9ee0b6f1285c77c2398135fb8b5bfc67a6735c81
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_128_fma_single
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128i          vfitab;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
101     real             *vftab;
102     __m128           dummy_mask,cutoff_mask;
103     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104     __m128           one     = _mm_set1_ps(1.0);
105     __m128           two     = _mm_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_elec->data;
124     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _mm_setzero_ps();
159         fiy0             = _mm_setzero_ps();
160         fiz0             = _mm_setzero_ps();
161
162         /* Load parameters for i particles */
163         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
164         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
165
166         /* Reset potential sums */
167         velecsum         = _mm_setzero_ps();
168         vvdwsum          = _mm_setzero_ps();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             jnrC             = jjnr[jidx+2];
178             jnrD             = jjnr[jidx+3];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181             j_coord_offsetC  = DIM*jnrC;
182             j_coord_offsetD  = DIM*jnrD;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               x+j_coord_offsetC,x+j_coord_offsetD,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm_sub_ps(ix0,jx0);
191             dy00             = _mm_sub_ps(iy0,jy0);
192             dz00             = _mm_sub_ps(iz0,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
196
197             rinv00           = gmx_mm_invsqrt_ps(rsq00);
198
199             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
200
201             /* Load parameters for j particles */
202             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
203                                                               charge+jnrC+0,charge+jnrD+0);
204             vdwjidx0A        = 2*vdwtype[jnrA+0];
205             vdwjidx0B        = 2*vdwtype[jnrB+0];
206             vdwjidx0C        = 2*vdwtype[jnrC+0];
207             vdwjidx0D        = 2*vdwtype[jnrD+0];
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             r00              = _mm_mul_ps(rsq00,rinv00);
214
215             /* Compute parameters for interactions between i and j atoms */
216             qq00             = _mm_mul_ps(iq0,jq0);
217             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
218                                          vdwparam+vdwioffset0+vdwjidx0B,
219                                          vdwparam+vdwioffset0+vdwjidx0C,
220                                          vdwparam+vdwioffset0+vdwjidx0D,
221                                          &c6_00,&c12_00);
222
223             /* Calculate table index by multiplying r with table scale and truncate to integer */
224             rt               = _mm_mul_ps(r00,vftabscale);
225             vfitab           = _mm_cvttps_epi32(rt);
226 #ifdef __XOP__
227             vfeps            = _mm_frcz_ps(rt);
228 #else
229             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
230 #endif
231             twovfeps         = _mm_add_ps(vfeps,vfeps);
232             vfitab           = _mm_slli_epi32(vfitab,2);
233
234             /* CUBIC SPLINE TABLE ELECTROSTATICS */
235             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
236             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
237             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
238             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
239             _MM_TRANSPOSE4_PS(Y,F,G,H);
240             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
241             VV               = _mm_macc_ps(vfeps,Fp,Y);
242             velec            = _mm_mul_ps(qq00,VV);
243             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
244             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
245
246             /* LENNARD-JONES DISPERSION/REPULSION */
247
248             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
249             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
250             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
251             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
252             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
253
254             /* Update potential sum for this i atom from the interaction with this j atom. */
255             velecsum         = _mm_add_ps(velecsum,velec);
256             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
257
258             fscal            = _mm_add_ps(felec,fvdw);
259
260              /* Update vectorial force */
261             fix0             = _mm_macc_ps(dx00,fscal,fix0);
262             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
263             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
264
265             fjptrA             = f+j_coord_offsetA;
266             fjptrB             = f+j_coord_offsetB;
267             fjptrC             = f+j_coord_offsetC;
268             fjptrD             = f+j_coord_offsetD;
269             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
270                                                    _mm_mul_ps(dx00,fscal),
271                                                    _mm_mul_ps(dy00,fscal),
272                                                    _mm_mul_ps(dz00,fscal));
273
274             /* Inner loop uses 59 flops */
275         }
276
277         if(jidx<j_index_end)
278         {
279
280             /* Get j neighbor index, and coordinate index */
281             jnrlistA         = jjnr[jidx];
282             jnrlistB         = jjnr[jidx+1];
283             jnrlistC         = jjnr[jidx+2];
284             jnrlistD         = jjnr[jidx+3];
285             /* Sign of each element will be negative for non-real atoms.
