7d6abc9583fa2b1b3de0364e37557388611c30c8
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_128_fma_single
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
105     real             *vftab;
106     __m128           dummy_mask,cutoff_mask;
107     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108     __m128           one     = _mm_set1_ps(1.0);
109     __m128           two     = _mm_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_elec->data;
128     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
133     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
134     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = jnrC = jnrD = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141     j_coord_offsetC = 0;
142     j_coord_offsetD = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
169
170         fix0             = _mm_setzero_ps();
171         fiy0             = _mm_setzero_ps();
172         fiz0             = _mm_setzero_ps();
173         fix1             = _mm_setzero_ps();
174         fiy1             = _mm_setzero_ps();
175         fiz1             = _mm_setzero_ps();
176         fix2             = _mm_setzero_ps();
177         fiy2             = _mm_setzero_ps();
178         fiz2             = _mm_setzero_ps();
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_ps();
182         vvdwsum          = _mm_setzero_ps();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195             j_coord_offsetC  = DIM*jnrC;
196             j_coord_offsetD  = DIM*jnrD;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               x+j_coord_offsetC,x+j_coord_offsetD,
201                                               &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm_sub_ps(ix0,jx0);
205             dy00             = _mm_sub_ps(iy0,jy0);
206             dz00             = _mm_sub_ps(iz0,jz0);
207             dx10             = _mm_sub_ps(ix1,jx0);
208             dy10             = _mm_sub_ps(iy1,jy0);
209             dz10             = _mm_sub_ps(iz1,jz0);
210             dx20             = _mm_sub_ps(ix2,jx0);
211             dy20             = _mm_sub_ps(iy2,jy0);
212             dz20             = _mm_sub_ps(iz2,jz0);
213
214             /* Calculate squared distance and things based on it */
215             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
216             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
217             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
218
219             rinv00           = gmx_mm_invsqrt_ps(rsq00);
220             rinv10           = gmx_mm_invsqrt_ps(rsq10);
221             rinv20           = gmx_mm_invsqrt_ps(rsq20);
222
223             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
227                                                               charge+jnrC+0,charge+jnrD+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230             vdwjidx0C        = 2*vdwtype[jnrC+0];
231             vdwjidx0D        = 2*vdwtype[jnrD+0];
232
233             fjx0             = _mm_setzero_ps();
234             fjy0             = _mm_setzero_ps();
235             fjz0             = _mm_setzero_ps();
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             r00              = _mm_mul_ps(rsq00,rinv00);
242
243             /* Compute parameters for interactions between i and j atoms */
244             qq00             = _mm_mul_ps(iq0,jq0);
245             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
246                                          vdwparam+vdwioffset0+vdwjidx0B,
247                                          vdwparam+vdwioffset0+vdwjidx0C,
248                                          vdwparam+vdwioffset0+vdwjidx0D,
249                                          &c6_00,&c12_00);
250
251             /* Calculate table index by multiplying r with table scale and truncate to integer */
252             rt               = _mm_mul_ps(r00,vftabscale);
253             vfitab           = _mm_cvttps_epi32(rt);
254 #ifdef __XOP__
255             vfeps            = _mm_frcz_ps(rt);
256 #else
257             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
258 #endif
259             twovfeps         = _mm_add_ps(vfeps,vfeps);
260             vfitab           = _mm_slli_epi32(vfitab,2);
261
262             /* CUBIC SPLINE TABLE ELECTROSTATICS */
263             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
264             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
265             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
266             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
267             _MM_TRANSPOSE4_PS(Y,F,G,H);
268             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
269             VV               = _mm_macc_ps(vfeps,Fp,Y);
270             velec            = _mm_mul_ps(qq00,VV);
271             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
272             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
273
274             /* LENNARD-JONES DISPERSION/REPULSION */
275
276             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
277             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
278             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
279             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
280             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             velecsum         = _mm_add_ps(velecsum,velec);
284             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
285
286             fscal            = _mm_add_ps(felec,fvdw);
