Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwioffset3;
92     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
106     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
107     __m128i          vfitab;
108     __m128i          ifour       = _mm_set1_epi32(4);
109     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
110     real             *vftab;
111     __m128           dummy_mask,cutoff_mask;
112     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
113     __m128           one     = _mm_set1_ps(1.0);
114     __m128           two     = _mm_set1_ps(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_ps(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_elec_vdw->data;
133     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
138     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
139     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
173                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
174
175         fix0             = _mm_setzero_ps();
176         fiy0             = _mm_setzero_ps();
177         fiz0             = _mm_setzero_ps();
178         fix1             = _mm_setzero_ps();
179         fiy1             = _mm_setzero_ps();
180         fiz1             = _mm_setzero_ps();
181         fix2             = _mm_setzero_ps();
182         fiy2             = _mm_setzero_ps();
183         fiz2             = _mm_setzero_ps();
184         fix3             = _mm_setzero_ps();
185         fiy3             = _mm_setzero_ps();
186         fiz3             = _mm_setzero_ps();
187
188         /* Reset potential sums */
189         velecsum         = _mm_setzero_ps();
190         vvdwsum          = _mm_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203             j_coord_offsetC  = DIM*jnrC;
204             j_coord_offsetD  = DIM*jnrD;
205
206             /* load j atom coordinates */
207             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               x+j_coord_offsetC,x+j_coord_offsetD,
209                                               &jx0,&jy0,&jz0);
210
211             /* Calculate displacement vector */
212             dx00             = _mm_sub_ps(ix0,jx0);
213             dy00             = _mm_sub_ps(iy0,jy0);
214             dz00             = _mm_sub_ps(iz0,jz0);
215             dx10             = _mm_sub_ps(ix1,jx0);
216             dy10             = _mm_sub_ps(iy1,jy0);
217             dz10             = _mm_sub_ps(iz1,jz0);
218             dx20             = _mm_sub_ps(ix2,jx0);
219             dy20             = _mm_sub_ps(iy2,jy0);
220             dz20             = _mm_sub_ps(iz2,jz0);
221             dx30             = _mm_sub_ps(ix3,jx0);
222             dy30             = _mm_sub_ps(iy3,jy0);
223             dz30             = _mm_sub_ps(iz3,jz0);
224
225             /* Calculate squared distance and things based on it */
226             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
227             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
228             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
229             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
230
231             rinv00           = gmx_mm_invsqrt_ps(rsq00);
232             rinv10           = gmx_mm_invsqrt_ps(rsq10);
233             rinv20           = gmx_mm_invsqrt_ps(rsq20);
234             rinv30           = gmx_mm_invsqrt_ps(rsq30);
235
236             /* Load parameters for j particles */
237             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
238                                                               charge+jnrC+0,charge+jnrD+0);
239             vdwjidx0A        = 2*vdwtype[jnrA+0];
240             vdwjidx0B        = 2*vdwtype[jnrB+0];
241             vdwjidx0C        = 2*vdwtype[jnrC+0];
242             vdwjidx0D        = 2*vdwtype[jnrD+0];
243
244             fjx0             = _mm_setzero_ps();
245             fjy0             = _mm_setzero_ps();
246             fjz0             = _mm_setzero_ps();
247
248             /**************************
249              * CALCULATE INTERACTIONS *
250              **************************/
251
252             r00              = _mm_mul_ps(rsq00,rinv00);
253
254             /* Compute parameters for interactions between i and j atoms */
255             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
256                                          vdwparam+vdwioffset0+vdwjidx0B,
257                                          vdwparam+vdwioffset0+vdwjidx0C,
258                                          vdwparam+vdwioffset0+vdwjidx0D,
259                                          &c6_00,&c12_00);
260
261             /* Calculate table index by multiplying r with table scale and truncate to integer */
262             rt               = _mm_mul_ps(r00,vftabscale);
263             vfitab           = _mm_cvttps_epi32(rt);
264 #ifdef __XOP__
265             vfeps            = _mm_frcz_ps(rt);
266 #else
267             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
268 #endif
269             twovfeps         = _mm_add_ps(vfeps,vfeps);
270             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
271
272             /* CUBIC SPLINE TABLE DISPERSION */
273             vfitab           = _mm_add_epi32(vfitab,ifour);
274             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
275             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
276             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
277             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
278             _MM_TRANSPOSE4_PS(Y,F,G,H);
279             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
280             VV               = _mm_macc_ps(vfeps,Fp,Y);
281             vvdw6            = _mm_mul_ps(c6_00,VV);
282             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
283             fvdw6            = _mm_mul_ps(c6_00,FF);
284
285             /* CUBIC SPLINE TABLE REPULSION */
286             vfitab           = _mm_add_epi32(vfitab,ifour);
287             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
