c0f14db8591f39ed72a83de84b00769091b54598
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
104     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
105     __m128i          vfitab;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
108     real             *vftab;
109     __m128           dummy_mask,cutoff_mask;
110     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
111     __m128           one     = _mm_set1_ps(1.0);
112     __m128           two     = _mm_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_ps(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_elec_vdw->data;
131     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
136     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
137     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = jnrC = jnrD = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144     j_coord_offsetC = 0;
145     j_coord_offsetD = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
171                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
172
173         fix0             = _mm_setzero_ps();
174         fiy0             = _mm_setzero_ps();
175         fiz0             = _mm_setzero_ps();
176         fix1             = _mm_setzero_ps();
177         fiy1             = _mm_setzero_ps();
178         fiz1             = _mm_setzero_ps();
179         fix2             = _mm_setzero_ps();
180         fiy2             = _mm_setzero_ps();
181         fiz2             = _mm_setzero_ps();
182         fix3             = _mm_setzero_ps();
183         fiy3             = _mm_setzero_ps();
184         fiz3             = _mm_setzero_ps();
185
186         /* Reset potential sums */
187         velecsum         = _mm_setzero_ps();
188         vvdwsum          = _mm_setzero_ps();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203
204             /* load j atom coordinates */
205             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               x+j_coord_offsetC,x+j_coord_offsetD,
207                                               &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _mm_sub_ps(ix0,jx0);
211             dy00             = _mm_sub_ps(iy0,jy0);
212             dz00             = _mm_sub_ps(iz0,jz0);
213             dx10             = _mm_sub_ps(ix1,jx0);
214             dy10             = _mm_sub_ps(iy1,jy0);
215             dz10             = _mm_sub_ps(iz1,jz0);
216             dx20             = _mm_sub_ps(ix2,jx0);
217             dy20             = _mm_sub_ps(iy2,jy0);
218             dz20             = _mm_sub_ps(iz2,jz0);
219             dx30             = _mm_sub_ps(ix3,jx0);
220             dy30             = _mm_sub_ps(iy3,jy0);
221             dz30             = _mm_sub_ps(iz3,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
225             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
226             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
227             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
228
229             rinv00           = gmx_mm_invsqrt_ps(rsq00);
230             rinv10           = gmx_mm_invsqrt_ps(rsq10);
231             rinv20           = gmx_mm_invsqrt_ps(rsq20);
232             rinv30           = gmx_mm_invsqrt_ps(rsq30);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
236                                                               charge+jnrC+0,charge+jnrD+0);
237             vdwjidx0A        = 2*vdwtype[jnrA+0];
238             vdwjidx0B        = 2*vdwtype[jnrB+0];
239             vdwjidx0C        = 2*vdwtype[jnrC+0];
240             vdwjidx0D        = 2*vdwtype[jnrD+0];
241
242             fjx0             = _mm_setzero_ps();
243             fjy0             = _mm_setzero_ps();
244             fjz0             = _mm_setzero_ps();
245
246             /**************************
247              * CALCULATE INTERACTIONS *
248              **************************/
249
250             r00              = _mm_mul_ps(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
254                                          vdwparam+vdwioffset0+vdwjidx0B,
255                                          vdwparam+vdwioffset0+vdwjidx0C,
256                                          vdwparam+vdwioffset0+vdwjidx0D,
257                                          &c6_00,&c12_00);
258
259             /* Calculate table index by multiplying r with table scale and truncate to integer */
260             rt               = _mm_mul_ps(r00,vftabscale);
261             vfitab           = _mm_cvttps_epi32(rt);
262 #ifdef __XOP__
263             vfeps            = _mm_frcz_ps(rt);
264 #else
265             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
266 #endif
267             twovfeps         = _mm_add_ps(vfeps,vfeps);
268             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
269
270             /* CUBIC SPLINE TABLE DISPERSION */
271             vfitab           = _mm_add_epi32(vfitab,ifour);
272             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
273             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
274             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
275             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
276             _MM_TRANSPOSE4_PS(Y,F,G,H);
277             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
278             VV               = _mm_macc_ps(vfeps,Fp,Y);
279             vvdw6            = _mm_mul_ps(c6_00,VV);
280             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
281             fvdw6            = _mm_mul_ps(c6_00,FF);
282
283             /* CUBIC SPLINE TABLE REPULSION */
284             vfitab           = _mm_add_epi32(vfitab,ifour);
285             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
286             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
287             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
288             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
289             _MM_TRANSPOSE4_PS(Y,F,G,H);
290             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
291             VV               = _mm_macc_ps(vfeps,Fp,Y);
292             vvdw12           = _mm_mul_ps(c12_00,VV);
293             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
294             fvdw12           = _mm_mul_ps(c12_00,FF);
295             vvdw             = _mm_add_ps(vvdw12,vvdw6);
296             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
297
298             /* Update potential sum for this i atom from the interaction with this j atom. */
299             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
300
301             fscal            = fvdw;
302
303              /* Update vectorial force */
304             fix0             = _mm_macc_ps(dx00,fscal,fix0);
305             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
306             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
307
308             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
309             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
310             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             r10              = _mm_mul_ps(rsq10,rinv10);