287
288              /* Update vectorial force */
289             fix0             = _mm_macc_ps(dx00,fscal,fix0);
290             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
291             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
292
293             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
294             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
295             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
296
297             /**************************
298              * CALCULATE INTERACTIONS *
299              **************************/
300
301             r10              = _mm_mul_ps(rsq10,rinv10);
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq10             = _mm_mul_ps(iq1,jq0);
305
306             /* Calculate table index by multiplying r with table scale and truncate to integer */
307             rt               = _mm_mul_ps(r10,vftabscale);
308             vfitab           = _mm_cvttps_epi32(rt);
309 #ifdef __XOP__
310             vfeps            = _mm_frcz_ps(rt);
311 #else
312             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
313 #endif
314             twovfeps         = _mm_add_ps(vfeps,vfeps);
315             vfitab           = _mm_slli_epi32(vfitab,2);
316
317             /* CUBIC SPLINE TABLE ELECTROSTATICS */
318             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
319             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
320             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
321             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
322             _MM_TRANSPOSE4_PS(Y,F,G,H);
323             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
324             VV               = _mm_macc_ps(vfeps,Fp,Y);
325             velec            = _mm_mul_ps(qq10,VV);
326             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
327             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
328
329             /* Update potential sum for this i atom from the interaction with this j atom. */
330             velecsum         = _mm_add_ps(velecsum,velec);
331
332             fscal            = felec;
333
334              /* Update vectorial force */
335             fix1             = _mm_macc_ps(dx10,fscal,fix1);
336             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
337             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
338
339             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
340             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
341             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
342
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             r20              = _mm_mul_ps(rsq20,rinv20);
348
349             /* Compute parameters for interactions between i and j atoms */
350             qq20             = _mm_mul_ps(iq2,jq0);
351
352             /* Calculate table index by multiplying r with table scale and truncate to integer */
353             rt               = _mm_mul_ps(r20,vftabscale);
354             vfitab           = _mm_cvttps_epi32(rt);
355 #ifdef __XOP__
356             vfeps            = _mm_frcz_ps(rt);
357 #else
358             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
359 #endif
360             twovfeps         = _mm_add_ps(vfeps,vfeps);
361             vfitab           = _mm_slli_epi32(vfitab,2);
362
363             /* CUBIC SPLINE TABLE ELECTROSTATICS */
364             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
365             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
366             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
367             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
368             _MM_TRANSPOSE4_PS(Y,F,G,H);
369             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
370             VV               = _mm_macc_ps(vfeps,Fp,Y);
371             velec            = _mm_mul_ps(qq20,VV);
372             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
373             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
374
375             /* Update potential sum for this i atom from the interaction with this j atom. */
376             velecsum         = _mm_add_ps(velecsum,velec);
377
378             fscal            = felec;
379
380              /* Update vectorial force */
381             fix2             = _mm_macc_ps(dx20,fscal,fix2);
382             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
383             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
384
385             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
386             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
387             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
388
389             fjptrA             = f+j_coord_offsetA;
390             fjptrB             = f+j_coord_offsetB;
391             fjptrC             = f+j_coord_offsetC;
392             fjptrD             = f+j_coord_offsetD;
393
394             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
395
396             /* Inner loop uses 151 flops */
397         }
398
399         if(jidx<j_index_end)
400         {
401
402             /* Get j neighbor index, and coordinate index */
403             jnrlistA         = jjnr[jidx];
404             jnrlistB         = jjnr[jidx+1];
405             jnrlistC         = jjnr[jidx+2];
406             jnrlistD         = jjnr[jidx+3];
407             /* Sign of each element will be negative for non-real atoms.