288             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
289             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
290             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
291             _MM_TRANSPOSE4_PS(Y,F,G,H);
292             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
293             VV               = _mm_macc_ps(vfeps,Fp,Y);
294             vvdw12           = _mm_mul_ps(c12_00,VV);
295             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
296             fvdw12           = _mm_mul_ps(c12_00,FF);
297             vvdw             = _mm_add_ps(vvdw12,vvdw6);
298             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
302
303             fscal            = fvdw;
304
305              /* Update vectorial force */
306             fix0             = _mm_macc_ps(dx00,fscal,fix0);
307             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
308             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
309
310             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
311             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
312             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             r10              = _mm_mul_ps(rsq10,rinv10);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq10             = _mm_mul_ps(iq1,jq0);
322
323             /* Calculate table index by multiplying r with table scale and truncate to integer */
324             rt               = _mm_mul_ps(r10,vftabscale);
325             vfitab           = _mm_cvttps_epi32(rt);
326 #ifdef __XOP__
327             vfeps            = _mm_frcz_ps(rt);
328 #else
329             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
330 #endif
331             twovfeps         = _mm_add_ps(vfeps,vfeps);
332             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
333
334             /* CUBIC SPLINE TABLE ELECTROSTATICS */
335             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
336             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
337             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
338             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
339             _MM_TRANSPOSE4_PS(Y,F,G,H);
340             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
341             VV               = _mm_macc_ps(vfeps,Fp,Y);
342             velec            = _mm_mul_ps(qq10,VV);
343             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
344             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velecsum         = _mm_add_ps(velecsum,velec);
348
349             fscal            = felec;
350
351              /* Update vectorial force */
352             fix1             = _mm_macc_ps(dx10,fscal,fix1);
353             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
354             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
355
356             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
357             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
358             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             r20              = _mm_mul_ps(rsq20,rinv20);
365
366             /* Compute parameters for interactions between i and j atoms */
367             qq20             = _mm_mul_ps(iq2,jq0);
368
369             /* Calculate table index by multiplying r with table scale and truncate to integer */
370             rt               = _mm_mul_ps(r20,vftabscale);
371             vfitab           = _mm_cvttps_epi32(rt);
372 #ifdef __XOP__
373             vfeps            = _mm_frcz_ps(rt);
374 #else
375             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
376 #endif
377             twovfeps         = _mm_add_ps(vfeps,vfeps);
378             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
379
380             /* CUBIC SPLINE TABLE ELECTROSTATICS */
381             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
382             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
383             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
384             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
385             _MM_TRANSPOSE4_PS(Y,F,G,H);
386             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
387             VV               = _mm_macc_ps(vfeps,Fp,Y);
388             velec            = _mm_mul_ps(qq20,VV);
389             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
390             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
391
392             /* Update potential sum for this i atom from the interaction with this j atom. */
393             velecsum         = _mm_add_ps(velecsum,velec);
394
395             fscal            = felec;
396
397              /* Update vectorial force */
398             fix2             = _mm_macc_ps(dx20,fscal,fix2);
399             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
400             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
401
402             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
403             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
404             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
405
406             /**************************
407              * CALCULATE INTERACTIONS *
408              **************************/
409
410             r30              = _mm_mul_ps(rsq30,rinv30);
411
412             /* Compute parameters for interactions between i and j atoms */
413             qq30             = _mm_mul_ps(iq3,jq0);
414
415             /* Calculate table index by multiplying r with table scale and truncate to integer */
416             rt               = _mm_mul_ps(r30,vftabscale);
417             vfitab           = _mm_cvttps_epi32(rt);
418 #ifdef __XOP__
419             vfeps            = _mm_frcz_ps(rt);
420 #else
421             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
422 #endif
423             twovfeps         = _mm_add_ps(vfeps,vfeps);
424             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
425
426             /* CUBIC SPLINE TABLE ELECTROSTATICS */
