e0435759761f235fc41d95796d5c15e3ef4aa2f3
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_128_fma_single
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128i          vfitab;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
99     real             *vftab;
100     __m128           dummy_mask,cutoff_mask;
101     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
102     __m128           one     = _mm_set1_ps(1.0);
103     __m128           two     = _mm_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_ps(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     vftab            = kernel_data->table_elec->data;
122     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = jnrC = jnrD = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128     j_coord_offsetC = 0;
129     j_coord_offsetD = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     for(iidx=0;iidx<4*DIM;iidx++)
135     {
136         scratch[iidx] = 0.0;
137     }
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _mm_setzero_ps();
157         fiy0             = _mm_setzero_ps();
158         fiz0             = _mm_setzero_ps();
159
160         /* Load parameters for i particles */
161         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
162         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_ps();
166         vvdwsum          = _mm_setzero_ps();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             jnrC             = jjnr[jidx+2];
176             jnrD             = jjnr[jidx+3];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179             j_coord_offsetC  = DIM*jnrC;
180             j_coord_offsetD  = DIM*jnrD;
181
182             /* load j atom coordinates */
183             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
184                                               x+j_coord_offsetC,x+j_coord_offsetD,
185                                               &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm_sub_ps(ix0,jx0);
189             dy00             = _mm_sub_ps(iy0,jy0);
190             dz00             = _mm_sub_ps(iz0,jz0);
191
192             /* Calculate squared distance and things based on it */
193             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
194
195             rinv00           = gmx_mm_invsqrt_ps(rsq00);
196
197             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
198
199             /* Load parameters for j particles */
200             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
201                                                               charge+jnrC+0,charge+jnrD+0);
202             vdwjidx0A        = 2*vdwtype[jnrA+0];
203             vdwjidx0B        = 2*vdwtype[jnrB+0];
204             vdwjidx0C        = 2*vdwtype[jnrC+0];
205             vdwjidx0D        = 2*vdwtype[jnrD+0];
206
207             /**************************
208              * CALCULATE INTERACTIONS *
209              **************************/
210
211             r00              = _mm_mul_ps(rsq00,rinv00);
212
213             /* Compute parameters for interactions between i and j atoms */
214             qq00             = _mm_mul_ps(iq0,jq0);
215             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
216                                          vdwparam+vdwioffset0+vdwjidx0B,
217                                          vdwparam+vdwioffset0+vdwjidx0C,
218                                          vdwparam+vdwioffset0+vdwjidx0D,
219                                          &c6_00,&c12_00);
220
221             /* Calculate table index by multiplying r with table scale and truncate to integer */
222             rt               = _mm_mul_ps(r00,vftabscale);
223             vfitab           = _mm_cvttps_epi32(rt);
224 #ifdef __XOP__
225             vfeps            = _mm_frcz_ps(rt);
226 #else
227             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
228 #endif
229             twovfeps         = _mm_add_ps(vfeps,vfeps);
230             vfitab           = _mm_slli_epi32(vfitab,2);
231
232             /* CUBIC SPLINE TABLE ELECTROSTATICS */
233             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
234             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
235             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
236             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
237             _MM_TRANSPOSE4_PS(Y,F,G,H);
238             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
239             VV               = _mm_macc_ps(vfeps,Fp,Y);
240             velec            = _mm_mul_ps(qq00,VV);
241             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
242             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
243
244             /* LENNARD-JONES DISPERSION/REPULSION */
245
246             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
247             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
248             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
249             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
250             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
251
252             /* Update potential sum for this i atom from the interaction with this j atom. */
253             velecsum         = _mm_add_ps(velecsum,velec);
254             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
255
256             fscal            = _mm_add_ps(felec,fvdw);
257
258              /* Update vectorial force */
259             fix0             = _mm_macc_ps(dx00,fscal,fix0);
260             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
261             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
262
263             fjptrA             = f+j_coord_offsetA;
264             fjptrB             = f+j_coord_offsetB;
265             fjptrC             = f+j_coord_offsetC;
266             fjptrD             = f+j_coord_offsetD;
267             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
268                                                    _mm_mul_ps(dx00,fscal),
269                                                    _mm_mul_ps(dy00,fscal),
270                                                    _mm_mul_ps(dz00,fscal));
271
272             /* Inner loop uses 59 flops */
273         }
274
275         if(jidx<j_index_end)
276         {
277
278             /* Get j neighbor index, and coordinate index */
279             jnrlistA         = jjnr[jidx];
280             jnrlistB         = jjnr[jidx+1];
281             jnrlistC         = jjnr[jidx+2];
282             jnrlistD         = jjnr[jidx+3];
283             /* Sign of each element will be negative for non-real atoms.