408              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
409              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
410              */
411             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
412             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
413             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
414             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
415             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
416             j_coord_offsetA  = DIM*jnrA;
417             j_coord_offsetB  = DIM*jnrB;
418             j_coord_offsetC  = DIM*jnrC;
419             j_coord_offsetD  = DIM*jnrD;
420
421             /* load j atom coordinates */
422             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
423                                               x+j_coord_offsetC,x+j_coord_offsetD,
424                                               &jx0,&jy0,&jz0);
425
426             /* Calculate displacement vector */
427             dx00             = _mm_sub_ps(ix0,jx0);
428             dy00             = _mm_sub_ps(iy0,jy0);
429             dz00             = _mm_sub_ps(iz0,jz0);
430             dx10             = _mm_sub_ps(ix1,jx0);
431             dy10             = _mm_sub_ps(iy1,jy0);
432             dz10             = _mm_sub_ps(iz1,jz0);
433             dx20             = _mm_sub_ps(ix2,jx0);
434             dy20             = _mm_sub_ps(iy2,jy0);
435             dz20             = _mm_sub_ps(iz2,jz0);
436
437             /* Calculate squared distance and things based on it */
438             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
439             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
440             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
441
442             rinv00           = gmx_mm_invsqrt_ps(rsq00);
443             rinv10           = gmx_mm_invsqrt_ps(rsq10);
444             rinv20           = gmx_mm_invsqrt_ps(rsq20);
445
446             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
447
448             /* Load parameters for j particles */
449             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
450                                                               charge+jnrC+0,charge+jnrD+0);
451             vdwjidx0A        = 2*vdwtype[jnrA+0];
452             vdwjidx0B        = 2*vdwtype[jnrB+0];
453             vdwjidx0C        = 2*vdwtype[jnrC+0];
454             vdwjidx0D        = 2*vdwtype[jnrD+0];
455
456             fjx0             = _mm_setzero_ps();
457             fjy0             = _mm_setzero_ps();
458             fjz0             = _mm_setzero_ps();
459
460             /**************************
461              * CALCULATE INTERACTIONS *
462              **************************/
463
464             r00              = _mm_mul_ps(rsq00,rinv00);
465             r00              = _mm_andnot_ps(dummy_mask,r00);
466
467             /* Compute parameters for interactions between i and j atoms */
468             qq00             = _mm_mul_ps(iq0,jq0);
469             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
470                                          vdwparam+vdwioffset0+vdwjidx0B,
471                                          vdwparam+vdwioffset0+vdwjidx0C,
472                                          vdwparam+vdwioffset0+vdwjidx0D,
473                                          &c6_00,&c12_00);
474
475             /* Calculate table index by multiplying r with table scale and truncate to integer */
476             rt               = _mm_mul_ps(r00,vftabscale);
477             vfitab           = _mm_cvttps_epi32(rt);
478 #ifdef __XOP__
479             vfeps            = _mm_frcz_ps(rt);
480 #else
481             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
482 #endif
483             twovfeps         = _mm_add_ps(vfeps,vfeps);
484             vfitab           = _mm_slli_epi32(vfitab,2);
485
486             /* CUBIC SPLINE TABLE ELECTROSTATICS */
487             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
488             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
489             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
490             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
491             _MM_TRANSPOSE4_PS(Y,F,G,H);
492             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
493             VV               = _mm_macc_ps(vfeps,Fp,Y);
494             velec            = _mm_mul_ps(qq00,VV);
495             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
496             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
497
498             /* LENNARD-JONES DISPERSION/REPULSION */
499
500             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
501             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
502             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
503             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
504             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
505
506             /* Update potential sum for this i atom from the interaction with this j atom. */
507             velec            = _mm_andnot_ps(dummy_mask,velec);
508             velecsum         = _mm_add_ps(velecsum,velec);
509             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
510             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
511
512             fscal            = _mm_add_ps(felec,fvdw);
513
514             fscal            = _mm_andnot_ps(dummy_mask,fscal);
515
516              /* Update vectorial force */
517             fix0             = _mm_macc_ps(dx00,fscal,fix0);
518             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
519             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
520
521             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
522             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
523             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
524
525             /**************************
526              * CALCULATE INTERACTIONS *
527              **************************/
528
529             r10              = _mm_mul_ps(rsq10,rinv10);
530             r10              = _mm_andnot_ps(dummy_mask,r10);
531
532             /* Compute parameters for interactions between i and j atoms */
533             qq10             = _mm_mul_ps(iq1,jq0);
534
535             /* Calculate table index by multiplying r with table scale and truncate to integer */
536             rt               = _mm_mul_ps(r10,vftabscale);