286              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
287              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
288              */
289             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
290             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
291             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
292             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
293             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
294             j_coord_offsetA  = DIM*jnrA;
295             j_coord_offsetB  = DIM*jnrB;
296             j_coord_offsetC  = DIM*jnrC;
297             j_coord_offsetD  = DIM*jnrD;
298
299             /* load j atom coordinates */
300             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
301                                               x+j_coord_offsetC,x+j_coord_offsetD,
302                                               &jx0,&jy0,&jz0);
303
304             /* Calculate displacement vector */
305             dx00             = _mm_sub_ps(ix0,jx0);
306             dy00             = _mm_sub_ps(iy0,jy0);
307             dz00             = _mm_sub_ps(iz0,jz0);
308
309             /* Calculate squared distance and things based on it */
310             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
311
312             rinv00           = gmx_mm_invsqrt_ps(rsq00);
313
314             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
315
316             /* Load parameters for j particles */
317             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
318                                                               charge+jnrC+0,charge+jnrD+0);
319             vdwjidx0A        = 2*vdwtype[jnrA+0];
320             vdwjidx0B        = 2*vdwtype[jnrB+0];
321             vdwjidx0C        = 2*vdwtype[jnrC+0];
322             vdwjidx0D        = 2*vdwtype[jnrD+0];
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             r00              = _mm_mul_ps(rsq00,rinv00);
329             r00              = _mm_andnot_ps(dummy_mask,r00);
330
331             /* Compute parameters for interactions between i and j atoms */
332             qq00             = _mm_mul_ps(iq0,jq0);
333             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
334                                          vdwparam+vdwioffset0+vdwjidx0B,
335                                          vdwparam+vdwioffset0+vdwjidx0C,
336                                          vdwparam+vdwioffset0+vdwjidx0D,
337                                          &c6_00,&c12_00);
338
339             /* Calculate table index by multiplying r with table scale and truncate to integer */
340             rt               = _mm_mul_ps(r00,vftabscale);
341             vfitab           = _mm_cvttps_epi32(rt);
342 #ifdef __XOP__
343             vfeps            = _mm_frcz_ps(rt);
344 #else
345             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
346 #endif
347             twovfeps         = _mm_add_ps(vfeps,vfeps);
348             vfitab           = _mm_slli_epi32(vfitab,2);
349
350             /* CUBIC SPLINE TABLE ELECTROSTATICS */
351             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
352             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
353             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
354             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
355             _MM_TRANSPOSE4_PS(Y,F,G,H);
356             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
357             VV               = _mm_macc_ps(vfeps,Fp,Y);
358             velec            = _mm_mul_ps(qq00,VV);
359             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
360             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
361
362             /* LENNARD-JONES DISPERSION/REPULSION */
363
364             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
365             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
366             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
367             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
368             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
369
370             /* Update potential sum for this i atom from the interaction with this j atom. */
371             velec            = _mm_andnot_ps(dummy_mask,velec);
372             velecsum         = _mm_add_ps(velecsum,velec);
373             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
374             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
375
376             fscal            = _mm_add_ps(felec,fvdw);
377
378             fscal            = _mm_andnot_ps(dummy_mask,fscal);
379
380              /* Update vectorial force */
381             fix0             = _mm_macc_ps(dx00,fscal,fix0);
382             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
383             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
384
385             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
386             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
387             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
388             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
389             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
390                                                    _mm_mul_ps(dx00,fscal),
391                                                    _mm_mul_ps(dy00,fscal),