427             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
428             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
429             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
430             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
431             _MM_TRANSPOSE4_PS(Y,F,G,H);
432             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
433             VV               = _mm_macc_ps(vfeps,Fp,Y);
434             velec            = _mm_mul_ps(qq30,VV);
435             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
436             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
437
438             /* Update potential sum for this i atom from the interaction with this j atom. */
439             velecsum         = _mm_add_ps(velecsum,velec);
440
441             fscal            = felec;
442
443              /* Update vectorial force */
444             fix3             = _mm_macc_ps(dx30,fscal,fix3);
445             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
446             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
447
448             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
449             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
450             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
451
452             fjptrA             = f+j_coord_offsetA;
453             fjptrB             = f+j_coord_offsetB;
454             fjptrC             = f+j_coord_offsetC;
455             fjptrD             = f+j_coord_offsetD;
456
457             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
458
459             /* Inner loop uses 197 flops */
460         }
461
462         if(jidx<j_index_end)
463         {
464
465             /* Get j neighbor index, and coordinate index */
466             jnrlistA         = jjnr[jidx];
467             jnrlistB         = jjnr[jidx+1];
468             jnrlistC         = jjnr[jidx+2];
469             jnrlistD         = jjnr[jidx+3];
470             /* Sign of each element will be negative for non-real atoms.
471              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
472              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
473              */
474             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
475             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
476             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
477             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
478             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
479             j_coord_offsetA  = DIM*jnrA;
480             j_coord_offsetB  = DIM*jnrB;
481             j_coord_offsetC  = DIM*jnrC;
482             j_coord_offsetD  = DIM*jnrD;
483
484             /* load j atom coordinates */
485             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
486                                               x+j_coord_offsetC,x+j_coord_offsetD,
487                                               &jx0,&jy0,&jz0);
488
489             /* Calculate displacement vector */
490             dx00             = _mm_sub_ps(ix0,jx0);
491             dy00             = _mm_sub_ps(iy0,jy0);
492             dz00             = _mm_sub_ps(iz0,jz0);
493             dx10             = _mm_sub_ps(ix1,jx0);
494             dy10             = _mm_sub_ps(iy1,jy0);
495             dz10             = _mm_sub_ps(iz1,jz0);
496             dx20             = _mm_sub_ps(ix2,jx0);
497             dy20             = _mm_sub_ps(iy2,jy0);
498             dz20             = _mm_sub_ps(iz2,jz0);
499             dx30             = _mm_sub_ps(ix3,jx0);
500             dy30             = _mm_sub_ps(iy3,jy0);
501             dz30             = _mm_sub_ps(iz3,jz0);
502
503             /* Calculate squared distance and things based on it */
504             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
505             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
506             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
507             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
508
509             rinv00           = gmx_mm_invsqrt_ps(rsq00);
510             rinv10           = gmx_mm_invsqrt_ps(rsq10);
511             rinv20           = gmx_mm_invsqrt_ps(rsq20);
512             rinv30           = gmx_mm_invsqrt_ps(rsq30);
513
514             /* Load parameters for j particles */
515             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
516                                                               charge+jnrC+0,charge+jnrD+0);
517             vdwjidx0A        = 2*vdwtype[jnrA+0];
518             vdwjidx0B        = 2*vdwtype[jnrB+0];
519             vdwjidx0C        = 2*vdwtype[jnrC+0];
520             vdwjidx0D        = 2*vdwtype[jnrD+0];
521
522             fjx0             = _mm_setzero_ps();
523             fjy0             = _mm_setzero_ps();
524             fjz0             = _mm_setzero_ps();
525
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             r00              = _mm_mul_ps(rsq00,rinv00);
531             r00              = _mm_andnot_ps(dummy_mask,r00);
532
533             /* Compute parameters for interactions between i and j atoms */
534             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
535                                          vdwparam+vdwioffset0+vdwjidx0B,
536                                          vdwparam+vdwioffset0+vdwjidx0C,
537                                          vdwparam+vdwioffset0+vdwjidx0D,
538                                          &c6_00,&c12_00);
539
540             /* Calculate table index by multiplying r with table scale and truncate to integer */
541             rt               = _mm_mul_ps(r00,vftabscale);
542             vfitab           = _mm_cvttps_epi32(rt);
543 #ifdef __XOP__
544             vfeps            = _mm_frcz_ps(rt);
545 #else
546             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
547 #endif
548             twovfeps         = _mm_add_ps(vfeps,vfeps);
549             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