537             vfitab           = _mm_cvttps_epi32(rt);
538 #ifdef __XOP__
539             vfeps            = _mm_frcz_ps(rt);
540 #else
541             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
542 #endif
543             twovfeps         = _mm_add_ps(vfeps,vfeps);
544             vfitab           = _mm_slli_epi32(vfitab,2);
545
546             /* CUBIC SPLINE TABLE ELECTROSTATICS */
547             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
548             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
549             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
550             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
551             _MM_TRANSPOSE4_PS(Y,F,G,H);
552             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
553             VV               = _mm_macc_ps(vfeps,Fp,Y);
554             velec            = _mm_mul_ps(qq10,VV);
555             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
556             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
557
558             /* Update potential sum for this i atom from the interaction with this j atom. */
559             velec            = _mm_andnot_ps(dummy_mask,velec);
560             velecsum         = _mm_add_ps(velecsum,velec);
561
562             fscal            = felec;
563
564             fscal            = _mm_andnot_ps(dummy_mask,fscal);
565
566              /* Update vectorial force */
567             fix1             = _mm_macc_ps(dx10,fscal,fix1);
568             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
569             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
570
571             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
572             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
573             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             r20              = _mm_mul_ps(rsq20,rinv20);
580             r20              = _mm_andnot_ps(dummy_mask,r20);
581
582             /* Compute parameters for interactions between i and j atoms */
583             qq20             = _mm_mul_ps(iq2,jq0);
584
585             /* Calculate table index by multiplying r with table scale and truncate to integer */
586             rt               = _mm_mul_ps(r20,vftabscale);
587             vfitab           = _mm_cvttps_epi32(rt);
588 #ifdef __XOP__
589             vfeps            = _mm_frcz_ps(rt);
590 #else
591             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
592 #endif
593             twovfeps         = _mm_add_ps(vfeps,vfeps);
594             vfitab           = _mm_slli_epi32(vfitab,2);
595
596             /* CUBIC SPLINE TABLE ELECTROSTATICS */
597             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
598             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
599             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
600             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
601             _MM_TRANSPOSE4_PS(Y,F,G,H);
602             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
603             VV               = _mm_macc_ps(vfeps,Fp,Y);
604             velec            = _mm_mul_ps(qq20,VV);
605             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
606             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
607
608             /* Update potential sum for this i atom from the interaction with this j atom. */
609             velec            = _mm_andnot_ps(dummy_mask,velec);
610             velecsum         = _mm_add_ps(velecsum,velec);
611
612             fscal            = felec;
613
614             fscal            = _mm_andnot_ps(dummy_mask,fscal);
615
616              /* Update vectorial force */
617             fix2             = _mm_macc_ps(dx20,fscal,fix2);
618             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
619             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
620
621             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
622             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
623             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
624
625             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
626             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
627             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
628             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
629
630             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
631
632             /* Inner loop uses 154 flops */
633         }
634
635         /* End of innermost loop */
636
637         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
638                                               f+i_coord_offset,fshift+i_shift_offset);
639
640         ggid                        = gid[iidx];
641         /* Update potential energies */
642         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
643         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
644
645         /* Increment number of inner iterations */
646         inneriter                  += j_index_end - j_index_start;
647
648         /* Outer loop uses 20 flops */
649     }
650
651     /* Increment number of outer iterations */
652     outeriter        += nri;
653
654     /* Update outer/inner flops */
655
656     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154);
657 }
658 /*
659  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_128_fma_single
660  * Electrostatics interaction: CubicSplineTable
661  * VdW interaction:            LennardJones
662  * Geometry:                   Water3-Particle
663  * Calculate force/pot:        Force
664  */
665 void
666 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_128_fma_single
667                     (t_nblist                    * gmx_restrict       nlist,
668                      rvec                        * gmx_restrict          xx,
669                      rvec                        * gmx_restrict          ff,
670                      t_forcerec                  * gmx_restrict          fr,
671                      t_mdatoms                   * gmx_restrict     mdatoms,
672                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
673                      t_nrnb                      * gmx_restrict        nrnb)
674 {
675     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
676      * just 0 for non-waters.
677      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
678      * jnr indices corresponding to data put in the four positions in the SIMD register.