392                                                    _mm_mul_ps(dz00,fscal));
393
394             /* Inner loop uses 60 flops */
395         }
396
397         /* End of innermost loop */
398
399         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
400                                               f+i_coord_offset,fshift+i_shift_offset);
401
402         ggid                        = gid[iidx];
403         /* Update potential energies */
404         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
405         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
406
407         /* Increment number of inner iterations */
408         inneriter                  += j_index_end - j_index_start;
409
410         /* Outer loop uses 9 flops */
411     }
412
413     /* Increment number of outer iterations */
414     outeriter        += nri;
415
416     /* Update outer/inner flops */
417
418     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*60);
419 }
420 /*
421  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_128_fma_single
422  * Electrostatics interaction: CubicSplineTable
423  * VdW interaction:            LennardJones
424  * Geometry:                   Particle-Particle
425  * Calculate force/pot:        Force
426  */
427 void
428 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_128_fma_single
429                     (t_nblist                    * gmx_restrict       nlist,
430                      rvec                        * gmx_restrict          xx,
431                      rvec                        * gmx_restrict          ff,
432                      t_forcerec                  * gmx_restrict          fr,
433                      t_mdatoms                   * gmx_restrict     mdatoms,
434                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
435                      t_nrnb                      * gmx_restrict        nrnb)
436 {
437     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
438      * just 0 for non-waters.
439      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
440      * jnr indices corresponding to data put in the four positions in the SIMD register.
441      */
442     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
443     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
444     int              jnrA,jnrB,jnrC,jnrD;
445     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
446     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
447     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
448     real             rcutoff_scalar;
449     real             *shiftvec,*fshift,*x,*f;
450     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
451     real             scratch[4*DIM];
452     __m128           fscal,rcutoff,rcutoff2,jidxall;
453     int              vdwioffset0;
454     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
455     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
456     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
457     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
458     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
459     real             *charge;
460     int              nvdwtype;
461     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
462     int              *vdwtype;
463     real             *vdwparam;
464     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
465     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
466     __m128i          vfitab;
467     __m128i          ifour       = _mm_set1_epi32(4);
468     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
469     real             *vftab;
470     __m128           dummy_mask,cutoff_mask;
471     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
472     __m128           one     = _mm_set1_ps(1.0);
473     __m128           two     = _mm_set1_ps(2.0);
474     x                = xx[0];
475     f                = ff[0];
476
477     nri              = nlist->nri;
478     iinr             = nlist->iinr;
479     jindex           = nlist->jindex;
480     jjnr             = nlist->jjnr;
481     shiftidx         = nlist->shift;
482     gid              = nlist->gid;
483     shiftvec         = fr->shift_vec[0];
484     fshift           = fr->fshift[0];
485     facel            = _mm_set1_ps(fr->epsfac);
486     charge           = mdatoms->chargeA;
487     nvdwtype         = fr->ntype;
488     vdwparam         = fr->nbfp;
489     vdwtype          = mdatoms->typeA;
490
491     vftab            = kernel_data->table_elec->data;
492     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
493
494     /* Avoid stupid compiler warnings */
495     jnrA = jnrB = jnrC = jnrD = 0;
496     j_coord_offsetA = 0;
497     j_coord_offsetB = 0;
498     j_coord_offsetC = 0;
499     j_coord_offsetD = 0;
500
501     outeriter        = 0;
502     inneriter        = 0;
503
504     for(iidx=0;iidx<4*DIM;iidx++)
505     {
506         scratch[iidx] = 0.0;
507     }
508
509     /* Start outer loop over neighborlists */
510     for(iidx=0; iidx<nri; iidx++)
511     {
512         /* Load shift vector for this list */
513         i_shift_offset   = DIM*shiftidx[iidx];
514
515         /* Load limits for loop over neighbors */
516         j_index_start    = jindex[iidx];
517         j_index_end      = jindex[iidx+1];
518
519         /* Get outer coordinate index */
520         inr              = iinr[iidx];
521         i_coord_offset   = DIM*inr;
522