317
318             /* Compute parameters for interactions between i and j atoms */
319             qq10             = _mm_mul_ps(iq1,jq0);
320
321             /* Calculate table index by multiplying r with table scale and truncate to integer */
322             rt               = _mm_mul_ps(r10,vftabscale);
323             vfitab           = _mm_cvttps_epi32(rt);
324 #ifdef __XOP__
325             vfeps            = _mm_frcz_ps(rt);
326 #else
327             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
328 #endif
329             twovfeps         = _mm_add_ps(vfeps,vfeps);
330             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
331
332             /* CUBIC SPLINE TABLE ELECTROSTATICS */
333             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
334             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
335             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
336             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
337             _MM_TRANSPOSE4_PS(Y,F,G,H);
338             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
339             VV               = _mm_macc_ps(vfeps,Fp,Y);
340             velec            = _mm_mul_ps(qq10,VV);
341             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
342             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velecsum         = _mm_add_ps(velecsum,velec);
346
347             fscal            = felec;
348
349              /* Update vectorial force */
350             fix1             = _mm_macc_ps(dx10,fscal,fix1);
351             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
352             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
353
354             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
355             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
356             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
357
358             /**************************
359              * CALCULATE INTERACTIONS *
360              **************************/
361
362             r20              = _mm_mul_ps(rsq20,rinv20);
363
364             /* Compute parameters for interactions between i and j atoms */
365             qq20             = _mm_mul_ps(iq2,jq0);
366
367             /* Calculate table index by multiplying r with table scale and truncate to integer */
368             rt               = _mm_mul_ps(r20,vftabscale);
369             vfitab           = _mm_cvttps_epi32(rt);
370 #ifdef __XOP__
371             vfeps            = _mm_frcz_ps(rt);
372 #else
373             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
374 #endif
375             twovfeps         = _mm_add_ps(vfeps,vfeps);
376             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
377
378             /* CUBIC SPLINE TABLE ELECTROSTATICS */
379             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
380             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
381             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
382             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
383             _MM_TRANSPOSE4_PS(Y,F,G,H);
384             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
385             VV               = _mm_macc_ps(vfeps,Fp,Y);
386             velec            = _mm_mul_ps(qq20,VV);
387             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
388             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
389
390             /* Update potential sum for this i atom from the interaction with this j atom. */
391             velecsum         = _mm_add_ps(velecsum,velec);
392
393             fscal            = felec;
394
395              /* Update vectorial force */
396             fix2             = _mm_macc_ps(dx20,fscal,fix2);
397             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
398             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
399
400             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
401             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
402             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
403
404             /**************************
405              * CALCULATE INTERACTIONS *
406              **************************/
407
408             r30              = _mm_mul_ps(rsq30,rinv30);
409
410             /* Compute parameters for interactions between i and j atoms */
411             qq30             = _mm_mul_ps(iq3,jq0);
412
413             /* Calculate table index by multiplying r with table scale and truncate to integer */
414             rt               = _mm_mul_ps(r30,vftabscale);
415             vfitab           = _mm_cvttps_epi32(rt);
416 #ifdef __XOP__
417             vfeps            = _mm_frcz_ps(rt);
418 #else
419             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
420 #endif
421             twovfeps         = _mm_add_ps(vfeps,vfeps);
422             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
423
424             /* CUBIC SPLINE TABLE ELECTROSTATICS */
425             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
426             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
427             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
428             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
429             _MM_TRANSPOSE4_PS(Y,F,G,H);
430             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
431             VV               = _mm_macc_ps(vfeps,Fp,Y);
432             velec            = _mm_mul_ps(qq30,VV);
433             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
434             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
435
436             /* Update potential sum for this i atom from the interaction with this j atom. */
437             velecsum         = _mm_add_ps(velecsum,velec);
438
439             fscal            = felec;
440
441              /* Update vectorial force */
442             fix3             = _mm_macc_ps(dx30,fscal,fix3);
443             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
444             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
445
446             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
447             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
448             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
449
450             fjptrA             = f+j_coord_offsetA;
451             fjptrB             = f+j_coord_offsetB;
452             fjptrC             = f+j_coord_offsetC;
453             fjptrD             = f+j_coord_offsetD;
454
455             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
456
457             /* Inner loop uses 197 flops */
458         }
459
460         if(jidx<j_index_end)
461         {
462
463             /* Get j neighbor index, and coordinate index */
464             jnrlistA         = jjnr[jidx];
465             jnrlistB         = jjnr[jidx+1];
466             jnrlistC         = jjnr[jidx+2];
467             jnrlistD         = jjnr[jidx+3];
468             /* Sign of each element will be negative for non-real atoms.