284              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
285              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
286              */
287             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
288             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
289             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
290             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
291             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
292             j_coord_offsetA  = DIM*jnrA;
293             j_coord_offsetB  = DIM*jnrB;
294             j_coord_offsetC  = DIM*jnrC;
295             j_coord_offsetD  = DIM*jnrD;
296
297             /* load j atom coordinates */
298             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
299                                               x+j_coord_offsetC,x+j_coord_offsetD,
300                                               &jx0,&jy0,&jz0);
301
302             /* Calculate displacement vector */
303             dx00             = _mm_sub_ps(ix0,jx0);
304             dy00             = _mm_sub_ps(iy0,jy0);
305             dz00             = _mm_sub_ps(iz0,jz0);
306
307             /* Calculate squared distance and things based on it */
308             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
309
310             rinv00           = gmx_mm_invsqrt_ps(rsq00);
311
312             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
313
314             /* Load parameters for j particles */
315             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
316                                                               charge+jnrC+0,charge+jnrD+0);
317             vdwjidx0A        = 2*vdwtype[jnrA+0];
318             vdwjidx0B        = 2*vdwtype[jnrB+0];
319             vdwjidx0C        = 2*vdwtype[jnrC+0];
320             vdwjidx0D        = 2*vdwtype[jnrD+0];
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             r00              = _mm_mul_ps(rsq00,rinv00);
327             r00              = _mm_andnot_ps(dummy_mask,r00);
328
329             /* Compute parameters for interactions between i and j atoms */
330             qq00             = _mm_mul_ps(iq0,jq0);
331             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
332                                          vdwparam+vdwioffset0+vdwjidx0B,
333                                          vdwparam+vdwioffset0+vdwjidx0C,
334                                          vdwparam+vdwioffset0+vdwjidx0D,
335                                          &c6_00,&c12_00);
336
337             /* Calculate table index by multiplying r with table scale and truncate to integer */
338             rt               = _mm_mul_ps(r00,vftabscale);
339             vfitab           = _mm_cvttps_epi32(rt);
340 #ifdef __XOP__
341             vfeps            = _mm_frcz_ps(rt);
342 #else
343             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
344 #endif
345             twovfeps         = _mm_add_ps(vfeps,vfeps);
346             vfitab           = _mm_slli_epi32(vfitab,2);
347
348             /* CUBIC SPLINE TABLE ELECTROSTATICS */
349             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
350             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
351             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
352             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
353             _MM_TRANSPOSE4_PS(Y,F,G,H);
354             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
355             VV               = _mm_macc_ps(vfeps,Fp,Y);
356             velec            = _mm_mul_ps(qq00,VV);
357             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
358             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
359
360             /* LENNARD-JONES DISPERSION/REPULSION */
361
362             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
363             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
364             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
365             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
366             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
367
368             /* Update potential sum for this i atom from the interaction with this j atom. */
369             velec            = _mm_andnot_ps(dummy_mask,velec);
370             velecsum         = _mm_add_ps(velecsum,velec);
371             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
372             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
373
374             fscal            = _mm_add_ps(felec,fvdw);
375
376             fscal            = _mm_andnot_ps(dummy_mask,fscal);
377
378              /* Update vectorial force */
379             fix0             = _mm_macc_ps(dx00,fscal,fix0);
380             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
381             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
382
383             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
384             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
385             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
386             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
387             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
388                                                    _mm_mul_ps(dx00,fscal),
389                                                    _mm_mul_ps(dy00,fscal),