679      */
680     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
681     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
682     int              jnrA,jnrB,jnrC,jnrD;
683     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
684     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
685     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
686     real             rcutoff_scalar;
687     real             *shiftvec,*fshift,*x,*f;
688     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
689     real             scratch[4*DIM];
690     __m128           fscal,rcutoff,rcutoff2,jidxall;
691     int              vdwioffset0;
692     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
693     int              vdwioffset1;
694     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
695     int              vdwioffset2;
696     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
697     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
698     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
699     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
700     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
701     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
702     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
703     real             *charge;
704     int              nvdwtype;
705     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
706     int              *vdwtype;
707     real             *vdwparam;
708     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
709     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
710     __m128i          vfitab;
711     __m128i          ifour       = _mm_set1_epi32(4);
712     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
713     real             *vftab;
714     __m128           dummy_mask,cutoff_mask;
715     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
716     __m128           one     = _mm_set1_ps(1.0);
717     __m128           two     = _mm_set1_ps(2.0);
718     x                = xx[0];
719     f                = ff[0];
720
721     nri              = nlist->nri;
722     iinr             = nlist->iinr;
723     jindex           = nlist->jindex;
724     jjnr             = nlist->jjnr;
725     shiftidx         = nlist->shift;
726     gid              = nlist->gid;
727     shiftvec         = fr->shift_vec[0];
728     fshift           = fr->fshift[0];
729     facel            = _mm_set1_ps(fr->epsfac);
730     charge           = mdatoms->chargeA;
731     nvdwtype         = fr->ntype;
732     vdwparam         = fr->nbfp;
733     vdwtype          = mdatoms->typeA;
734
735     vftab            = kernel_data->table_elec->data;
736     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
737
738     /* Setup water-specific parameters */
739     inr              = nlist->iinr[0];
740     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
741     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
742     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
743     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
744
745     /* Avoid stupid compiler warnings */
746     jnrA = jnrB = jnrC = jnrD = 0;
747     j_coord_offsetA = 0;
748     j_coord_offsetB = 0;
749     j_coord_offsetC = 0;
750     j_coord_offsetD = 0;
751
752     outeriter        = 0;
753     inneriter        = 0;
754
755     for(iidx=0;iidx<4*DIM;iidx++)
756     {
757         scratch[iidx] = 0.0;
758     }
759
760     /* Start outer loop over neighborlists */
761     for(iidx=0; iidx<nri; iidx++)
762     {
763         /* Load shift vector for this list */
764         i_shift_offset   = DIM*shiftidx[iidx];
765
766         /* Load limits for loop over neighbors */
767         j_index_start    = jindex[iidx];
768         j_index_end      = jindex[iidx+1];
769
770         /* Get outer coordinate index */
771         inr              = iinr[iidx];
772         i_coord_offset   = DIM*inr;
773
774         /* Load i particle coords and add shift vector */
775         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
776                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
777
778         fix0             = _mm_setzero_ps();
779         fiy0             = _mm_setzero_ps();
780         fiz0             = _mm_setzero_ps();
781         fix1             = _mm_setzero_ps();
782         fiy1             = _mm_setzero_ps();
783         fiz1             = _mm_setzero_ps();
784         fix2             = _mm_setzero_ps();
785         fiy2             = _mm_setzero_ps();
786         fiz2             = _mm_setzero_ps();
787
788         /* Start inner kernel loop */
789         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
790         {
791
792             /* Get j neighbor index, and coordinate index */
793             jnrA             = jjnr[jidx];
794             jnrB             = jjnr[jidx+1];
795             jnrC             = jjnr[jidx+2];
796             jnrD             = jjnr[jidx+3];
797             j_coord_offsetA  = DIM*jnrA;
798             j_coord_offsetB  = DIM*jnrB;
799             j_coord_offsetC  = DIM*jnrC;
800             j_coord_offsetD  = DIM*jnrD;
801
802             /* load j atom coordinates */
803             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
804                                               x+j_coord_offsetC,x+j_coord_offsetD,
805                                               &jx0,&jy0,&jz0);
806
807             /* Calculate displacement vector */
808             dx00             = _mm_sub_ps(ix0,jx0);
809             dy00             = _mm_sub_ps(iy0,jy0);
810             dz00             = _mm_sub_ps(iz0,jz0);
811             dx10             = _mm_sub_ps(ix1,jx0);
812             dy10             = _mm_sub_ps(iy1,jy0);
813             dz10             = _mm_sub_ps(iz1,jz0);
814             dx20             = _mm_sub_ps(ix2,jx0);
815             dy20             = _mm_sub_ps(iy2,jy0);
816             dz20             = _mm_sub_ps(iz2,jz0);
817
818             /* Calculate squared distance and things based on it */
819             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
820             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
821             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
822