469              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
470              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
471              */
472             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
473             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
474             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
475             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
476             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
477             j_coord_offsetA  = DIM*jnrA;
478             j_coord_offsetB  = DIM*jnrB;
479             j_coord_offsetC  = DIM*jnrC;
480             j_coord_offsetD  = DIM*jnrD;
481
482             /* load j atom coordinates */
483             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
484                                               x+j_coord_offsetC,x+j_coord_offsetD,
485                                               &jx0,&jy0,&jz0);
486
487             /* Calculate displacement vector */
488             dx00             = _mm_sub_ps(ix0,jx0);
489             dy00             = _mm_sub_ps(iy0,jy0);
490             dz00             = _mm_sub_ps(iz0,jz0);
491             dx10             = _mm_sub_ps(ix1,jx0);
492             dy10             = _mm_sub_ps(iy1,jy0);
493             dz10             = _mm_sub_ps(iz1,jz0);
494             dx20             = _mm_sub_ps(ix2,jx0);
495             dy20             = _mm_sub_ps(iy2,jy0);
496             dz20             = _mm_sub_ps(iz2,jz0);
497             dx30             = _mm_sub_ps(ix3,jx0);
498             dy30             = _mm_sub_ps(iy3,jy0);
499             dz30             = _mm_sub_ps(iz3,jz0);
500
501             /* Calculate squared distance and things based on it */
502             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
503             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
504             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
505             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
506
507             rinv00           = gmx_mm_invsqrt_ps(rsq00);
508             rinv10           = gmx_mm_invsqrt_ps(rsq10);
509             rinv20           = gmx_mm_invsqrt_ps(rsq20);
510             rinv30           = gmx_mm_invsqrt_ps(rsq30);
511
512             /* Load parameters for j particles */
513             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
514                                                               charge+jnrC+0,charge+jnrD+0);
515             vdwjidx0A        = 2*vdwtype[jnrA+0];
516             vdwjidx0B        = 2*vdwtype[jnrB+0];
517             vdwjidx0C        = 2*vdwtype[jnrC+0];
518             vdwjidx0D        = 2*vdwtype[jnrD+0];
519
520             fjx0             = _mm_setzero_ps();
521             fjy0             = _mm_setzero_ps();
522             fjz0             = _mm_setzero_ps();
523
524             /**************************
525              * CALCULATE INTERACTIONS *
526              **************************/
527
528             r00              = _mm_mul_ps(rsq00,rinv00);
529             r00              = _mm_andnot_ps(dummy_mask,r00);
530
531             /* Compute parameters for interactions between i and j atoms */
532             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
533                                          vdwparam+vdwioffset0+vdwjidx0B,
534                                          vdwparam+vdwioffset0+vdwjidx0C,
535                                          vdwparam+vdwioffset0+vdwjidx0D,
536                                          &c6_00,&c12_00);
537
538             /* Calculate table index by multiplying r with table scale and truncate to integer */
539             rt               = _mm_mul_ps(r00,vftabscale);
540             vfitab           = _mm_cvttps_epi32(rt);
541 #ifdef __XOP__
542             vfeps            = _mm_frcz_ps(rt);
543 #else
544             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
545 #endif
546             twovfeps         = _mm_add_ps(vfeps,vfeps);
547             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
548
549             /* CUBIC SPLINE TABLE DISPERSION */
550             vfitab           = _mm_add_epi32(vfitab,ifour);
551             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
552             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
553             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
554             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
555             _MM_TRANSPOSE4_PS(Y,F,G,H);
556             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
557             VV               = _mm_macc_ps(vfeps,Fp,Y);
558             vvdw6            = _mm_mul_ps(c6_00,VV);
559             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
560             fvdw6            = _mm_mul_ps(c6_00,FF);
561
562             /* CUBIC SPLINE TABLE REPULSION */
563             vfitab           = _mm_add_epi32(vfitab,ifour);
564             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
565             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
566             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
567             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
568             _MM_TRANSPOSE4_PS(Y,F,G,H);
569             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
570             VV               = _mm_macc_ps(vfeps,Fp,Y);
571             vvdw12           = _mm_mul_ps(c12_00,VV);
572             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
573             fvdw12           = _mm_mul_ps(c12_00,FF);
574             vvdw             = _mm_add_ps(vvdw12,vvdw6);
575             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
576
577             /* Update potential sum for this i atom from the interaction with this j atom. */
578             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
579             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
580
581             fscal            = fvdw;
582
583             fscal            = _mm_andnot_ps(dummy_mask,fscal);
584
585              /* Update vectorial force */
586             fix0             = _mm_macc_ps(dx00,fscal,fix0);
587             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
588             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
589
590             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
591             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
592             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
593
594             /**************************
595              * CALCULATE INTERACTIONS *
596              **************************/
597
598             r10              = _mm_mul_ps(rsq10,rinv10);
599             r10              = _mm_andnot_ps(dummy_mask,r10);
600
601             /* Compute parameters for interactions between i and j atoms */
602             qq10             = _mm_mul_ps(iq1,jq0);
603
604             /* Calculate table index by multiplying r with table scale and truncate to integer */
605             rt               = _mm_mul_ps(r10,vftabscale);
606             vfitab           = _mm_cvttps_epi32(rt);
607 #ifdef __XOP__
608             vfeps            = _mm_frcz_ps(rt);
609 #else
610             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
611 #endif
612             twovfeps         = _mm_add_ps(vfeps,vfeps);
613             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
614
615             /* CUBIC SPLINE TABLE ELECTROSTATICS */
616             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
617             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
618             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
619             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
620             _MM_TRANSPOSE4_PS(Y,F,G,H);
621             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
622             VV               = _mm_macc_ps(vfeps,Fp,Y);
623             velec            = _mm_mul_ps(qq10,VV);
