitab           = _mm_cvttps_epi32(rt);
860 #ifdef __XOP__
861             vfeps            = _mm_frcz_ps(rt);
862 #else
863             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
864 #endif
865             twovfeps         = _mm_add_ps(vfeps,vfeps);
866             vfitab           = _mm_slli_epi32(vfitab,2);
867
868             /* CUBIC SPLINE TABLE ELECTROSTATICS */
869             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
870             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
871             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
872             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
873             _MM_TRANSPOSE4_PS(Y,F,G,H);
874             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
875             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
876             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
877
878             /* LENNARD-JONES DISPERSION/REPULSION */
879
880             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
881             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
882
883             fscal            = _mm_add_ps(felec,fvdw);
884
885              /* Update vectorial force */
886             fix0             = _mm_macc_ps(dx00,fscal,fix0);
887             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
888             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
889
890             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
891             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
892             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
893
894             /**************************
895              * CALCULATE INTERACTIONS *
896              **************************/
897
898             r10              = _mm_mul_ps(rsq10,rinv10);
899
900             /* Compute parameters for interactions between i and j atoms */
901             qq10             = _mm_mul_ps(iq1,jq0);
902
903             /* Calculate table index by multiplying r with table scale and truncate to integer */
904             rt               = _mm_mul_ps(r10,vftabscale);
905             vfitab           = _mm_cvttps_epi32(rt);
906 #ifdef __XOP__
907             vfeps            = _mm_frcz_ps(rt);
908 #else
909             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
910 #endif
911             twovfeps         = _mm_add_ps(vfeps,vfeps);
912             vfitab           = _mm_slli_epi32(vfitab,2);
913
914             /* CUBIC SPLINE TABLE ELECTROSTATICS */
915             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
916             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
917             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
918             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
919             _MM_TRANSPOSE4_PS(Y,F,G,H);
920             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
921             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
922             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
923
924             fscal            = felec;
925
926              /* Update vectorial force */
927             fix1             = _mm_macc_ps(dx10,fscal,fix1);
928             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
929             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
930
931             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
932             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
933             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
934
935             /**************************
936              * CALCULATE INTERACTIONS *
937              **************************/
938
939             r20              = _mm_mul_ps(rsq20,rinv20);
940
941             /* Compute parameters for interactions between i and j atoms */
942             qq20             = _mm_mul_ps(iq2,jq0);
943
944             /* Calculate table index by multiplying r with table scale and truncate to integer */
945             rt               = _mm_mul_ps(r20,vftabscale);
946             vfitab           = _mm_cvttps_epi32(rt);
947 #ifdef __XOP__
948             vfeps            = _mm_frcz_ps(rt);
949 #else
950             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
951 #endif
952             twovfeps         = _mm_add_ps(vfeps,vfeps);
953             vfitab           = _mm_slli_epi32(vfitab,2);
954
955             /* CUBIC SPLINE TABLE ELECTROSTATICS */
956             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
957             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
958             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
959             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
960             _MM_TRANSPOSE4_PS(Y,F,G,H);
961             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
962             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
963             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
964
965             fscal            = felec;
966
967              /* Update vectorial force */
968             fix2             = _mm_macc_ps(dx20,fscal,fix2);
969             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
970             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
971
972             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
973             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
974             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
975
976             fjptrA             = f+j_coord_offsetA;
977             fjptrB             = f+j_coord_offsetB;
978             fjptrC             = f+j_coord_offsetC;
979             fjptrD             = f+j_coord_offsetD;
980
981             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
982
983             /* Inner loop uses 134 flops */
984         }
985
986         if(jidx<j_index_end)
987         {
988
989             /* Get j neighbor index, and coordinate index */
990             jnrlistA         = jjnr[jidx];
991             jnrlistB         = jjnr[jidx+1];
992             jnrlistC         = jjnr[jidx+2];
993             jnrlistD         = jjnr[jidx+3];
994             /* Sign of each element will be negative for non-real atoms.