823             rinv00           = gmx_mm_invsqrt_ps(rsq00);
824             rinv10           = gmx_mm_invsqrt_ps(rsq10);
825             rinv20           = gmx_mm_invsqrt_ps(rsq20);
826
827             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
828
829             /* Load parameters for j particles */
830             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
831                                                               charge+jnrC+0,charge+jnrD+0);
832             vdwjidx0A        = 2*vdwtype[jnrA+0];
833             vdwjidx0B        = 2*vdwtype[jnrB+0];
834             vdwjidx0C        = 2*vdwtype[jnrC+0];
835             vdwjidx0D        = 2*vdwtype[jnrD+0];
836
837             fjx0             = _mm_setzero_ps();
838             fjy0             = _mm_setzero_ps();
839             fjz0             = _mm_setzero_ps();
840
841             /**************************
842              * CALCULATE INTERACTIONS *
843              **************************/
844
845             r00              = _mm_mul_ps(rsq00,rinv00);
846
847             /* Compute parameters for interactions between i and j atoms */
848             qq00             = _mm_mul_ps(iq0,jq0);
849             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
850                                          vdwparam+vdwioffset0+vdwjidx0B,
851                                          vdwparam+vdwioffset0+vdwjidx0C,
852                                          vdwparam+vdwioffset0+vdwjidx0D,
853                                          &c6_00,&c12_00);
854
855             /* Calculate table index by multiplying r with table scale and truncate to integer */
856             rt               = _mm_mul_ps(r00,vftabscale);
857             vfitab           = _mm_cvttps_epi32(rt);
858 #ifdef __XOP__
859             vfeps            = _mm_frcz_ps(rt);
860 #else
861             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
862 #endif
863             twovfeps         = _mm_add_ps(vfeps,vfeps);
864             vfitab           = _mm_slli_epi32(vfitab,2);
865
866             /* CUBIC SPLINE TABLE ELECTROSTATICS */
867             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
868             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
869             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
870             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
871             _MM_TRANSPOSE4_PS(Y,F,G,H);
872             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
873             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
874             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
875
876             /* LENNARD-JONES DISPERSION/REPULSION */
877
878             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
879             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
880
881             fscal            = _mm_add_ps(felec,fvdw);
882
883              /* Update vectorial force */
884             fix0             = _mm_macc_ps(dx00,fscal,fix0);
885             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
886             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
887
888             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
889             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
890             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
891
892             /**************************
893              * CALCULATE INTERACTIONS *
894              **************************/
895
896             r10              = _mm_mul_ps(rsq10,rinv10);
897
898             /* Compute parameters for interactions between i and j atoms */
899             qq10             = _mm_mul_ps(iq1,jq0);
900
901             /* Calculate table index by multiplying r with table scale and truncate to integer */
902             rt               = _mm_mul_ps(r10,vftabscale);
903             vfitab           = _mm_cvttps_epi32(rt);
904 #ifdef __XOP__
905             vfeps            = _mm_frcz_ps(rt);
906 #else
907             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
908 #endif
909             twovfeps         = _mm_add_ps(vfeps,vfeps);
910             vfitab           = _mm_slli_epi32(vfitab,2);
911
912             /* CUBIC SPLINE TABLE ELECTROSTATICS */
913             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
914             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
915             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
916             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
917             _MM_TRANSPOSE4_PS(Y,F,G,H);
918             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
919             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
920             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
921
922             fscal            = felec;
923
924              /* Update vectorial force */
925             fix1             = _mm_macc_ps(dx10,fscal,fix1);
926             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
927             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
928
929             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
930             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
931             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
932
933             /**************************
934              * CALCULATE INTERACTIONS *
935              **************************/
936
937             r20              = _mm_mul_ps(rsq20,rinv20);
938
939             /* Compute parameters for interactions between i and j atoms */
940             qq20             = _mm_mul_ps(iq2,jq0);
941
942             /* Calculate table index by multiplying r with table scale and truncate to integer */
943             rt               = _mm_mul_ps(r20,vftabscale);
944             vfitab           = _mm_cvttps_epi32(rt);
945 #ifdef __XOP__
946             vfeps            = _mm_frcz_ps(rt);
947 #else
948             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
949 #endif
950             twovfeps         = _mm_add_ps(vfeps,vfeps);
951             vfitab           = _mm_slli_epi32(vfitab,2);
952
953             /* CUBIC SPLINE TABLE ELECTROSTATICS */