624             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
625             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
626
627             /* Update potential sum for this i atom from the interaction with this j atom. */
628             velec            = _mm_andnot_ps(dummy_mask,velec);
629             velecsum         = _mm_add_ps(velecsum,velec);
630
631             fscal            = felec;
632
633             fscal            = _mm_andnot_ps(dummy_mask,fscal);
634
635              /* Update vectorial force */
636             fix1             = _mm_macc_ps(dx10,fscal,fix1);
637             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
638             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
639
640             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
641             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
642             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
643
644             /**************************
645              * CALCULATE INTERACTIONS *
646              **************************/
647
648             r20              = _mm_mul_ps(rsq20,rinv20);
649             r20              = _mm_andnot_ps(dummy_mask,r20);
650
651             /* Compute parameters for interactions between i and j atoms */
652             qq20             = _mm_mul_ps(iq2,jq0);
653
654             /* Calculate table index by multiplying r with table scale and truncate to integer */
655             rt               = _mm_mul_ps(r20,vftabscale);
656             vfitab           = _mm_cvttps_epi32(rt);
657 #ifdef __XOP__
658             vfeps            = _mm_frcz_ps(rt);
659 #else
660             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
661 #endif
662             twovfeps         = _mm_add_ps(vfeps,vfeps);
663             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
664
665             /* CUBIC SPLINE TABLE ELECTROSTATICS */
666             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
667             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
668             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
669             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
670             _MM_TRANSPOSE4_PS(Y,F,G,H);
671             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
672             VV               = _mm_macc_ps(vfeps,Fp,Y);
673             velec            = _mm_mul_ps(qq20,VV);
674             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
675             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
676
677             /* Update potential sum for this i atom from the interaction with this j atom. */
678             velec            = _mm_andnot_ps(dummy_mask,velec);
679             velecsum         = _mm_add_ps(velecsum,velec);
680
681             fscal            = felec;
682
683             fscal            = _mm_andnot_ps(dummy_mask,fscal);
684
685              /* Update vectorial force */
686             fix2             = _mm_macc_ps(dx20,fscal,fix2);
687             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
688             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
689
690             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
691             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
692             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
693
694             /**************************
695              * CALCULATE INTERACTIONS *
696              **************************/
697
698             r30              = _mm_mul_ps(rsq30,rinv30);
699             r30              = _mm_andnot_ps(dummy_mask,r30);
700
701             /* Compute parameters for interactions between i and j atoms */
702             qq30             = _mm_mul_ps(iq3,jq0);
703
704             /* Calculate table index by multiplying r with table scale and truncate to integer */
705             rt               = _mm_mul_ps(r30,vftabscale);
706             vfitab           = _mm_cvttps_epi32(rt);
707 #ifdef __XOP__
708             vfeps            = _mm_frcz_ps(rt);
709 #else
710             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
711 #endif
712             twovfeps         = _mm_add_ps(vfeps,vfeps);
713             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
714
715             /* CUBIC SPLINE TABLE ELECTROSTATICS */
716             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
717             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
718             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
719             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
720             _MM_TRANSPOSE4_PS(Y,F,G,H);
721             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
722             VV               = _mm_macc_ps(vfeps,Fp,Y);
723             velec            = _mm_mul_ps(qq30,VV);
724             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
725             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
726
727             /* Update potential sum for this i atom from the interaction with this j atom. */
728             velec            = _mm_andnot_ps(dummy_mask,velec);
729             velecsum         = _mm_add_ps(velecsum,velec);
730
731             fscal            = felec;
732
733             fscal            = _mm_andnot_ps(dummy_mask,fscal);
734
735              /* Update vectorial force */
736             fix3             = _mm_macc_ps(dx30,fscal,fix3);
737             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
738             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
739
740             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
741             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
742             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
743
744             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
745             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
746             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
747             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
748
749             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
750
751             /* Inner loop uses 201 flops */
752         }
753
754         /* End of innermost loop */
755
756         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
757                                               f+i_coord_offset,fshift+i_shift_offset);
758
759         ggid                        = gid[iidx];
760         /* Update potential energies */
761         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
762         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
763
764         /* Increment number of inner iterations */
765         inneriter                  += j_index_end - j_index_start;
766
767         /* Outer loop uses 26 flops */
768     }
769
770     /* Increment number of outer iterations */
771     outeriter        += nri;
772
773     /* Update outer/inner flops */
774
775     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*201);
776 }
777 /*
778  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_128_fma_single
779  * Electrostatics interaction: CubicSplineTable
780  * VdW interaction:            CubicSplineTable
781  * Geometry:                   Water4-Particle
782  * Calculate force/pot:        Force
783  */
784 void
785 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_128_fma_single
786                     (t_nblist                    * gmx_restrict       nlist,
787                      rvec                        * gmx_restrict          xx,
788                      rvec                        * gmx_restrict          ff,
789                      t_forcerec                  * gmx_restrict          fr,
790                      t_mdatoms                   * gmx_restrict     mdatoms,
791                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
792                      t_nrnb                      * gmx_restrict        nrnb)
793 {
794     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
795      * just 0 for non-waters.
