Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_avx_128_fma_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
107     real             *vftab;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->ic->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_elec_vdw->data;
130     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
135     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
136     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
171
172         fix0             = _mm_setzero_ps();
173         fiy0             = _mm_setzero_ps();
174         fiz0             = _mm_setzero_ps();
175         fix1             = _mm_setzero_ps();
176         fiy1             = _mm_setzero_ps();
177         fiz1             = _mm_setzero_ps();
178         fix2             = _mm_setzero_ps();
179         fiy2             = _mm_setzero_ps();
180         fiz2             = _mm_setzero_ps();
181         fix3             = _mm_setzero_ps();
182         fiy3             = _mm_setzero_ps();
183         fiz3             = _mm_setzero_ps();
184
185         /* Reset potential sums */
186         velecsum         = _mm_setzero_ps();
187         vvdwsum          = _mm_setzero_ps();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             jnrC             = jjnr[jidx+2];
197             jnrD             = jjnr[jidx+3];
198             j_coord_offsetA  = DIM*jnrA;
199             j_coord_offsetB  = DIM*jnrB;
200             j_coord_offsetC  = DIM*jnrC;
201             j_coord_offsetD  = DIM*jnrD;
202
203             /* load j atom coordinates */
204             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
205                                               x+j_coord_offsetC,x+j_coord_offsetD,
206                                               &jx0,&jy0,&jz0);
207
208             /* Calculate displacement vector */
209             dx00             = _mm_sub_ps(ix0,jx0);
210             dy00             = _mm_sub_ps(iy0,jy0);
211             dz00             = _mm_sub_ps(iz0,jz0);
212             dx10             = _mm_sub_ps(ix1,jx0);
213             dy10             = _mm_sub_ps(iy1,jy0);
214             dz10             = _mm_sub_ps(iz1,jz0);
215             dx20             = _mm_sub_ps(ix2,jx0);
216             dy20             = _mm_sub_ps(iy2,jy0);
217             dz20             = _mm_sub_ps(iz2,jz0);
218             dx30             = _mm_sub_ps(ix3,jx0);
219             dy30             = _mm_sub_ps(iy3,jy0);
220             dz30             = _mm_sub_ps(iz3,jz0);
221
222             /* Calculate squared distance and things based on it */
223             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
224             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
225             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
226             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
227
228             rinv00           = avx128fma_invsqrt_f(rsq00);
229             rinv10           = avx128fma_invsqrt_f(rsq10);
230             rinv20           = avx128fma_invsqrt_f(rsq20);
231             rinv30           = avx128fma_invsqrt_f(rsq30);
232
233             /* Load parameters for j particles */
234             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
235                                                               charge+jnrC+0,charge+jnrD+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238             vdwjidx0C        = 2*vdwtype[jnrC+0];
239             vdwjidx0D        = 2*vdwtype[jnrD+0];
240
241             fjx0             = _mm_setzero_ps();
242             fjy0             = _mm_setzero_ps();
243             fjz0             = _mm_setzero_ps();
244
245             /**************************
246              * CALCULATE INTERACTIONS *
247              **************************/
248
249             r00              = _mm_mul_ps(rsq00,rinv00);
250
251             /* Compute parameters for interactions between i and j atoms */
252             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
253                                          vdwparam+vdwioffset0+vdwjidx0B,
254                                          vdwparam+vdwioffset0+vdwjidx0C,
255                                          vdwparam+vdwioffset0+vdwjidx0D,
256                                          &c6_00,&c12_00);
257
258             /* Calculate table index by multiplying r with table scale and truncate to integer */
259             rt               = _mm_mul_ps(r00,vftabscale);
260             vfitab           = _mm_cvttps_epi32(rt);
261 #ifdef __XOP__
262             vfeps            = _mm_frcz_ps(rt);
263 #else
264             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
265 #endif
266             twovfeps         = _mm_add_ps(vfeps,vfeps);
267             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
268
269             /* CUBIC SPLINE TABLE DISPERSION */
270             vfitab           = _mm_add_epi32(vfitab,ifour);
271             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
272             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
273             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
274             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
275             _MM_TRANSPOSE4_PS(Y,F,G,H);
276             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
277             VV               = _mm_macc_ps(vfeps,Fp,Y);
278             vvdw6            = _mm_mul_ps(c6_00,VV);
279             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
280             fvdw6            = _mm_mul_ps(c6_00,FF);
281
282             /* CUBIC SPLINE TABLE REPULSION */
283             vfitab           = _mm_add_epi32(vfitab,ifour);
284             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
285             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
286             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
287             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
288             _MM_TRANSPOSE4_PS(Y,F,G,H);
289             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
290             VV               = _mm_macc_ps(vfeps,Fp,Y);
291             vvdw12           = _mm_mul_ps(c12_00,VV);
292             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
293             fvdw12           = _mm_mul_ps(c12_00,FF);
294             vvdw             = _mm_add_ps(vvdw12,vvdw6);
295             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
299
300             fscal            = fvdw;
301
302              /* Update vectorial force */
303             fix0             = _mm_macc_ps(dx00,fscal,fix0);
304             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
305             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
306
307             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
308             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
309             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
310
311             /**************************
312              * CALCULATE INTERACTIONS *
313              **************************/
314
315             r10              = _mm_mul_ps(rsq10,rinv10);