390                                                    _mm_mul_ps(dz00,fscal));
391
392             /* Inner loop uses 60 flops */
393         }
394
395         /* End of innermost loop */
396
397         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
398                                               f+i_coord_offset,fshift+i_shift_offset);
399
400         ggid                        = gid[iidx];
401         /* Update potential energies */
402         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
403         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
404
405         /* Increment number of inner iterations */
406         inneriter                  += j_index_end - j_index_start;
407
408         /* Outer loop uses 9 flops */
409     }
410
411     /* Increment number of outer iterations */
412     outeriter        += nri;
413
414     /* Update outer/inner flops */
415
416     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*60);
417 }
418 /*
419  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_128_fma_single
420  * Electrostatics interaction: CubicSplineTable
421  * VdW interaction:            LennardJones
422  * Geometry:                   Particle-Particle
423  * Calculate force/pot:        Force
424  */
425 void
426 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_128_fma_single
427                     (t_nblist                    * gmx_restrict       nlist,
428                      rvec                        * gmx_restrict          xx,
429                      rvec                        * gmx_restrict          ff,
430                      t_forcerec                  * gmx_restrict          fr,
431                      t_mdatoms                   * gmx_restrict     mdatoms,
432                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
433                      t_nrnb                      * gmx_restrict        nrnb)
434 {
435     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
436      * just 0 for non-waters.
437      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
438      * jnr indices corresponding to data put in the four positions in the SIMD register.
439      */
440     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
441     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
442     int              jnrA,jnrB,jnrC,jnrD;
443     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
444     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
445     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
446     real             rcutoff_scalar;
447     real             *shiftvec,*fshift,*x,*f;
448     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
449     real             scratch[4*DIM];
450     __m128           fscal,rcutoff,rcutoff2,jidxall;
451     int              vdwioffset0;
452     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
453     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
454     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
455     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
456     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
457     real             *charge;
458     int              nvdwtype;
459     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
460     int              *vdwtype;
461     real             *vdwparam;
462     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
463     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
464     __m128i          vfitab;
465     __m128i          ifour       = _mm_set1_epi32(4);
466     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
467     real             *vftab;
468     __m128           dummy_mask,cutoff_mask;
469     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
470     __m128           one     = _mm_set1_ps(1.0);
471     __m128           two     = _mm_set1_ps(2.0);
472     x                = xx[0];
473     f                = ff[0];
474
475     nri              = nlist->nri;
476     iinr             = nlist->iinr;
477     jindex           = nlist->jindex;
478     jjnr             = nlist->jjnr;
479     shiftidx         = nlist->shift;
480     gid              = nlist->gid;
481     shiftvec         = fr->shift_vec[0];
482     fshift           = fr->fshift[0];
483     facel            = _mm_set1_ps(fr->epsfac);
484     charge           = mdatoms->chargeA;
485     nvdwtype         = fr->ntype;
486     vdwparam         = fr->nbfp;
487     vdwtype          = mdatoms->typeA;
488
489     vftab            = kernel_data->table_elec->data;
490     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
491
492     /* Avoid stupid compiler warnings */
493     jnrA = jnrB = jnrC = jnrD = 0;
494     j_coord_offsetA = 0;
495     j_coord_offsetB = 0;
496     j_coord_offsetC = 0;
497     j_coord_offsetD = 0;
498
499     outeriter        = 0;
500     inneriter        = 0;
501
502     for(iidx=0;iidx<4*DIM;iidx++)
503     {
504         scratch[iidx] = 0.0;
505     }
506
507     /* Start outer loop over neighborlists */
508     for(iidx=0; iidx<nri; iidx++)
509     {
510         /* Load shift vector for this list */
511         i_shift_offset   = DIM*shiftidx[iidx];
512
513         /* Load limits for loop over neighbors */
514         j_index_start    = jindex[iidx];
515         j_index_end      = jindex[iidx+1];
516
517         /* Get outer coordinate index */
518         inr              = iinr[iidx];
519         i_coord_offset   = DIM*inr;
520
521         /* Load i particle coords and add shift vector */