796      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
797      * jnr indices corresponding to data put in the four positions in the SIMD register.
798      */
799     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
800     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
801     int              jnrA,jnrB,jnrC,jnrD;
802     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
803     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
804     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
805     real             rcutoff_scalar;
806     real             *shiftvec,*fshift,*x,*f;
807     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
808     real             scratch[4*DIM];
809     __m128           fscal,rcutoff,rcutoff2,jidxall;
810     int              vdwioffset0;
811     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
812     int              vdwioffset1;
813     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
814     int              vdwioffset2;
815     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
816     int              vdwioffset3;
817     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
818     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
819     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
820     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
821     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
822     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
823     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
824     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
825     real             *charge;
826     int              nvdwtype;
827     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
828     int              *vdwtype;
829     real             *vdwparam;
830     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
831     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
832     __m128i          vfitab;
833     __m128i          ifour       = _mm_set1_epi32(4);
834     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
835     real             *vftab;
836     __m128           dummy_mask,cutoff_mask;
837     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
838     __m128           one     = _mm_set1_ps(1.0);
839     __m128           two     = _mm_set1_ps(2.0);
840     x                = xx[0];
841     f                = ff[0];
842
843     nri              = nlist->nri;
844     iinr             = nlist->iinr;
845     jindex           = nlist->jindex;
846     jjnr             = nlist->jjnr;
847     shiftidx         = nlist->shift;
848     gid              = nlist->gid;
849     shiftvec         = fr->shift_vec[0];
850     fshift           = fr->fshift[0];
851     facel            = _mm_set1_ps(fr->epsfac);
852     charge           = mdatoms->chargeA;
853     nvdwtype         = fr->ntype;
854     vdwparam         = fr->nbfp;
855     vdwtype          = mdatoms->typeA;
856
857     vftab            = kernel_data->table_elec_vdw->data;
858     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
859
860     /* Setup water-specific parameters */
861     inr              = nlist->iinr[0];
862     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
863     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
864     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
865     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
866
867     /* Avoid stupid compiler warnings */
868     jnrA = jnrB = jnrC = jnrD = 0;
869     j_coord_offsetA = 0;
870     j_coord_offsetB = 0;
871     j_coord_offsetC = 0;
872     j_coord_offsetD = 0;
873
874     outeriter        = 0;
875     inneriter        = 0;
876
877     for(iidx=0;iidx<4*DIM;iidx++)
878     {
879         scratch[iidx] = 0.0;
880     }
881
882     /* Start outer loop over neighborlists */
883     for(iidx=0; iidx<nri; iidx++)
884     {
885         /* Load shift vector for this list */
886         i_shift_offset   = DIM*shiftidx[iidx];
887
888         /* Load limits for loop over neighbors */
889         j_index_start    = jindex[iidx];
890         j_index_end      = jindex[iidx+1];
891
892         /* Get outer coordinate index */
893         inr              = iinr[iidx];
894         i_coord_offset   = DIM*inr;
895
896         /* Load i particle coords and add shift vector */
897         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
898                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
899
900         fix0             = _mm_setzero_ps();
901         fiy0             = _mm_setzero_ps();
902         fiz0             = _mm_setzero_ps();
903         fix1             = _mm_setzero_ps();
904         fiy1             = _mm_setzero_ps();
905         fiz1             = _mm_setzero_ps();
906         fix2             = _mm_setzero_ps();
907         fiy2             = _mm_setzero_ps();
908         fiz2             = _mm_setzero_ps();
909         fix3             = _mm_setzero_ps();
910         fiy3             = _mm_setzero_ps();
911         fiz3             = _mm_setzero_ps();
912
913         /* Start inner kernel loop */
914         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
915         {
916
917             /* Get j neighbor index, and coordinate index */
918             jnrA             = jjnr[jidx];
919             jnrB             = jjnr[jidx+1];
920             jnrC             = jjnr[jidx+2];
921             jnrD             = jjnr[jidx+3];
922             j_coord_offsetA  = DIM*jnrA;
923             j_coord_offsetB  = DIM*jnrB;
924             j_coord_offsetC  = DIM*jnrC;
925             j_coord_offsetD  = DIM*jnrD;
926
927             /* load j atom coordinates */
928             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
929                                               x+j_coord_offsetC,x+j_coord_offsetD,
930                                               &jx0,&jy0,&jz0);
931
932             /* Calculate displacement vector */
933             dx00             = _mm_sub_ps(ix0,jx0);
934             dy00             = _mm_sub_ps(iy0,jy0);
935             dz00             = _mm_sub_ps(iz0,jz0);
936             dx10             = _mm_sub_ps(ix1,jx0);
937             dy10             = _mm_sub_ps(iy1,jy0);
938             dz10             = _mm_sub_ps(iz1,jz0);
939             dx20             = _mm_sub_ps(ix2,jx0);
940             dy20             = _mm_sub_ps(iy2,jy0);
941             dz20             = _mm_sub_ps(iz2,jz0);
942             dx30             = _mm_sub_ps(ix3,jx0);
943             dy30             = _mm_sub_ps(iy3,jy0);
944             dz30             = _mm_sub_ps(iz3,jz0);
945
946             /* Calculate squared distance and things based on it */
947             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
948             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
949             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
950             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
951
952             rinv00           = gmx_mm_invsqrt_ps(rsq00);
953             rinv10           = gmx_mm_invsqrt_ps(rsq10);
954             rinv20           = gmx_mm_invsqrt_ps(rsq20);
955             rinv30           = gmx_mm_invsqrt_ps(rsq30);
956
957             /* Load parameters for j particles */
958             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
959                                                               charge+jnrC+0,charge+jnrD+0);
960             vdwjidx0A        = 2*vdwtype[jnrA+0];
961             vdwjidx0B        = 2*vdwtype[jnrB+0];
962             vdwjidx0C        = 2*vdwtype[jnrC+0];
963             vdwjidx0D        = 2*vdwtype[jnrD+0];
964
965             fjx0             = _mm_setzero_ps();
966             fjy0             = _mm_setzero_ps();
967             fjz0             = _mm_setzero_ps();
968