316
317             /* Compute parameters for interactions between i and j atoms */
318             qq10             = _mm_mul_ps(iq1,jq0);
319
320             /* Calculate table index by multiplying r with table scale and truncate to integer */
321             rt               = _mm_mul_ps(r10,vftabscale);
322             vfitab           = _mm_cvttps_epi32(rt);
323 #ifdef __XOP__
324             vfeps            = _mm_frcz_ps(rt);
325 #else
326             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
327 #endif
328             twovfeps         = _mm_add_ps(vfeps,vfeps);
329             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
330
331             /* CUBIC SPLINE TABLE ELECTROSTATICS */
332             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
333             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
334             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
335             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
336             _MM_TRANSPOSE4_PS(Y,F,G,H);
337             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
338             VV               = _mm_macc_ps(vfeps,Fp,Y);
339             velec            = _mm_mul_ps(qq10,VV);
340             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
341             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velecsum         = _mm_add_ps(velecsum,velec);
345
346             fscal            = felec;
347
348              /* Update vectorial force */
349             fix1             = _mm_macc_ps(dx10,fscal,fix1);
350             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
351             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
352
353             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
354             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
355             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
356
357             /**************************
358              * CALCULATE INTERACTIONS *
359              **************************/
360
361             r20              = _mm_mul_ps(rsq20,rinv20);
362
363             /* Compute parameters for interactions between i and j atoms */
364             qq20             = _mm_mul_ps(iq2,jq0);
365
366             /* Calculate table index by multiplying r with table scale and truncate to integer */
367             rt               = _mm_mul_ps(r20,vftabscale);
368             vfitab           = _mm_cvttps_epi32(rt);
369 #ifdef __XOP__
370             vfeps            = _mm_frcz_ps(rt);
371 #else
372             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
373 #endif
374             twovfeps         = _mm_add_ps(vfeps,vfeps);
375             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
376
377             /* CUBIC SPLINE TABLE ELECTROSTATICS */
378             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
379             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
380             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
381             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
382             _MM_TRANSPOSE4_PS(Y,F,G,H);
383             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
384             VV               = _mm_macc_ps(vfeps,Fp,Y);
385             velec            = _mm_mul_ps(qq20,VV);
386             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
387             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
388
389             /* Update potential sum for this i atom from the interaction with this j atom. */
390             velecsum         = _mm_add_ps(velecsum,velec);
391
392             fscal            = felec;
393
394              /* Update vectorial force */
395             fix2             = _mm_macc_ps(dx20,fscal,fix2);
396             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
397             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
398
399             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
400             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
401             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
402
403             /**************************
404              * CALCULATE INTERACTIONS *
405              **************************/
406
407             r30              = _mm_mul_ps(rsq30,rinv30);
408
409             /* Compute parameters for interactions between i and j atoms */
410             qq30             = _mm_mul_ps(iq3,jq0);
411
412             /* Calculate table index by multiplying r with table scale and truncate to integer */
413             rt               = _mm_mul_ps(r30,vftabscale);
414             vfitab           = _mm_cvttps_epi32(rt);
415 #ifdef __XOP__
416             vfeps            = _mm_frcz_ps(rt);
417 #else
418             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
419 #endif
420             twovfeps         = _mm_add_ps(vfeps,vfeps);
421             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
422
423             /* CUBIC SPLINE TABLE ELECTROSTATICS */
424             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
425             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
426             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
427             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
428             _MM_TRANSPOSE4_PS(Y,F,G,H);
429             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
430             VV               = _mm_macc_ps(vfeps,Fp,Y);
431             velec            = _mm_mul_ps(qq30,VV);
432             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
433             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
434
435             /* Update potential sum for this i atom from the interaction with this j atom. */
436             velecsum         = _mm_add_ps(velecsum,velec);
437
438             fscal            = felec;
439
440              /* Update vectorial force */
441             fix3             = _mm_macc_ps(dx30,fscal,fix3);
442             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
443             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
444
445             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
446             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
447             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
448
449             fjptrA             = f+j_coord_offsetA;
450             fjptrB             = f+j_coord_offsetB;
451             fjptrC             = f+j_coord_offsetC;
452             fjptrD             = f+j_coord_offsetD;
453
454             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
455
456             /* Inner loop uses 197 flops */
457         }
458
459         if(jidx<j_index_end)
460         {
461
462             /* Get j neighbor index, and coordinate index */
463             jnrlistA         = jjnr[jidx];
464             jnrlistB         = jjnr[jidx+1];
465             jnrlistC         = jjnr[jidx+2];
466             jnrlistD         = jjnr[jidx+3];
467             /* Sign of each element will be negative for non-real atoms.