995              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
996              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
997              */
998             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
999             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1000             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1001             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1002             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1003             j_coord_offsetA  = DIM*jnrA;
1004             j_coord_offsetB  = DIM*jnrB;
1005             j_coord_offsetC  = DIM*jnrC;
1006             j_coord_offsetD  = DIM*jnrD;
1007
1008             /* load j atom coordinates */
1009             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1010                                               x+j_coord_offsetC,x+j_coord_offsetD,
1011                                               &jx0,&jy0,&jz0);
1012
1013             /* Calculate displacement vector */
1014             dx00             = _mm_sub_ps(ix0,jx0);
1015             dy00             = _mm_sub_ps(iy0,jy0);
1016             dz00             = _mm_sub_ps(iz0,jz0);
1017             dx10             = _mm_sub_ps(ix1,jx0);
1018             dy10             = _mm_sub_ps(iy1,jy0);
1019             dz10             = _mm_sub_ps(iz1,jz0);
1020             dx20             = _mm_sub_ps(ix2,jx0);
1021             dy20             = _mm_sub_ps(iy2,jy0);
1022             dz20             = _mm_sub_ps(iz2,jz0);
1023
1024             /* Calculate squared distance and things based on it */
1025             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1026             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1027             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1028
1029             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1030             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1031             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1032
1033             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1034
1035             /* Load parameters for j particles */
1036             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1037                                                               charge+jnrC+0,charge+jnrD+0);
1038             vdwjidx0A        = 2*vdwtype[jnrA+0];
1039             vdwjidx0B        = 2*vdwtype[jnrB+0];
1040             vdwjidx0C        = 2*vdwtype[jnrC+0];
1041             vdwjidx0D        = 2*vdwtype[jnrD+0];
1042
1043             fjx0             = _mm_setzero_ps();
1044             fjy0             = _mm_setzero_ps();
1045             fjz0             = _mm_setzero_ps();
1046
1047             /**************************
1048              * CALCULATE INTERACTIONS *
1049              **************************/
1050
1051             r00              = _mm_mul_ps(rsq00,rinv00);
1052             r00              = _mm_andnot_ps(dummy_mask,r00);
1053
1054             /* Compute parameters for interactions between i and j atoms */
1055             qq00             = _mm_mul_ps(iq0,jq0);
1056             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1057                                          vdwparam+vdwioffset0+vdwjidx0B,
1058                                          vdwparam+vdwioffset0+vdwjidx0C,
1059                                          vdwparam+vdwioffset0+vdwjidx0D,
1060                                          &c6_00,&c12_00);
1061
1062             /* Calculate table index by multiplying r with table scale and truncate to integer */
1063             rt               = _mm_mul_ps(r00,vftabscale);
1064             vfitab           = _mm_cvttps_epi32(rt);
1065 #ifdef __XOP__
1066             vfeps            = _mm_frcz_ps(rt);
1067 #else
1068             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1069 #endif
1070             twovfeps         = _mm_add_ps(vfeps,vfeps);
1071             vfitab           = _mm_slli_epi32(vfitab,2);
1072
1073             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1074             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1075             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1076             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1077             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1078             _MM_TRANSPOSE4_PS(Y,F,G,H);
1079             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1080             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1081             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
1082
1083             /* LENNARD-JONES DISPERSION/REPULSION */
1084
1085             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1086             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1087
1088             fscal            = _mm_add_ps(felec,fvdw);
1089
1090             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1091
1092              /* Update vectorial force */
1093             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1094             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1095             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1096
1097             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1098             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1099             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1100
1101             /**************************
1102              * CALCULATE INTERACTIONS *
1103              **************************/
1104
1105             r10              = _mm_mul_ps(rsq10,rinv10);
1106             r10              = _mm_andnot_ps(dummy_mask,r10);
1107
1108             /* Compute parameters for interactions between i and j atoms */
1109             qq10             = _mm_mul_ps(iq1,jq0);
1110
1111             /* Calculate table index by multiplying r with table scale and truncate to integer */
1112             rt               = _mm_mul_ps(r10,vftabscale);
1113             vfitab           = _mm_cvttps_epi32(rt);
1114 #ifdef __XOP__
1115             vfeps            = _mm_frcz_ps(rt);
1116 #else
1117             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1118 #endif
1119             twovfeps         = _mm_add_ps(vfeps,vfeps);
1120             vfitab           = _mm_slli_epi32(vfitab,2);
1121
1122             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1123             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1124             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1125             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1126             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1127             _MM_TRANSPOSE4_PS(Y,F,G,H);
1128             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1129             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1130             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1131
1132             fscal            = felec;
1133
1134             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1135
1136              /* Update vectorial force */
1137             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1138             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1139             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1140
1141             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1142             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1143             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1144
1145             /**************************
1146              * CALCULATE INTERACTIONS *
1147              **************************/
1148
1149             r20              = _mm_mul_ps(rsq20,rinv20);
1150             r20              = _mm_andnot_ps(dummy_mask,r20);
1151
1152             /* Compute parameters for interactions between i and j atoms */
1153             qq20             = _mm_mul_ps(iq2,jq0);
1154
1155             /* Calculate table index by multiplying r with table scale and truncate to integer */
1156             rt               = _mm_mul_ps(r20,vftabscale);
1157             vfitab           = _mm_cvttps_epi32(rt);
1158 #ifdef __XOP__
1159             vfeps            = _mm_frcz_ps(rt);
1160 #else
1161             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1162 #endif
1163             twovfeps         = _mm_add_ps(vfeps,vfeps);
1164             vfitab           = _mm_slli_epi32(vfitab,2);
1165
1166             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1167             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1168             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1169             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1170             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1171             _MM_TRANSPOSE4_PS(Y,F,G,H);
1172             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1173             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1174             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1175
1176             fscal            = felec;
1177
1178             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1179
1180              /* Update vectorial force */
1181             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1182             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1183             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1184
1185             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1186             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1187             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1188
1189             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1190             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1191             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1192             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1193
1194             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1195
1196             /* Inner loop uses 137 flops */
1197         }
1198
1199         /* End of innermost loop */
1200
1201         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1202                                               f+i_coord_offset,fshift+i_shift_offset);
1203
1204         /* Increment number of inner iterations */
1205         inneriter                  += j_index_end - j_index_start;
1206
1207         /* Outer loop uses 18 flops */
1208     }
1209
1210     /* Increment number of outer iterations */
1211     outeriter        += nri;
1212
1213     /* Update outer/inner flops */
1214
1215     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*137);
1216 }