522         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
523
524         fix0             = _mm_setzero_ps();
525         fiy0             = _mm_setzero_ps();
526         fiz0             = _mm_setzero_ps();
527
528         /* Load parameters for i particles */
529         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
530         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
531
532         /* Start inner kernel loop */
533         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
534         {
535
536             /* Get j neighbor index, and coordinate index */
537             jnrA             = jjnr[jidx];
538             jnrB             = jjnr[jidx+1];
539             jnrC             = jjnr[jidx+2];
540             jnrD             = jjnr[jidx+3];
541             j_coord_offsetA  = DIM*jnrA;
542             j_coord_offsetB  = DIM*jnrB;
543             j_coord_offsetC  = DIM*jnrC;
544             j_coord_offsetD  = DIM*jnrD;
545
546             /* load j atom coordinates */
547             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
548                                               x+j_coord_offsetC,x+j_coord_offsetD,
549                                               &jx0,&jy0,&jz0);
550
551             /* Calculate displacement vector */
552             dx00             = _mm_sub_ps(ix0,jx0);
553             dy00             = _mm_sub_ps(iy0,jy0);
554             dz00             = _mm_sub_ps(iz0,jz0);
555
556             /* Calculate squared distance and things based on it */
557             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
558
559             rinv00           = gmx_mm_invsqrt_ps(rsq00);
560
561             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
562
563             /* Load parameters for j particles */
564             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
565                                                               charge+jnrC+0,charge+jnrD+0);
566             vdwjidx0A        = 2*vdwtype[jnrA+0];
567             vdwjidx0B        = 2*vdwtype[jnrB+0];
568             vdwjidx0C        = 2*vdwtype[jnrC+0];
569             vdwjidx0D        = 2*vdwtype[jnrD+0];
570
571             /**************************
572              * CALCULATE INTERACTIONS *
573              **************************/
574
575             r00              = _mm_mul_ps(rsq00,rinv00);
576
577             /* Compute parameters for interactions between i and j atoms */
578             qq00             = _mm_mul_ps(iq0,jq0);
579             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
580                                          vdwparam+vdwioffset0+vdwjidx0B,
581                                          vdwparam+vdwioffset0+vdwjidx0C,
582                                          vdwparam+vdwioffset0+vdwjidx0D,
583                                          &c6_00,&c12_00);
584
585             /* Calculate table index by multiplying r with table scale and truncate to integer */
586             rt               = _mm_mul_ps(r00,vftabscale);
587             vfitab           = _mm_cvttps_epi32(rt);
588 #ifdef __XOP__
589             vfeps            = _mm_frcz_ps(rt);
590 #else
591             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
592 #endif
593             twovfeps         = _mm_add_ps(vfeps,vfeps);
594             vfitab           = _mm_slli_epi32(vfitab,2);
595
596             /* CUBIC SPLINE TABLE ELECTROSTATICS */
597             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
598             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
599             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
600             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
601             _MM_TRANSPOSE4_PS(Y,F,G,H);
602             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
603             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
604             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
605
606             /* LENNARD-JONES DISPERSION/REPULSION */
607
608             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
609             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
610
611             fscal            = _mm_add_ps(felec,fvdw);
612
613              /* Update vectorial force */
614             fix0             = _mm_macc_ps(dx00,fscal,fix0);
615             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
616             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
617
618             fjptrA             = f+j_coord_offsetA;
619             fjptrB             = f+j_coord_offsetB;
620             fjptrC             = f+j_coord_offsetC;
621             fjptrD             = f+j_coord_offsetD;
622             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
623                                                    _mm_mul_ps(dx00,fscal),
624                                                    _mm_mul_ps(dy00,fscal),
625                                                    _mm_mul_ps(dz00,fscal));
626
627             /* Inner loop uses 50 flops */
628         }
629
630         if(jidx<j_index_end)
631         {
632
633             /* Get j neighbor index, and coordinate index */
634             jnrlistA         = jjnr[jidx];
635             jnrlistB         = jjnr[jidx+1];
636             jnrlistC         = jjnr[jidx+2];
637             jnrlistD         = jjnr[jidx+3];
638             /* Sign of each element will be negative for non-real atoms.