468              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
469              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
470              */
471             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
472             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
473             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
474             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
475             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
476             j_coord_offsetA  = DIM*jnrA;
477             j_coord_offsetB  = DIM*jnrB;
478             j_coord_offsetC  = DIM*jnrC;
479             j_coord_offsetD  = DIM*jnrD;
480
481             /* load j atom coordinates */
482             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
483                                               x+j_coord_offsetC,x+j_coord_offsetD,
484                                               &jx0,&jy0,&jz0);
485
486             /* Calculate displacement vector */
487             dx00             = _mm_sub_ps(ix0,jx0);
488             dy00             = _mm_sub_ps(iy0,jy0);
489             dz00             = _mm_sub_ps(iz0,jz0);
490             dx10             = _mm_sub_ps(ix1,jx0);
491             dy10             = _mm_sub_ps(iy1,jy0);
492             dz10             = _mm_sub_ps(iz1,jz0);
493             dx20             = _mm_sub_ps(ix2,jx0);
494             dy20             = _mm_sub_ps(iy2,jy0);
495             dz20             = _mm_sub_ps(iz2,jz0);
496             dx30             = _mm_sub_ps(ix3,jx0);
497             dy30             = _mm_sub_ps(iy3,jy0);
498             dz30             = _mm_sub_ps(iz3,jz0);
499
500             /* Calculate squared distance and things based on it */
501             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
502             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
503             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
504             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
505
506             rinv00           = avx128fma_invsqrt_f(rsq00);
507             rinv10           = avx128fma_invsqrt_f(rsq10);
508             rinv20           = avx128fma_invsqrt_f(rsq20);
509             rinv30           = avx128fma_invsqrt_f(rsq30);
510
511             /* Load parameters for j particles */
512             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
513                                                               charge+jnrC+0,charge+jnrD+0);
514             vdwjidx0A        = 2*vdwtype[jnrA+0];
515             vdwjidx0B        = 2*vdwtype[jnrB+0];
516             vdwjidx0C        = 2*vdwtype[jnrC+0];
517             vdwjidx0D        = 2*vdwtype[jnrD+0];
518
519             fjx0             = _mm_setzero_ps();
520             fjy0             = _mm_setzero_ps();
521             fjz0             = _mm_setzero_ps();
522
523             /**************************
524              * CALCULATE INTERACTIONS *
525              **************************/
526
527             r00              = _mm_mul_ps(rsq00,rinv00);
528             r00              = _mm_andnot_ps(dummy_mask,r00);
529
530             /* Compute parameters for interactions between i and j atoms */
531             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
532                                          vdwparam+vdwioffset0+vdwjidx0B,
533                                          vdwparam+vdwioffset0+vdwjidx0C,
534                                          vdwparam+vdwioffset0+vdwjidx0D,
535                                          &c6_00,&c12_00);
536
537             /* Calculate table index by multiplying r with table scale and truncate to integer */
538             rt               = _mm_mul_ps(r00,vftabscale);
539             vfitab           = _mm_cvttps_epi32(rt);
540 #ifdef __XOP__
541             vfeps            = _mm_frcz_ps(rt);
542 #else
543             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
544 #endif
545             twovfeps         = _mm_add_ps(vfeps,vfeps);
546             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
547
548             /* CUBIC SPLINE TABLE DISPERSION */
549             vfitab           = _mm_add_epi32(vfitab,ifour);
550             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
551             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
552             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
553             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
554             _MM_TRANSPOSE4_PS(Y,F,G,H);
555             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
556             VV               = _mm_macc_ps(vfeps,Fp,Y);
557             vvdw6            = _mm_mul_ps(c6_00,VV);
558             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
559             fvdw6            = _mm_mul_ps(c6_00,FF);
560
561             /* CUBIC SPLINE TABLE REPULSION */
562             vfitab           = _mm_add_epi32(vfitab,ifour);
563             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
564             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
565             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
566             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
567             _MM_TRANSPOSE4_PS(Y,F,G,H);
568             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
569             VV               = _mm_macc_ps(vfeps,Fp,Y);
570             vvdw12           = _mm_mul_ps(c12_00,VV);
571             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
572             fvdw12           = _mm_mul_ps(c12_00,FF);
573             vvdw             = _mm_add_ps(vvdw12,vvdw6);
574             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
575
576             /* Update potential sum for this i atom from the interaction with this j atom. */
577             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
578             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
579
580             fscal            = fvdw;
581
582             fscal            = _mm_andnot_ps(dummy_mask,fscal);
583
584              /* Update vectorial force */
585             fix0             = _mm_macc_ps(dx00,fscal,fix0);
586             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
587             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
588
589             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
590             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
591             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
592
593             /**************************
594              * CALCULATE INTERACTIONS *
595              **************************/
596
597             r10              = _mm_mul_ps(rsq10,rinv10);
598             r10              = _mm_andnot_ps(dummy_mask,r10);
599
600             /* Compute parameters for interactions between i and j atoms */
601             qq10             = _mm_mul_ps(iq1,jq0);
602
603             /* Calculate table index by multiplying r with table scale and truncate to integer */
604             rt               = _mm_mul_ps(r10,vftabscale);
605             vfitab           = _mm_cvttps_epi32(rt);
606 #ifdef __XOP__
607             vfeps            = _mm_frcz_ps(rt);
608 #else
609             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
610 #endif
611             twovfeps         = _mm_add_ps(vfeps,vfeps);
612             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
613
614             /* CUBIC SPLINE TABLE ELECTROSTATICS */
615             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
616             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
617             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
618             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
619             _MM_TRANSPOSE4_PS(Y,F,G,H);
620             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
621             VV               = _mm_macc_ps(vfeps,Fp,Y);
622             velec            = _mm_mul_ps(qq10,VV);