969             /**************************
970              * CALCULATE INTERACTIONS *
971              **************************/
972
973             r00              = _mm_mul_ps(rsq00,rinv00);
974
975             /* Compute parameters for interactions between i and j atoms */
976             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
977                                          vdwparam+vdwioffset0+vdwjidx0B,
978                                          vdwparam+vdwioffset0+vdwjidx0C,
979                                          vdwparam+vdwioffset0+vdwjidx0D,
980                                          &c6_00,&c12_00);
981
982             /* Calculate table index by multiplying r with table scale and truncate to integer */
983             rt               = _mm_mul_ps(r00,vftabscale);
984             vfitab           = _mm_cvttps_epi32(rt);
985 #ifdef __XOP__
986             vfeps            = _mm_frcz_ps(rt);
987 #else
988             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
989 #endif
990             twovfeps         = _mm_add_ps(vfeps,vfeps);
991             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
992
993             /* CUBIC SPLINE TABLE DISPERSION */
994             vfitab           = _mm_add_epi32(vfitab,ifour);
995             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
996             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
997             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
998             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
999             _MM_TRANSPOSE4_PS(Y,F,G,H);
1000             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1001             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1002             fvdw6            = _mm_mul_ps(c6_00,FF);
1003
1004             /* CUBIC SPLINE TABLE REPULSION */
1005             vfitab           = _mm_add_epi32(vfitab,ifour);
1006             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1007             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1008             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1009             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1010             _MM_TRANSPOSE4_PS(Y,F,G,H);
1011             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1012             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1013             fvdw12           = _mm_mul_ps(c12_00,FF);
1014             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1015
1016             fscal            = fvdw;
1017
1018              /* Update vectorial force */
1019             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1020             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1021             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1022
1023             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1024             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1025             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1026
1027             /**************************
1028              * CALCULATE INTERACTIONS *
1029              **************************/
1030
1031             r10              = _mm_mul_ps(rsq10,rinv10);
1032
1033             /* Compute parameters for interactions between i and j atoms */
1034             qq10             = _mm_mul_ps(iq1,jq0);
1035
1036             /* Calculate table index by multiplying r with table scale and truncate to integer */
1037             rt               = _mm_mul_ps(r10,vftabscale);
1038             vfitab           = _mm_cvttps_epi32(rt);
1039 #ifdef __XOP__
1040             vfeps            = _mm_frcz_ps(rt);
1041 #else
1042             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1043 #endif
1044             twovfeps         = _mm_add_ps(vfeps,vfeps);
1045             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1046
1047             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1048             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1049             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1050             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1051             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1052             _MM_TRANSPOSE4_PS(Y,F,G,H);
1053             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1054             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1055             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1056
1057             fscal            = felec;
1058
1059              /* Update vectorial force */
1060             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1061             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1062             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1063
1064             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1065             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1066             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1067
1068             /**************************
1069              * CALCULATE INTERACTIONS *
1070              **************************/
1071
1072             r20              = _mm_mul_ps(rsq20,rinv20);
1073
1074             /* Compute parameters for interactions between i and j atoms */
1075             qq20             = _mm_mul_ps(iq2,jq0);
1076
1077             /* Calculate table index by multiplying r with table scale and truncate to integer */
1078             rt               = _mm_mul_ps(r20,vftabscale);
1079             vfitab           = _mm_cvttps_epi32(rt);
1080 #ifdef __XOP__
1081             vfeps            = _mm_frcz_ps(rt);
1082 #else
1083             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1084 #endif
1085             twovfeps         = _mm_add_ps(vfeps,vfeps);
1086             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1087
1088             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1089             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1090             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1091             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1092             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1093             _MM_TRANSPOSE4_PS(Y,F,G,H);
1094             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1095             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1096             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1097
1098             fscal            = felec;
1099
1100              /* Update vectorial force */
1101             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1102             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1103             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1104
1105             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1106             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1107             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1108
1109             /**************************
1110              * CALCULATE INTERACTIONS *
1111              **************************/
1112
1113             r30              = _mm_mul_ps(rsq30,rinv30);
1114
1115             /* Compute parameters for interactions between i and j atoms */
1116             qq30             = _mm_mul_ps(iq3,jq0);
1117
1118             /* Calculate table index by multiplying r with table scale and truncate to integer */
1119             rt               = _mm_mul_ps(r30,vftabscale);
1120             vfitab           = _mm_cvttps_epi32(rt);
1121 #ifdef __XOP__
1122             vfeps            = _mm_frcz_ps(rt);
1123 #else
1124             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1125 #endif
1126             twovfeps         = _mm_add_ps(vfeps,vfeps);