954             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
955             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
956             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
957             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
958             _MM_TRANSPOSE4_PS(Y,F,G,H);
959             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
960             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
961             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
962
963             fscal            = felec;
964
965              /* Update vectorial force */
966             fix2             = _mm_macc_ps(dx20,fscal,fix2);
967             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
968             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
969
970             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
971             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
972             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
973
974             fjptrA             = f+j_coord_offsetA;
975             fjptrB             = f+j_coord_offsetB;
976             fjptrC             = f+j_coord_offsetC;
977             fjptrD             = f+j_coord_offsetD;
978
979             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
980
981             /* Inner loop uses 134 flops */
982         }
983
984         if(jidx<j_index_end)
985         {
986
987             /* Get j neighbor index, and coordinate index */
988             jnrlistA         = jjnr[jidx];
989             jnrlistB         = jjnr[jidx+1];
990             jnrlistC         = jjnr[jidx+2];
991             jnrlistD         = jjnr[jidx+3];
992             /* Sign of each element will be negative for non-real atoms.
993              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
994              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
995              */
996             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
997             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
998             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
999             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1000             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1001             j_coord_offsetA  = DIM*jnrA;
1002             j_coord_offsetB  = DIM*jnrB;
1003             j_coord_offsetC  = DIM*jnrC;
1004             j_coord_offsetD  = DIM*jnrD;
1005
1006             /* load j atom coordinates */
1007             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1008                                               x+j_coord_offsetC,x+j_coord_offsetD,
1009                                               &jx0,&jy0,&jz0);
1010
1011             /* Calculate displacement vector */
1012             dx00             = _mm_sub_ps(ix0,jx0);
1013             dy00             = _mm_sub_ps(iy0,jy0);
1014             dz00             = _mm_sub_ps(iz0,jz0);
1015             dx10             = _mm_sub_ps(ix1,jx0);
1016             dy10             = _mm_sub_ps(iy1,jy0);
1017             dz10             = _mm_sub_ps(iz1,jz0);
1018             dx20             = _mm_sub_ps(ix2,jx0);
1019             dy20             = _mm_sub_ps(iy2,jy0);
1020             dz20             = _mm_sub_ps(iz2,jz0);
1021
1022             /* Calculate squared distance and things based on it */
1023             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1024             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1025             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1026
1027             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1028             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1029             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1030
1031             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1032
1033             /* Load parameters for j particles */
1034             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1035                                                               charge+jnrC+0,charge+jnrD+0);
1036             vdwjidx0A        = 2*vdwtype[jnrA+0];
1037             vdwjidx0B        = 2*vdwtype[jnrB+0];
1038             vdwjidx0C        = 2*vdwtype[jnrC+0];
1039             vdwjidx0D        = 2*vdwtype[jnrD+0];
1040
1041             fjx0             = _mm_setzero_ps();
1042             fjy0             = _mm_setzero_ps();
1043             fjz0             = _mm_setzero_ps();
1044
1045             /**************************
1046              * CALCULATE INTERACTIONS *
1047              **************************/
1048
1049             r00              = _mm_mul_ps(rsq00,rinv00);
1050             r00              = _mm_andnot_ps(dummy_mask,r00);
1051
1052             /* Compute parameters for interactions between i and j atoms */
1053             qq00             = _mm_mul_ps(iq0,jq0);
1054             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1055                                          vdwparam+vdwioffset0+vdwjidx0B,
1056                                          vdwparam+vdwioffset0+vdwjidx0C,
1057                                          vdwparam+vdwioffset0+vdwjidx0D,
1058                                          &c6_00,&c12_00);
1059
1060             /* Calculate table index by multiplying r with table scale and truncate to integer */
1061             rt               = _mm_mul_ps(r00,vftabscale);
1062             vfitab           = _mm_cvttps_epi32(rt);
1063 #ifdef __XOP__
1064             vfeps            = _mm_frcz_ps(rt);
1065 #else
1066             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1067 #endif
1068             twovfeps         = _mm_add_ps(vfeps,vfeps);
1069             vfitab           = _mm_slli_epi32(vfitab,2);
1070
1071             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1072             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1073             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1074             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1075             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1076             _MM_TRANSPOSE4_PS(Y,F,G,H);