623             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
624             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
625
626             /* Update potential sum for this i atom from the interaction with this j atom. */
627             velec            = _mm_andnot_ps(dummy_mask,velec);
628             velecsum         = _mm_add_ps(velecsum,velec);
629
630             fscal            = felec;
631
632             fscal            = _mm_andnot_ps(dummy_mask,fscal);
633
634              /* Update vectorial force */
635             fix1             = _mm_macc_ps(dx10,fscal,fix1);
636             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
637             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
638
639             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
640             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
641             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
642
643             /**************************
644              * CALCULATE INTERACTIONS *
645              **************************/
646
647             r20              = _mm_mul_ps(rsq20,rinv20);
648             r20              = _mm_andnot_ps(dummy_mask,r20);
649
650             /* Compute parameters for interactions between i and j atoms */
651             qq20             = _mm_mul_ps(iq2,jq0);
652
653             /* Calculate table index by multiplying r with table scale and truncate to integer */
654             rt               = _mm_mul_ps(r20,vftabscale);
655             vfitab           = _mm_cvttps_epi32(rt);
656 #ifdef __XOP__
657             vfeps            = _mm_frcz_ps(rt);
658 #else
659             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
660 #endif
661             twovfeps         = _mm_add_ps(vfeps,vfeps);
662             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
663
664             /* CUBIC SPLINE TABLE ELECTROSTATICS */
665             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
666             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
667             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
668             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
669             _MM_TRANSPOSE4_PS(Y,F,G,H);
670             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
671             VV               = _mm_macc_ps(vfeps,Fp,Y);
672             velec            = _mm_mul_ps(qq20,VV);
673             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
674             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
675
676             /* Update potential sum for this i atom from the interaction with this j atom. */
677             velec            = _mm_andnot_ps(dummy_mask,velec);
678             velecsum         = _mm_add_ps(velecsum,velec);
679
680             fscal            = felec;
681
682             fscal            = _mm_andnot_ps(dummy_mask,fscal);
683
684              /* Update vectorial force */
685             fix2             = _mm_macc_ps(dx20,fscal,fix2);
686             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
687             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
688
689             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
690             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
691             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
692
693             /**************************
694              * CALCULATE INTERACTIONS *
695              **************************/
696
697             r30              = _mm_mul_ps(rsq30,rinv30);
698             r30              = _mm_andnot_ps(dummy_mask,r30);
699
700             /* Compute parameters for interactions between i and j atoms */
701             qq30             = _mm_mul_ps(iq3,jq0);
702
703             /* Calculate table index by multiplying r with table scale and truncate to integer */
704             rt               = _mm_mul_ps(r30,vftabscale);
705             vfitab           = _mm_cvttps_epi32(rt);
706 #ifdef __XOP__
707             vfeps            = _mm_frcz_ps(rt);
708 #else
709             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
710 #endif
711             twovfeps         = _mm_add_ps(vfeps,vfeps);
712             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
713
714             /* CUBIC SPLINE TABLE ELECTROSTATICS */
715             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
716             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
717             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
718             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
719             _MM_TRANSPOSE4_PS(Y,F,G,H);
720             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
721             VV               = _mm_macc_ps(vfeps,Fp,Y);
722             velec            = _mm_mul_ps(qq30,VV);
723             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
724             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
725
726             /* Update potential sum for this i atom from the interaction with this j atom. */
727             velec            = _mm_andnot_ps(dummy_mask,velec);
728             velecsum         = _mm_add_ps(velecsum,velec);
729
730             fscal            = felec;
731
732             fscal            = _mm_andnot_ps(dummy_mask,fscal);
733
734              /* Update vectorial force */
735             fix3             = _mm_macc_ps(dx30,fscal,fix3);
736             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
737             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
738
739             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
740             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
741             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
742
743             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
744             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
745             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
746             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
747
748             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
749
750             /* Inner loop uses 201 flops */
751         }
752
753         /* End of innermost loop */
754
755         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
756                                               f+i_coord_offset,fshift+i_shift_offset);
757
758         ggid                        = gid[iidx];
759         /* Update potential energies */
760         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
761         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
762
763         /* Increment number of inner iterations */
764         inneriter                  += j_index_end - j_index_start;
765
766         /* Outer loop uses 26 flops */
767     }
768
769     /* Increment number of outer iterations */
770     outeriter        += nri;
771
772     /* Update outer/inner flops */
773
774     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*201);
775 }
776 /*
777  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_128_fma_single
778  * Electrostatics interaction: CubicSplineTable
779  * VdW interaction:            CubicSplineTable
780  * Geometry:                   Water4-Particle
781  * Calculate force/pot:        Force
782  */
783 void
784 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_128_fma_single
785                     (t_nblist                    * gmx_restrict       nlist,
786                      rvec                        * gmx_restrict          xx,
787                      rvec                        * gmx_restrict          ff,
788                      struct t_forcerec           * gmx_restrict          fr,
789                      t_mdatoms                   * gmx_restrict     mdatoms,
790                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
791                      t_nrnb                      * gmx_restrict        nrnb)
792 {
793     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
794      * just 0 for non-waters.