550
551             /* CUBIC SPLINE TABLE DISPERSION */
552             vfitab           = _mm_add_epi32(vfitab,ifour);
553             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
554             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
555             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
556             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
557             _MM_TRANSPOSE4_PS(Y,F,G,H);
558             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
559             VV               = _mm_macc_ps(vfeps,Fp,Y);
560             vvdw6            = _mm_mul_ps(c6_00,VV);
561             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
562             fvdw6            = _mm_mul_ps(c6_00,FF);
563
564             /* CUBIC SPLINE TABLE REPULSION */
565             vfitab           = _mm_add_epi32(vfitab,ifour);
566             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
567             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
568             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
569             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
570             _MM_TRANSPOSE4_PS(Y,F,G,H);
571             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
572             VV               = _mm_macc_ps(vfeps,Fp,Y);
573             vvdw12           = _mm_mul_ps(c12_00,VV);
574             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
575             fvdw12           = _mm_mul_ps(c12_00,FF);
576             vvdw             = _mm_add_ps(vvdw12,vvdw6);
577             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
578
579             /* Update potential sum for this i atom from the interaction with this j atom. */
580             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
581             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
582
583             fscal            = fvdw;
584
585             fscal            = _mm_andnot_ps(dummy_mask,fscal);
586
587              /* Update vectorial force */
588             fix0             = _mm_macc_ps(dx00,fscal,fix0);
589             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
590             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
591
592             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
593             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
594             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
595
596             /**************************
597              * CALCULATE INTERACTIONS *
598              **************************/
599
600             r10              = _mm_mul_ps(rsq10,rinv10);
601             r10              = _mm_andnot_ps(dummy_mask,r10);
602
603             /* Compute parameters for interactions between i and j atoms */
604             qq10             = _mm_mul_ps(iq1,jq0);
605
606             /* Calculate table index by multiplying r with table scale and truncate to integer */
607             rt               = _mm_mul_ps(r10,vftabscale);
608             vfitab           = _mm_cvttps_epi32(rt);
609 #ifdef __XOP__
610             vfeps            = _mm_frcz_ps(rt);
611 #else
612             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
613 #endif
614             twovfeps         = _mm_add_ps(vfeps,vfeps);
615             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
616
617             /* CUBIC SPLINE TABLE ELECTROSTATICS */
618             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
619             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
620             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
621             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
622             _MM_TRANSPOSE4_PS(Y,F,G,H);
623             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
624             VV               = _mm_macc_ps(vfeps,Fp,Y);
625             velec            = _mm_mul_ps(qq10,VV);
626             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
627             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
628
629             /* Update potential sum for this i atom from the interaction with this j atom. */
630             velec            = _mm_andnot_ps(dummy_mask,velec);
631             velecsum         = _mm_add_ps(velecsum,velec);
632
633             fscal            = felec;
634
635             fscal            = _mm_andnot_ps(dummy_mask,fscal);
636
637              /* Update vectorial force */
638             fix1             = _mm_macc_ps(dx10,fscal,fix1);
639             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
640             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
641
642             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
643             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
644             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
645
646             /**************************
647              * CALCULATE INTERACTIONS *
648              **************************/
649
650             r20              = _mm_mul_ps(rsq20,rinv20);
651             r20              = _mm_andnot_ps(dummy_mask,r20);
652
653             /* Compute parameters for interactions between i and j atoms */
654             qq20             = _mm_mul_ps(iq2,jq0);
655
656             /* Calculate table index by multiplying r with table scale and truncate to integer */
657             rt               = _mm_mul_ps(r20,vftabscale);
658             vfitab           = _mm_cvttps_epi32(rt);
659 #ifdef __XOP__
660             vfeps            = _mm_frcz_ps(rt);
661 #else
662             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
663 #endif
664             twovfeps         = _mm_add_ps(vfeps,vfeps);
665             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
666
667             /* CUBIC SPLINE TABLE ELECTROSTATICS */
668             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
669             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
670             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