1077             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1078             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1079             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
1080
1081             /* LENNARD-JONES DISPERSION/REPULSION */
1082
1083             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1084             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1085
1086             fscal            = _mm_add_ps(felec,fvdw);
1087
1088             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1089
1090              /* Update vectorial force */
1091             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1092             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1093             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1094
1095             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1096             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1097             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1098
1099             /**************************
1100              * CALCULATE INTERACTIONS *
1101              **************************/
1102
1103             r10              = _mm_mul_ps(rsq10,rinv10);
1104             r10              = _mm_andnot_ps(dummy_mask,r10);
1105
1106             /* Compute parameters for interactions between i and j atoms */
1107             qq10             = _mm_mul_ps(iq1,jq0);
1108
1109             /* Calculate table index by multiplying r with table scale and truncate to integer */
1110             rt               = _mm_mul_ps(r10,vftabscale);
1111             vfitab           = _mm_cvttps_epi32(rt);
1112 #ifdef __XOP__
1113             vfeps            = _mm_frcz_ps(rt);
1114 #else
1115             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1116 #endif
1117             twovfeps         = _mm_add_ps(vfeps,vfeps);
1118             vfitab           = _mm_slli_epi32(vfitab,2);
1119
1120             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1121             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1122             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1123             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1124             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1125             _MM_TRANSPOSE4_PS(Y,F,G,H);
1126             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1127             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1128             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1129
1130             fscal            = felec;
1131
1132             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1133
1134              /* Update vectorial force */
1135             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1136             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1137             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1138
1139             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1140             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1141             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1142
1143             /**************************
1144              * CALCULATE INTERACTIONS *
1145              **************************/
1146
1147             r20              = _mm_mul_ps(rsq20,rinv20);
1148             r20              = _mm_andnot_ps(dummy_mask,r20);
1149
1150             /* Compute parameters for interactions between i and j atoms */
1151             qq20             = _mm_mul_ps(iq2,jq0);
1152
1153             /* Calculate table index by multiplying r with table scale and truncate to integer */
1154             rt               = _mm_mul_ps(r20,vftabscale);
1155             vfitab           = _mm_cvttps_epi32(rt);
1156 #ifdef __XOP__
1157             vfeps            = _mm_frcz_ps(rt);
1158 #else
1159             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1160 #endif
1161             twovfeps         = _mm_add_ps(vfeps,vfeps);
1162             vfitab           = _mm_slli_epi32(vfitab,2);
1163
1164             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1165             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1166             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1167             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1168             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1169             _MM_TRANSPOSE4_PS(Y,F,G,H);
1170             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1171             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1172             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1173
1174             fscal            = felec;
1175
1176             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1177
1178              /* Update vectorial force */
1179             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1180             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1181             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1182
1183             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1184             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1185             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1186
1187             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1188             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1189             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1190             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1191
1192             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1193
1194             /* Inner loop uses 137 flops */
1195         }
1196
1197         /* End of innermost loop */
1198
1199         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1200                                               f+i_coord_offset,fshift+i_shift_offset);
1201
1202         /* Increment number of inner iterations */
1203         inneriter                  += j_index_end - j_index_start;
1204
1205         /* Outer loop uses 18 flops */
1206     }
1207
1208     /* Increment number of outer iterations */
1209     outeriter        += nri;
1210
1211     /* Update outer/inner flops */
1212
1213     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*137);
1214 }