795      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
796      * jnr indices corresponding to data put in the four positions in the SIMD register.
797      */
798     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
799     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
800     int              jnrA,jnrB,jnrC,jnrD;
801     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
802     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
803     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
804     real             rcutoff_scalar;
805     real             *shiftvec,*fshift,*x,*f;
806     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
807     real             scratch[4*DIM];
808     __m128           fscal,rcutoff,rcutoff2,jidxall;
809     int              vdwioffset0;
810     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
811     int              vdwioffset1;
812     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
813     int              vdwioffset2;
814     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
815     int              vdwioffset3;
816     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
817     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
818     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
819     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
820     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
821     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
822     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
823     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
824     real             *charge;
825     int              nvdwtype;
826     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
827     int              *vdwtype;
828     real             *vdwparam;
829     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
830     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
831     __m128i          vfitab;
832     __m128i          ifour       = _mm_set1_epi32(4);
833     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
834     real             *vftab;
835     __m128           dummy_mask,cutoff_mask;
836     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
837     __m128           one     = _mm_set1_ps(1.0);
838     __m128           two     = _mm_set1_ps(2.0);
839     x                = xx[0];
840     f                = ff[0];
841
842     nri              = nlist->nri;
843     iinr             = nlist->iinr;
844     jindex           = nlist->jindex;
845     jjnr             = nlist->jjnr;
846     shiftidx         = nlist->shift;
847     gid              = nlist->gid;
848     shiftvec         = fr->shift_vec[0];
849     fshift           = fr->fshift[0];
850     facel            = _mm_set1_ps(fr->ic->epsfac);
851     charge           = mdatoms->chargeA;
852     nvdwtype         = fr->ntype;
853     vdwparam         = fr->nbfp;
854     vdwtype          = mdatoms->typeA;
855
856     vftab            = kernel_data->table_elec_vdw->data;
857     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
858
859     /* Setup water-specific parameters */
860     inr              = nlist->iinr[0];
861     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
862     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
863     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
864     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
865
866     /* Avoid stupid compiler warnings */
867     jnrA = jnrB = jnrC = jnrD = 0;
868     j_coord_offsetA = 0;
869     j_coord_offsetB = 0;
870     j_coord_offsetC = 0;
871     j_coord_offsetD = 0;
872
873     outeriter        = 0;
874     inneriter        = 0;
875
876     for(iidx=0;iidx<4*DIM;iidx++)
877     {
878         scratch[iidx] = 0.0;
879     }
880
881     /* Start outer loop over neighborlists */
882     for(iidx=0; iidx<nri; iidx++)
883     {
884         /* Load shift vector for this list */
885         i_shift_offset   = DIM*shiftidx[iidx];
886
887         /* Load limits for loop over neighbors */
888         j_index_start    = jindex[iidx];
889         j_index_end      = jindex[iidx+1];
890
891         /* Get outer coordinate index */
892         inr              = iinr[iidx];
893         i_coord_offset   = DIM*inr;
894
895         /* Load i particle coords and add shift vector */
896         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
897                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
898
899         fix0             = _mm_setzero_ps();
900         fiy0             = _mm_setzero_ps();
901         fiz0             = _mm_setzero_ps();
902         fix1             = _mm_setzero_ps();
903         fiy1             = _mm_setzero_ps();
904         fiz1             = _mm_setzero_ps();
905         fix2             = _mm_setzero_ps();
906         fiy2             = _mm_setzero_ps();
907         fiz2             = _mm_setzero_ps();
908         fix3             = _mm_setzero_ps();
909         fiy3             = _mm_setzero_ps();
910         fiz3             = _mm_setzero_ps();
911
912         /* Start inner kernel loop */
913         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
914         {
915
916             /* Get j neighbor index, and coordinate index */
917             jnrA             = jjnr[jidx];
918             jnrB             = jjnr[jidx+1];
919             jnrC             = jjnr[jidx+2];
920             jnrD             = jjnr[jidx+3];
921             j_coord_offsetA  = DIM*jnrA;
922             j_coord_offsetB  = DIM*jnrB;
923             j_coord_offsetC  = DIM*jnrC;
924             j_coord_offsetD  = DIM*jnrD;
925
926             /* load j atom coordinates */
927             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
928                                               x+j_coord_offsetC,x+j_coord_offsetD,
929                                               &jx0,&jy0,&jz0);
930
931             /* Calculate displacement vector */
932             dx00             = _mm_sub_ps(ix0,jx0);
933             dy00             = _mm_sub_ps(iy0,jy0);
934             dz00             = _mm_sub_ps(iz0,jz0);
935             dx10             = _mm_sub_ps(ix1,jx0);
936             dy10             = _mm_sub_ps(iy1,jy0);
937             dz10             = _mm_sub_ps(iz1,jz0);
938             dx20             = _mm_sub_ps(ix2,jx0);
939             dy20             = _mm_sub_ps(iy2,jy0);
940             dz20             = _mm_sub_ps(iz2,jz0);
941             dx30             = _mm_sub_ps(ix3,jx0);
942             dy30             = _mm_sub_ps(iy3,jy0);
943             dz30             = _mm_sub_ps(iz3,jz0);
944
945             /* Calculate squared distance and things based on it */
946             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
947             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
948             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
949             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
950
951             rinv00           = avx128fma_invsqrt_f(rsq00);
952             rinv10           = avx128fma_invsqrt_f(rsq10);
953             rinv20           = avx128fma_invsqrt_f(rsq20);
954             rinv30           = avx128fma_invsqrt_f(rsq30);
955
956             /* Load parameters for j particles */
957             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
958                                                               charge+jnrC+0,charge+jnrD+0);
959             vdwjidx0A        = 2*vdwtype[jnrA+0];
960             vdwjidx0B        = 2*vdwtype[jnrB+0];
961             vdwjidx0C        = 2*vdwtype[jnrC+0];
962             vdwjidx0D        = 2*vdwtype[jnrD+0];
963
964             fjx0             = _mm_setzero_ps();
965             fjy0             = _mm_setzero_ps();
966             fjz0             = _mm_setzero_ps();