671             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
672             _MM_TRANSPOSE4_PS(Y,F,G,H);
673             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
674             VV               = _mm_macc_ps(vfeps,Fp,Y);
675             velec            = _mm_mul_ps(qq20,VV);
676             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
677             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
678
679             /* Update potential sum for this i atom from the interaction with this j atom. */
680             velec            = _mm_andnot_ps(dummy_mask,velec);
681             velecsum         = _mm_add_ps(velecsum,velec);
682
683             fscal            = felec;
684
685             fscal            = _mm_andnot_ps(dummy_mask,fscal);
686
687              /* Update vectorial force */
688             fix2             = _mm_macc_ps(dx20,fscal,fix2);
689             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
690             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
691
692             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
693             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
694             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
695
696             /**************************
697              * CALCULATE INTERACTIONS *
698              **************************/
699
700             r30              = _mm_mul_ps(rsq30,rinv30);
701             r30              = _mm_andnot_ps(dummy_mask,r30);
702
703             /* Compute parameters for interactions between i and j atoms */
704             qq30             = _mm_mul_ps(iq3,jq0);
705
706             /* Calculate table index by multiplying r with table scale and truncate to integer */
707             rt               = _mm_mul_ps(r30,vftabscale);
708             vfitab           = _mm_cvttps_epi32(rt);
709 #ifdef __XOP__
710             vfeps            = _mm_frcz_ps(rt);
711 #else
712             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
713 #endif
714             twovfeps         = _mm_add_ps(vfeps,vfeps);
715             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
716
717             /* CUBIC SPLINE TABLE ELECTROSTATICS */
718             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
719             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
720             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
721             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
722             _MM_TRANSPOSE4_PS(Y,F,G,H);
723             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
724             VV               = _mm_macc_ps(vfeps,Fp,Y);
725             velec            = _mm_mul_ps(qq30,VV);
726             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
727             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
728
729             /* Update potential sum for this i atom from the interaction with this j atom. */
730             velec            = _mm_andnot_ps(dummy_mask,velec);
731             velecsum         = _mm_add_ps(velecsum,velec);
732
733             fscal            = felec;
734
735             fscal            = _mm_andnot_ps(dummy_mask,fscal);
736
737              /* Update vectorial force */
738             fix3             = _mm_macc_ps(dx30,fscal,fix3);
739             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
740             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
741
742             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
743             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
744             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
745
746             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
747             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
748             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
749             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
750
751             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
752
753             /* Inner loop uses 201 flops */
754         }
755
756         /* End of innermost loop */
757
758         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
759                                               f+i_coord_offset,fshift+i_shift_offset);
760
761         ggid                        = gid[iidx];
762         /* Update potential energies */
763         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
764         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
765
766         /* Increment number of inner iterations */
767         inneriter                  += j_index_end - j_index_start;
768
769         /* Outer loop uses 26 flops */
770     }
771
772     /* Increment number of outer iterations */
773     outeriter        += nri;
774
775     /* Update outer/inner flops */
776
777     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*201);
778 }
779 /*
780  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_128_fma_single
781  * Electrostatics interaction: CubicSplineTable
782  * VdW interaction:            CubicSplineTable
783  * Geometry:                   Water4-Particle
784  * Calculate force/pot:        Force
785  */
786 void
787 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_128_fma_single
788                     (t_nblist                    * gmx_restrict       nlist,
789                      rvec                        * gmx_restrict          xx,
790                      rvec                        * gmx_restrict          ff,
791                      t_forcerec                  * gmx_restrict          fr,
792                      t_mdatoms                   * gmx_restrict     mdatoms,
793                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
794                      t_nrnb                      * gmx_restrict        nrnb)
795 {
796     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
797      * just 0 for non-waters.
798      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
799      * jnr indices corresponding to data put in the four positions in the SIMD register.