1127             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1128
1129             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1130             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1131             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1132             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1133             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1134             _MM_TRANSPOSE4_PS(Y,F,G,H);
1135             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1136             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1137             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1138
1139             fscal            = felec;
1140
1141              /* Update vectorial force */
1142             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1143             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1144             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1145
1146             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1147             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1148             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1149
1150             fjptrA             = f+j_coord_offsetA;
1151             fjptrB             = f+j_coord_offsetB;
1152             fjptrC             = f+j_coord_offsetC;
1153             fjptrD             = f+j_coord_offsetD;
1154
1155             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1156
1157             /* Inner loop uses 177 flops */
1158         }
1159
1160         if(jidx<j_index_end)
1161         {
1162
1163             /* Get j neighbor index, and coordinate index */
1164             jnrlistA         = jjnr[jidx];
1165             jnrlistB         = jjnr[jidx+1];
1166             jnrlistC         = jjnr[jidx+2];
1167             jnrlistD         = jjnr[jidx+3];
1168             /* Sign of each element will be negative for non-real atoms.
1169              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1170              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1171              */
1172             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1173             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1174             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1175             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1176             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1177             j_coord_offsetA  = DIM*jnrA;
1178             j_coord_offsetB  = DIM*jnrB;
1179             j_coord_offsetC  = DIM*jnrC;
1180             j_coord_offsetD  = DIM*jnrD;
1181
1182             /* load j atom coordinates */
1183             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1184                                               x+j_coord_offsetC,x+j_coord_offsetD,
1185                                               &jx0,&jy0,&jz0);
1186
1187             /* Calculate displacement vector */
1188             dx00             = _mm_sub_ps(ix0,jx0);
1189             dy00             = _mm_sub_ps(iy0,jy0);
1190             dz00             = _mm_sub_ps(iz0,jz0);
1191             dx10             = _mm_sub_ps(ix1,jx0);
1192             dy10             = _mm_sub_ps(iy1,jy0);
1193             dz10             = _mm_sub_ps(iz1,jz0);
1194             dx20             = _mm_sub_ps(ix2,jx0);
1195             dy20             = _mm_sub_ps(iy2,jy0);
1196             dz20             = _mm_sub_ps(iz2,jz0);
1197             dx30             = _mm_sub_ps(ix3,jx0);
1198             dy30             = _mm_sub_ps(iy3,jy0);
1199             dz30             = _mm_sub_ps(iz3,jz0);
1200
1201             /* Calculate squared distance and things based on it */
1202             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1203             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1204             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1205             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1206
1207             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1208             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1209             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1210             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1211
1212             /* Load parameters for j particles */
1213             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1214                                                               charge+jnrC+0,charge+jnrD+0);
1215             vdwjidx0A        = 2*vdwtype[jnrA+0];
1216             vdwjidx0B        = 2*vdwtype[jnrB+0];
1217             vdwjidx0C        = 2*vdwtype[jnrC+0];
1218             vdwjidx0D        = 2*vdwtype[jnrD+0];
1219
1220             fjx0             = _mm_setzero_ps();
1221             fjy0             = _mm_setzero_ps();
1222             fjz0             = _mm_setzero_ps();
1223
1224             /**************************
1225              * CALCULATE INTERACTIONS *
1226              **************************/
1227
1228             r00              = _mm_mul_ps(rsq00,rinv00);
1229             r00              = _mm_andnot_ps(dummy_mask,r00);
1230
1231             /* Compute parameters for interactions between i and j atoms */
1232             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1233                                          vdwparam+vdwioffset0+vdwjidx0B,
1234                                          vdwparam+vdwioffset0+vdwjidx0C,
1235                                          vdwparam+vdwioffset0+vdwjidx0D,
1236                                          &c6_00,&c12_00);
1237
1238             /* Calculate table index by multiplying r with table scale and truncate to integer */
1239             rt               = _mm_mul_ps(r00,vftabscale);
1240             vfitab           = _mm_cvttps_epi32(rt);
1241 #ifdef __XOP__
1242             vfeps            = _mm_frcz_ps(rt);
1243 #else
1244             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1245 #endif
1246             twovfeps         = _mm_add_ps(vfeps,vfeps);
1247             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1248
1249             /* CUBIC SPLINE TABLE DISPERSION */
1250             vfitab           = _mm_add_epi32(vfitab,ifour);
1251             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1252             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1253             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1254             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1255             _MM_TRANSPOSE4_PS(Y,F,G,H);
1256             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1257             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1258             fvdw6            = _mm_mul_ps(c6_00,FF);
1259
1260             /* CUBIC SPLINE TABLE REPULSION */
1261             vfitab           = _mm_add_epi32(vfitab,ifour);
1262             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1263             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1264             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1265             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1266             _MM_TRANSPOSE4_PS(Y,F,G,H);
1267             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1268             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1269             fvdw12           = _mm_mul_ps(c12_00,FF);
1270             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1271
1272             fscal            = fvdw;
1273
1274             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1275
1276              /* Update vectorial force */