967
968             /**************************
969              * CALCULATE INTERACTIONS *
970              **************************/
971
972             r00              = _mm_mul_ps(rsq00,rinv00);
973
974             /* Compute parameters for interactions between i and j atoms */
975             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
976                                          vdwparam+vdwioffset0+vdwjidx0B,
977                                          vdwparam+vdwioffset0+vdwjidx0C,
978                                          vdwparam+vdwioffset0+vdwjidx0D,
979                                          &c6_00,&c12_00);
980
981             /* Calculate table index by multiplying r with table scale and truncate to integer */
982             rt               = _mm_mul_ps(r00,vftabscale);
983             vfitab           = _mm_cvttps_epi32(rt);
984 #ifdef __XOP__
985             vfeps            = _mm_frcz_ps(rt);
986 #else
987             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
988 #endif
989             twovfeps         = _mm_add_ps(vfeps,vfeps);
990             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
991
992             /* CUBIC SPLINE TABLE DISPERSION */
993             vfitab           = _mm_add_epi32(vfitab,ifour);
994             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
995             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
996             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
997             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
998             _MM_TRANSPOSE4_PS(Y,F,G,H);
999             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1000             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1001             fvdw6            = _mm_mul_ps(c6_00,FF);
1002
1003             /* CUBIC SPLINE TABLE REPULSION */
1004             vfitab           = _mm_add_epi32(vfitab,ifour);
1005             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1006             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1007             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1008             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1009             _MM_TRANSPOSE4_PS(Y,F,G,H);
1010             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1011             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1012             fvdw12           = _mm_mul_ps(c12_00,FF);
1013             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1014
1015             fscal            = fvdw;
1016
1017              /* Update vectorial force */
1018             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1019             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1020             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1021
1022             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1023             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1024             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1025
1026             /**************************
1027              * CALCULATE INTERACTIONS *
1028              **************************/
1029
1030             r10              = _mm_mul_ps(rsq10,rinv10);
1031
1032             /* Compute parameters for interactions between i and j atoms */
1033             qq10             = _mm_mul_ps(iq1,jq0);
1034
1035             /* Calculate table index by multiplying r with table scale and truncate to integer */
1036             rt               = _mm_mul_ps(r10,vftabscale);
1037             vfitab           = _mm_cvttps_epi32(rt);
1038 #ifdef __XOP__
1039             vfeps            = _mm_frcz_ps(rt);
1040 #else
1041             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1042 #endif
1043             twovfeps         = _mm_add_ps(vfeps,vfeps);
1044             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1045
1046             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1047             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1048             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1049             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1050             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1051             _MM_TRANSPOSE4_PS(Y,F,G,H);
1052             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1053             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1054             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1055
1056             fscal            = felec;
1057
1058              /* Update vectorial force */
1059             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1060             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1061             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1062
1063             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1064             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1065             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1066
1067             /**************************
1068              * CALCULATE INTERACTIONS *
1069              **************************/
1070
1071             r20              = _mm_mul_ps(rsq20,rinv20);
1072
1073             /* Compute parameters for interactions between i and j atoms */
1074             qq20             = _mm_mul_ps(iq2,jq0);
1075
1076             /* Calculate table index by multiplying r with table scale and truncate to integer */
1077             rt               = _mm_mul_ps(r20,vftabscale);
1078             vfitab           = _mm_cvttps_epi32(rt);
1079 #ifdef __XOP__
1080             vfeps            = _mm_frcz_ps(rt);
1081 #else
1082             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1083 #endif
1084             twovfeps         = _mm_add_ps(vfeps,vfeps);
1085             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1086
1087             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1088             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1089             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1090             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1091             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1092             _MM_TRANSPOSE4_PS(Y,F,G,H);
1093             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1094             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1095             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1096
1097             fscal            = felec;
1098
1099              /* Update vectorial force */
1100             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1101             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1102             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1103
1104             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1105             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1106             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1107
1108             /**************************
1109              * CALCULATE INTERACTIONS *
1110              **************************/
1111
1112             r30              = _mm_mul_ps(rsq30,rinv30);
1113
1114             /* Compute parameters for interactions between i and j atoms */
1115             qq30             = _mm_mul_ps(iq3,jq0);
1116
1117             /* Calculate table index by multiplying r with table scale and truncate to integer */
1118             rt               = _mm_mul_ps(r30,vftabscale);
1119             vfitab           = _mm_cvttps_epi32(rt);
1120 #ifdef __XOP__
1121             vfeps            = _mm_frcz_ps(rt);
1122 #else
1123             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1124 #endif