800      */
801     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
802     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
803     int              jnrA,jnrB,jnrC,jnrD;
804     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
805     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
806     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
807     real             rcutoff_scalar;
808     real             *shiftvec,*fshift,*x,*f;
809     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
810     real             scratch[4*DIM];
811     __m128           fscal,rcutoff,rcutoff2,jidxall;
812     int              vdwioffset0;
813     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
814     int              vdwioffset1;
815     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
816     int              vdwioffset2;
817     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
818     int              vdwioffset3;
819     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
820     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
821     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
822     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
823     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
824     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
825     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
826     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
827     real             *charge;
828     int              nvdwtype;
829     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
830     int              *vdwtype;
831     real             *vdwparam;
832     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
833     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
834     __m128i          vfitab;
835     __m128i          ifour       = _mm_set1_epi32(4);
836     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
837     real             *vftab;
838     __m128           dummy_mask,cutoff_mask;
839     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
840     __m128           one     = _mm_set1_ps(1.0);
841     __m128           two     = _mm_set1_ps(2.0);
842     x                = xx[0];
843     f                = ff[0];
844
845     nri              = nlist->nri;
846     iinr             = nlist->iinr;
847     jindex           = nlist->jindex;
848     jjnr             = nlist->jjnr;
849     shiftidx         = nlist->shift;
850     gid              = nlist->gid;
851     shiftvec         = fr->shift_vec[0];
852     fshift           = fr->fshift[0];
853     facel            = _mm_set1_ps(fr->epsfac);
854     charge           = mdatoms->chargeA;
855     nvdwtype         = fr->ntype;
856     vdwparam         = fr->nbfp;
857     vdwtype          = mdatoms->typeA;
858
859     vftab            = kernel_data->table_elec_vdw->data;
860     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
861
862     /* Setup water-specific parameters */
863     inr              = nlist->iinr[0];
864     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
865     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
866     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
867     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
868
869     /* Avoid stupid compiler warnings */
870     jnrA = jnrB = jnrC = jnrD = 0;
871     j_coord_offsetA = 0;
872     j_coord_offsetB = 0;
873     j_coord_offsetC = 0;
874     j_coord_offsetD = 0;
875
876     outeriter        = 0;
877     inneriter        = 0;
878
879     for(iidx=0;iidx<4*DIM;iidx++)
880     {
881         scratch[iidx] = 0.0;
882     }
883
884     /* Start outer loop over neighborlists */
885     for(iidx=0; iidx<nri; iidx++)
886     {
887         /* Load shift vector for this list */
888         i_shift_offset   = DIM*shiftidx[iidx];
889
890         /* Load limits for loop over neighbors */
891         j_index_start    = jindex[iidx];
892         j_index_end      = jindex[iidx+1];
893
894         /* Get outer coordinate index */
895         inr              = iinr[iidx];
896         i_coord_offset   = DIM*inr;
897
898         /* Load i particle coords and add shift vector */
899         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
900                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
901
902         fix0             = _mm_setzero_ps();
903         fiy0             = _mm_setzero_ps();
904         fiz0             = _mm_setzero_ps();
905         fix1             = _mm_setzero_ps();
906         fiy1             = _mm_setzero_ps();
907         fiz1             = _mm_setzero_ps();
908         fix2             = _mm_setzero_ps();
909         fiy2             = _mm_setzero_ps();
910         fiz2             = _mm_setzero_ps();
911         fix3             = _mm_setzero_ps();
912         fiy3             = _mm_setzero_ps();
913         fiz3             = _mm_setzero_ps();
914
915         /* Start inner kernel loop */
916         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
917         {
918
919             /* Get j neighbor index, and coordinate index */
920             jnrA             = jjnr[jidx];
921             jnrB             = jjnr[jidx+1];
922             jnrC             = jjnr[jidx+2];
923             jnrD             = jjnr[jidx+3];
924             j_coord_offsetA  = DIM*jnrA;
925             j_coord_offsetB  = DIM*jnrB;
926             j_coord_offsetC  = DIM*jnrC;
927             j_coord_offsetD  = DIM*jnrD;
928
929             /* load j atom coordinates */
930             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
931                                               x+j_coord_offsetC,x+j_coord_offsetD,
932                                               &jx0,&jy0,&jz0);
933
934             /* Calculate displacement vector */
935             dx00             = _mm_sub_ps(ix0,jx0);
936             dy00             = _mm_sub_ps(iy0,jy0);
937             dz00             = _mm_sub_ps(iz0,jz0);
938             dx10             = _mm_sub_ps(ix1,jx0);
939             dy10             = _mm_sub_ps(iy1,jy0);
940             dz10             = _mm_sub_ps(iz1,jz0);
941             dx20             = _mm_sub_ps(ix2,jx0);
942             dy20             = _mm_sub_ps(iy2,jy0);
943             dz20             = _mm_sub_ps(iz2,jz0);
944             dx30             = _mm_sub_ps(ix3,jx0);
945             dy30             = _mm_sub_ps(iy3,jy0);
946             dz30             = _mm_sub_ps(iz3,jz0);
947
948             /* Calculate squared distance and things based on it */