1277             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1278             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1279             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1280
1281             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1282             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1283             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1284
1285             /**************************
1286              * CALCULATE INTERACTIONS *
1287              **************************/
1288
1289             r10              = _mm_mul_ps(rsq10,rinv10);
1290             r10              = _mm_andnot_ps(dummy_mask,r10);
1291
1292             /* Compute parameters for interactions between i and j atoms */
1293             qq10             = _mm_mul_ps(iq1,jq0);
1294
1295             /* Calculate table index by multiplying r with table scale and truncate to integer */
1296             rt               = _mm_mul_ps(r10,vftabscale);
1297             vfitab           = _mm_cvttps_epi32(rt);
1298 #ifdef __XOP__
1299             vfeps            = _mm_frcz_ps(rt);
1300 #else
1301             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1302 #endif
1303             twovfeps         = _mm_add_ps(vfeps,vfeps);
1304             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1305
1306             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1307             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1308             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1309             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1310             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1311             _MM_TRANSPOSE4_PS(Y,F,G,H);
1312             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1313             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1314             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1315
1316             fscal            = felec;
1317
1318             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1319
1320              /* Update vectorial force */
1321             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1322             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1323             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1324
1325             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1326             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1327             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1328
1329             /**************************
1330              * CALCULATE INTERACTIONS *
1331              **************************/
1332
1333             r20              = _mm_mul_ps(rsq20,rinv20);
1334             r20              = _mm_andnot_ps(dummy_mask,r20);
1335
1336             /* Compute parameters for interactions between i and j atoms */
1337             qq20             = _mm_mul_ps(iq2,jq0);
1338
1339             /* Calculate table index by multiplying r with table scale and truncate to integer */
1340             rt               = _mm_mul_ps(r20,vftabscale);
1341             vfitab           = _mm_cvttps_epi32(rt);
1342 #ifdef __XOP__
1343             vfeps            = _mm_frcz_ps(rt);
1344 #else
1345             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1346 #endif
1347             twovfeps         = _mm_add_ps(vfeps,vfeps);
1348             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1349
1350             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1351             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1352             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1353             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1354             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1355             _MM_TRANSPOSE4_PS(Y,F,G,H);
1356             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1357             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1358             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1359
1360             fscal            = felec;
1361
1362             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1363
1364              /* Update vectorial force */
1365             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1366             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1367             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1368
1369             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1370             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1371             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1372
1373             /**************************
1374              * CALCULATE INTERACTIONS *
1375              **************************/
1376
1377             r30              = _mm_mul_ps(rsq30,rinv30);
1378             r30              = _mm_andnot_ps(dummy_mask,r30);
1379
1380             /* Compute parameters for interactions between i and j atoms */
1381             qq30             = _mm_mul_ps(iq3,jq0);
1382
1383             /* Calculate table index by multiplying r with table scale and truncate to integer */
1384             rt               = _mm_mul_ps(r30,vftabscale);
1385             vfitab           = _mm_cvttps_epi32(rt);
1386 #ifdef __XOP__
1387             vfeps            = _mm_frcz_ps(rt);
1388 #else
1389             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1390 #endif
1391             twovfeps         = _mm_add_ps(vfeps,vfeps);
1392             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1393
1394             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1395             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1396             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1397             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1398             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1399             _MM_TRANSPOSE4_PS(Y,F,G,H);
1400             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1401             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1402             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1403
1404             fscal            = felec;
1405
1406             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1407
1408              /* Update vectorial force */
1409             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1410             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1411             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1412
1413             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1414             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1415             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1416
1417             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1418             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1419             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1420             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1421
1422             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1423
1424             /* Inner loop uses 181 flops */
1425         }
1426
1427         /* End of innermost loop */
1428
1429         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1430                                               f+i_coord_offset,fshift+i_shift_offset);
1431
1432         /* Increment number of inner iterations */
1433         inneriter                  += j_index_end - j_index_start;
1434
1435         /* Outer loop uses 24 flops */
1436     }
1437
1438     /* Increment number of outer iterations */
1439     outeriter        += nri;
1440
1441     /* Update outer/inner flops */
1442
1443     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*181);
1444 }