1125             twovfeps         = _mm_add_ps(vfeps,vfeps);
1126             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1127
1128             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1129             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1130             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1131             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1132             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1133             _MM_TRANSPOSE4_PS(Y,F,G,H);
1134             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1135             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1136             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1137
1138             fscal            = felec;
1139
1140              /* Update vectorial force */
1141             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1142             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1143             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1144
1145             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1146             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1147             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1148
1149             fjptrA             = f+j_coord_offsetA;
1150             fjptrB             = f+j_coord_offsetB;
1151             fjptrC             = f+j_coord_offsetC;
1152             fjptrD             = f+j_coord_offsetD;
1153
1154             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1155
1156             /* Inner loop uses 177 flops */
1157         }
1158
1159         if(jidx<j_index_end)
1160         {
1161
1162             /* Get j neighbor index, and coordinate index */
1163             jnrlistA         = jjnr[jidx];
1164             jnrlistB         = jjnr[jidx+1];
1165             jnrlistC         = jjnr[jidx+2];
1166             jnrlistD         = jjnr[jidx+3];
1167             /* Sign of each element will be negative for non-real atoms.
1168              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1169              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1170              */
1171             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1172             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1173             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1174             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1175             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1176             j_coord_offsetA  = DIM*jnrA;
1177             j_coord_offsetB  = DIM*jnrB;
1178             j_coord_offsetC  = DIM*jnrC;
1179             j_coord_offsetD  = DIM*jnrD;
1180
1181             /* load j atom coordinates */
1182             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1183                                               x+j_coord_offsetC,x+j_coord_offsetD,
1184                                               &jx0,&jy0,&jz0);
1185
1186             /* Calculate displacement vector */
1187             dx00             = _mm_sub_ps(ix0,jx0);
1188             dy00             = _mm_sub_ps(iy0,jy0);
1189             dz00             = _mm_sub_ps(iz0,jz0);
1190             dx10             = _mm_sub_ps(ix1,jx0);
1191             dy10             = _mm_sub_ps(iy1,jy0);
1192             dz10             = _mm_sub_ps(iz1,jz0);
1193             dx20             = _mm_sub_ps(ix2,jx0);
1194             dy20             = _mm_sub_ps(iy2,jy0);
1195             dz20             = _mm_sub_ps(iz2,jz0);
1196             dx30             = _mm_sub_ps(ix3,jx0);
1197             dy30             = _mm_sub_ps(iy3,jy0);
1198             dz30             = _mm_sub_ps(iz3,jz0);
1199
1200             /* Calculate squared distance and things based on it */
1201             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1202             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1203             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1204             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1205
1206             rinv00           = avx128fma_invsqrt_f(rsq00);
1207             rinv10           = avx128fma_invsqrt_f(rsq10);
1208             rinv20           = avx128fma_invsqrt_f(rsq20);
1209             rinv30           = avx128fma_invsqrt_f(rsq30);
1210
1211             /* Load parameters for j particles */
1212             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1213                                                               charge+jnrC+0,charge+jnrD+0);
1214             vdwjidx0A        = 2*vdwtype[jnrA+0];
1215             vdwjidx0B        = 2*vdwtype[jnrB+0];
1216             vdwjidx0C        = 2*vdwtype[jnrC+0];
1217             vdwjidx0D        = 2*vdwtype[jnrD+0];
1218
1219             fjx0             = _mm_setzero_ps();
1220             fjy0             = _mm_setzero_ps();
1221             fjz0             = _mm_setzero_ps();
1222
1223             /**************************
1224              * CALCULATE INTERACTIONS *
1225              **************************/
1226
1227             r00              = _mm_mul_ps(rsq00,rinv00);
1228             r00              = _mm_andnot_ps(dummy_mask,r00);
1229
1230             /* Compute parameters for interactions between i and j atoms */
1231             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1232                                          vdwparam+vdwioffset0+vdwjidx0B,
1233                                          vdwparam+vdwioffset0+vdwjidx0C,
1234                                          vdwparam+vdwioffset0+vdwjidx0D,
1235                                          &c6_00,&c12_00);
1236
1237             /* Calculate table index by multiplying r with table scale and truncate to integer */
1238             rt               = _mm_mul_ps(r00,vftabscale);
1239             vfitab           = _mm_cvttps_epi32(rt);
1240 #ifdef __XOP__
1241             vfeps            = _mm_frcz_ps(rt);
1242 #else
1243             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1244 #endif
1245             twovfeps         = _mm_add_ps(vfeps,vfeps);
1246             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1247
1248             /* CUBIC SPLINE TABLE DISPERSION */
1249             vfitab           = _mm_add_epi32(vfitab,ifour);
1250             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1251             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1252             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1253             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1254             _MM_TRANSPOSE4_PS(Y,F,G,H);
1255             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1256             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1257             fvdw6            = _mm_mul_ps(c6_00,FF);
1258
1259             /* CUBIC SPLINE TABLE REPULSION */
1260             vfitab           = _mm_add_epi32(vfitab,ifour);
1261             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1262             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1263             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1264             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1265             _MM_TRANSPOSE4_PS(Y,F,G,H);
1266             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1267             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1268             fvdw12           = _mm_mul_ps(c12_00,FF);
1269             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1270
1271             fscal            = fvdw;
1272
1273             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1274
1275              /* Update vectorial force */