639              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
640              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
641              */
642             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
643             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
644             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
645             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
646             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
647             j_coord_offsetA  = DIM*jnrA;
648             j_coord_offsetB  = DIM*jnrB;
649             j_coord_offsetC  = DIM*jnrC;
650             j_coord_offsetD  = DIM*jnrD;
651
652             /* load j atom coordinates */
653             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
654                                               x+j_coord_offsetC,x+j_coord_offsetD,
655                                               &jx0,&jy0,&jz0);
656
657             /* Calculate displacement vector */
658             dx00             = _mm_sub_ps(ix0,jx0);
659             dy00             = _mm_sub_ps(iy0,jy0);
660             dz00             = _mm_sub_ps(iz0,jz0);
661
662             /* Calculate squared distance and things based on it */
663             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
664
665             rinv00           = gmx_mm_invsqrt_ps(rsq00);
666
667             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
668
669             /* Load parameters for j particles */
670             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
671                                                               charge+jnrC+0,charge+jnrD+0);
672             vdwjidx0A        = 2*vdwtype[jnrA+0];
673             vdwjidx0B        = 2*vdwtype[jnrB+0];
674             vdwjidx0C        = 2*vdwtype[jnrC+0];
675             vdwjidx0D        = 2*vdwtype[jnrD+0];
676
677             /**************************
678              * CALCULATE INTERACTIONS *
679              **************************/
680
681             r00              = _mm_mul_ps(rsq00,rinv00);
682             r00              = _mm_andnot_ps(dummy_mask,r00);
683
684             /* Compute parameters for interactions between i and j atoms */
685             qq00             = _mm_mul_ps(iq0,jq0);
686             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
687                                          vdwparam+vdwioffset0+vdwjidx0B,
688                                          vdwparam+vdwioffset0+vdwjidx0C,
689                                          vdwparam+vdwioffset0+vdwjidx0D,
690                                          &c6_00,&c12_00);
691
692             /* Calculate table index by multiplying r with table scale and truncate to integer */
693             rt               = _mm_mul_ps(r00,vftabscale);
694             vfitab           = _mm_cvttps_epi32(rt);
695 #ifdef __XOP__
696             vfeps            = _mm_frcz_ps(rt);
697 #else
698             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
699 #endif
700             twovfeps         = _mm_add_ps(vfeps,vfeps);
701             vfitab           = _mm_slli_epi32(vfitab,2);
702
703             /* CUBIC SPLINE TABLE ELECTROSTATICS */
704             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
705             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
706             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
707             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
708             _MM_TRANSPOSE4_PS(Y,F,G,H);
709             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
710             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
711             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
712
713             /* LENNARD-JONES DISPERSION/REPULSION */
714
715             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
716             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
717
718             fscal            = _mm_add_ps(felec,fvdw);
719
720             fscal            = _mm_andnot_ps(dummy_mask,fscal);
721
722              /* Update vectorial force */
723             fix0             = _mm_macc_ps(dx00,fscal,fix0);
724             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
725             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
726
727             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
728             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
729             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
730             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
731             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
732                                                    _mm_mul_ps(dx00,fscal),
733                                                    _mm_mul_ps(dy00,fscal),
734                                                    _mm_mul_ps(dz00,fscal));
735
736             /* Inner loop uses 51 flops */
737         }
738
739         /* End of innermost loop */
740
741         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
742                                               f+i_coord_offset,fshift+i_shift_offset);
743
744         /* Increment number of inner iterations */
745         inneriter                  += j_index_end - j_index_start;
746
747         /* Outer loop uses 7 flops */
748     }
749
750     /* Increment number of outer iterations */
751     outeriter        += nri;
752
753     /* Update outer/inner flops */
754
755     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*51);
756 }