523         /* Load i particle coords and add shift vector */
524         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
525
526         fix0             = _mm_setzero_ps();
527         fiy0             = _mm_setzero_ps();
528         fiz0             = _mm_setzero_ps();
529
530         /* Load parameters for i particles */
531         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
532         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
533
534         /* Start inner kernel loop */
535         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
536         {
537
538             /* Get j neighbor index, and coordinate index */
539             jnrA             = jjnr[jidx];
540             jnrB             = jjnr[jidx+1];
541             jnrC             = jjnr[jidx+2];
542             jnrD             = jjnr[jidx+3];
543             j_coord_offsetA  = DIM*jnrA;
544             j_coord_offsetB  = DIM*jnrB;
545             j_coord_offsetC  = DIM*jnrC;
546             j_coord_offsetD  = DIM*jnrD;
547
548             /* load j atom coordinates */
549             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
550                                               x+j_coord_offsetC,x+j_coord_offsetD,
551                                               &jx0,&jy0,&jz0);
552
553             /* Calculate displacement vector */
554             dx00             = _mm_sub_ps(ix0,jx0);
555             dy00             = _mm_sub_ps(iy0,jy0);
556             dz00             = _mm_sub_ps(iz0,jz0);
557
558             /* Calculate squared distance and things based on it */
559             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
560
561             rinv00           = gmx_mm_invsqrt_ps(rsq00);
562
563             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
564
565             /* Load parameters for j particles */
566             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
567                                                               charge+jnrC+0,charge+jnrD+0);
568             vdwjidx0A        = 2*vdwtype[jnrA+0];
569             vdwjidx0B        = 2*vdwtype[jnrB+0];
570             vdwjidx0C        = 2*vdwtype[jnrC+0];
571             vdwjidx0D        = 2*vdwtype[jnrD+0];
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             r00              = _mm_mul_ps(rsq00,rinv00);
578
579             /* Compute parameters for interactions between i and j atoms */
580             qq00             = _mm_mul_ps(iq0,jq0);
581             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
582                                          vdwparam+vdwioffset0+vdwjidx0B,
583                                          vdwparam+vdwioffset0+vdwjidx0C,
584                                          vdwparam+vdwioffset0+vdwjidx0D,
585                                          &c6_00,&c12_00);
586
587             /* Calculate table index by multiplying r with table scale and truncate to integer */
588             rt               = _mm_mul_ps(r00,vftabscale);
589             vfitab           = _mm_cvttps_epi32(rt);
590 #ifdef __XOP__
591             vfeps            = _mm_frcz_ps(rt);
592 #else
593             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
594 #endif
595             twovfeps         = _mm_add_ps(vfeps,vfeps);
596             vfitab           = _mm_slli_epi32(vfitab,2);
597
598             /* CUBIC SPLINE TABLE ELECTROSTATICS */
599             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
600             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
601             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
602             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
603             _MM_TRANSPOSE4_PS(Y,F,G,H);
604             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
605             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
606             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
607
608             /* LENNARD-JONES DISPERSION/REPULSION */
609
610             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
611             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
612
613             fscal            = _mm_add_ps(felec,fvdw);
614
615              /* Update vectorial force */
616             fix0             = _mm_macc_ps(dx00,fscal,fix0);
617             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
618             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
619
620             fjptrA             = f+j_coord_offsetA;
621             fjptrB             = f+j_coord_offsetB;
622             fjptrC             = f+j_coord_offsetC;
623             fjptrD             = f+j_coord_offsetD;
624             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
625                                                    _mm_mul_ps(dx00,fscal),
626                                                    _mm_mul_ps(dy00,fscal),
627                                                    _mm_mul_ps(dz00,fscal));
628
629             /* Inner loop uses 50 flops */
630         }
631
632         if(jidx<j_index_end)
633         {
634
635             /* Get j neighbor index, and coordinate index */
636             jnrlistA         = jjnr[jidx];
637             jnrlistB         = jjnr[jidx+1];
638             jnrlistC         = jjnr[jidx+2];
639             jnrlistD         = jjnr[jidx+3];
640             /* Sign of each element will be negative for non-real atoms.