1276             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1277             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1278             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1279
1280             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1281             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1282             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1283
1284             /**************************
1285              * CALCULATE INTERACTIONS *
1286              **************************/
1287
1288             r10              = _mm_mul_ps(rsq10,rinv10);
1289             r10              = _mm_andnot_ps(dummy_mask,r10);
1290
1291             /* Compute parameters for interactions between i and j atoms */
1292             qq10             = _mm_mul_ps(iq1,jq0);
1293
1294             /* Calculate table index by multiplying r with table scale and truncate to integer */
1295             rt               = _mm_mul_ps(r10,vftabscale);
1296             vfitab           = _mm_cvttps_epi32(rt);
1297 #ifdef __XOP__
1298             vfeps            = _mm_frcz_ps(rt);
1299 #else
1300             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1301 #endif
1302             twovfeps         = _mm_add_ps(vfeps,vfeps);
1303             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1304
1305             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1306             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1307             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1308             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1309             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1310             _MM_TRANSPOSE4_PS(Y,F,G,H);
1311             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1312             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1313             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1314
1315             fscal            = felec;
1316
1317             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1318
1319              /* Update vectorial force */
1320             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1321             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1322             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1323
1324             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1325             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1326             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1327
1328             /**************************
1329              * CALCULATE INTERACTIONS *
1330              **************************/
1331
1332             r20              = _mm_mul_ps(rsq20,rinv20);
1333             r20              = _mm_andnot_ps(dummy_mask,r20);
1334
1335             /* Compute parameters for interactions between i and j atoms */
1336             qq20             = _mm_mul_ps(iq2,jq0);
1337
1338             /* Calculate table index by multiplying r with table scale and truncate to integer */
1339             rt               = _mm_mul_ps(r20,vftabscale);
1340             vfitab           = _mm_cvttps_epi32(rt);
1341 #ifdef __XOP__
1342             vfeps            = _mm_frcz_ps(rt);
1343 #else
1344             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1345 #endif
1346             twovfeps         = _mm_add_ps(vfeps,vfeps);
1347             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1348
1349             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1350             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1351             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1352             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1353             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1354             _MM_TRANSPOSE4_PS(Y,F,G,H);
1355             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1356             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1357             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1358
1359             fscal            = felec;
1360
1361             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1362
1363              /* Update vectorial force */
1364             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1365             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1366             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1367
1368             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1369             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1370             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1371
1372             /**************************
1373              * CALCULATE INTERACTIONS *
1374              **************************/
1375
1376             r30              = _mm_mul_ps(rsq30,rinv30);
1377             r30              = _mm_andnot_ps(dummy_mask,r30);
1378
1379             /* Compute parameters for interactions between i and j atoms */
1380             qq30             = _mm_mul_ps(iq3,jq0);
1381
1382             /* Calculate table index by multiplying r with table scale and truncate to integer */
1383             rt               = _mm_mul_ps(r30,vftabscale);
1384             vfitab           = _mm_cvttps_epi32(rt);
1385 #ifdef __XOP__
1386             vfeps            = _mm_frcz_ps(rt);
1387 #else
1388             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1389 #endif
1390             twovfeps         = _mm_add_ps(vfeps,vfeps);
1391             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1392
1393             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1394             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1395             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1396             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1397             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1398             _MM_TRANSPOSE4_PS(Y,F,G,H);
1399             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1400             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1401             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1402
1403             fscal            = felec;
1404
1405             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1406
1407              /* Update vectorial force */
1408             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1409             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1410             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1411
1412             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1413             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1414             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1415
1416             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1417             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1418             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1419             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1420
1421             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1422
1423             /* Inner loop uses 181 flops */
1424         }
1425
1426         /* End of innermost loop */
1427
1428         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1429                                               f+i_coord_offset,fshift+i_shift_offset);
1430
1431         /* Increment number of inner iterations */
1432         inneriter                  += j_index_end - j_index_start;
1433
1434         /* Outer loop uses 24 flops */
1435     }
1436
1437     /* Increment number of outer iterations */
1438     outeriter        += nri;
1439
1440     /* Update outer/inner flops */
1441
1442     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*181);
1443 }