641              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
642              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
643              */
644             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
645             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
646             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
647             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
648             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
649             j_coord_offsetA  = DIM*jnrA;
650             j_coord_offsetB  = DIM*jnrB;
651             j_coord_offsetC  = DIM*jnrC;
652             j_coord_offsetD  = DIM*jnrD;
653
654             /* load j atom coordinates */
655             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
656                                               x+j_coord_offsetC,x+j_coord_offsetD,
657                                               &jx0,&jy0,&jz0);
658
659             /* Calculate displacement vector */
660             dx00             = _mm_sub_ps(ix0,jx0);
661             dy00             = _mm_sub_ps(iy0,jy0);
662             dz00             = _mm_sub_ps(iz0,jz0);
663
664             /* Calculate squared distance and things based on it */
665             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
666
667             rinv00           = gmx_mm_invsqrt_ps(rsq00);
668
669             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
670
671             /* Load parameters for j particles */
672             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
673                                                               charge+jnrC+0,charge+jnrD+0);
674             vdwjidx0A        = 2*vdwtype[jnrA+0];
675             vdwjidx0B        = 2*vdwtype[jnrB+0];
676             vdwjidx0C        = 2*vdwtype[jnrC+0];
677             vdwjidx0D        = 2*vdwtype[jnrD+0];
678
679             /**************************
680              * CALCULATE INTERACTIONS *
681              **************************/
682
683             r00              = _mm_mul_ps(rsq00,rinv00);
684             r00              = _mm_andnot_ps(dummy_mask,r00);
685
686             /* Compute parameters for interactions between i and j atoms */
687             qq00             = _mm_mul_ps(iq0,jq0);
688             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
689                                          vdwparam+vdwioffset0+vdwjidx0B,
690                                          vdwparam+vdwioffset0+vdwjidx0C,
691                                          vdwparam+vdwioffset0+vdwjidx0D,
692                                          &c6_00,&c12_00);
693
694             /* Calculate table index by multiplying r with table scale and truncate to integer */
695             rt               = _mm_mul_ps(r00,vftabscale);
696             vfitab           = _mm_cvttps_epi32(rt);
697 #ifdef __XOP__
698             vfeps            = _mm_frcz_ps(rt);
699 #else
700             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
701 #endif
702             twovfeps         = _mm_add_ps(vfeps,vfeps);
703             vfitab           = _mm_slli_epi32(vfitab,2);
704
705             /* CUBIC SPLINE TABLE ELECTROSTATICS */
706             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
707             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
708             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
709             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
710             _MM_TRANSPOSE4_PS(Y,F,G,H);
711             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
712             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
713             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
714
715             /* LENNARD-JONES DISPERSION/REPULSION */
716
717             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
718             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
719
720             fscal            = _mm_add_ps(felec,fvdw);
721
722             fscal            = _mm_andnot_ps(dummy_mask,fscal);
723
724              /* Update vectorial force */
725             fix0             = _mm_macc_ps(dx00,fscal,fix0);
726             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
727             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
728
729             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
730             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
731             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
732             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
733             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
734                                                    _mm_mul_ps(dx00,fscal),
735                                                    _mm_mul_ps(dy00,fscal),
736                                                    _mm_mul_ps(dz00,fscal));
737
738             /* Inner loop uses 51 flops */
739         }
740
741         /* End of innermost loop */
742
743         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
744                                               f+i_coord_offset,fshift+i_shift_offset);
745
746         /* Increment number of inner iterations */
747         inneriter                  += j_index_end - j_index_start;
748
749         /* Outer loop uses 7 flops */
750     }
751
752     /* Increment number of outer iterations */
753     outeriter        += nri;
754
755     /* Update outer/inner flops */
756
757     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*51);
758 }