949             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
950             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
951             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
952             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
953
954             rinv00           = gmx_mm_invsqrt_ps(rsq00);
955             rinv10           = gmx_mm_invsqrt_ps(rsq10);
956             rinv20           = gmx_mm_invsqrt_ps(rsq20);
957             rinv30           = gmx_mm_invsqrt_ps(rsq30);
958
959             /* Load parameters for j particles */
960             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
961                                                               charge+jnrC+0,charge+jnrD+0);
962             vdwjidx0A        = 2*vdwtype[jnrA+0];
963             vdwjidx0B        = 2*vdwtype[jnrB+0];
964             vdwjidx0C        = 2*vdwtype[jnrC+0];
965             vdwjidx0D        = 2*vdwtype[jnrD+0];
966
967             fjx0             = _mm_setzero_ps();
968             fjy0             = _mm_setzero_ps();
969             fjz0             = _mm_setzero_ps();
970
971             /**************************
972              * CALCULATE INTERACTIONS *
973              **************************/
974
975             r00              = _mm_mul_ps(rsq00,rinv00);
976
977             /* Compute parameters for interactions between i and j atoms */
978             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
979                                          vdwparam+vdwioffset0+vdwjidx0B,
980                                          vdwparam+vdwioffset0+vdwjidx0C,
981                                          vdwparam+vdwioffset0+vdwjidx0D,
982                                          &c6_00,&c12_00);
983
984             /* Calculate table index by multiplying r with table scale and truncate to integer */
985             rt               = _mm_mul_ps(r00,vftabscale);
986             vfitab           = _mm_cvttps_epi32(rt);
987 #ifdef __XOP__
988             vfeps            = _mm_frcz_ps(rt);
989 #else
990             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
991 #endif
992             twovfeps         = _mm_add_ps(vfeps,vfeps);
993             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
994
995             /* CUBIC SPLINE TABLE DISPERSION */
996             vfitab           = _mm_add_epi32(vfitab,ifour);
997             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
998             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
999             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1000             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1001             _MM_TRANSPOSE4_PS(Y,F,G,H);
1002             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1003             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1004             fvdw6            = _mm_mul_ps(c6_00,FF);
1005
1006             /* CUBIC SPLINE TABLE REPULSION */
1007             vfitab           = _mm_add_epi32(vfitab,ifour);
1008             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1009             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1010             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1011             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1012             _MM_TRANSPOSE4_PS(Y,F,G,H);
1013             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1014             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1015             fvdw12           = _mm_mul_ps(c12_00,FF);
1016             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1017
1018             fscal            = fvdw;
1019
1020              /* Update vectorial force */
1021             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1022             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1023             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1024
1025             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1026             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1027             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1028
1029             /**************************
1030              * CALCULATE INTERACTIONS *
1031              **************************/
1032
1033             r10              = _mm_mul_ps(rsq10,rinv10);
1034
1035             /* Compute parameters for interactions between i and j atoms */
1036             qq10             = _mm_mul_ps(iq1,jq0);
1037
1038             /* Calculate table index by multiplying r with table scale and truncate to integer */
1039             rt               = _mm_mul_ps(r10,vftabscale);
1040             vfitab           = _mm_cvttps_epi32(rt);
1041 #ifdef __XOP__
1042             vfeps            = _mm_frcz_ps(rt);
1043 #else
1044             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1045 #endif
1046             twovfeps         = _mm_add_ps(vfeps,vfeps);
1047             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1048
1049             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1050             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1051             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1052             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1053             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1054             _MM_TRANSPOSE4_PS(Y,F,G,H);
1055             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1056             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1057             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1058
1059             fscal            = felec;
1060
1061              /* Update vectorial force */
1062             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1063             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1064             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1065
1066             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1067             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1068             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1069
1070             /**************************
1071              * CALCULATE INTERACTIONS *
1072              **************************/
1073
1074             r20              = _mm_mul_ps(rsq20,rinv20);
1075
1076             /* Compute parameters for interactions between i and j atoms */
1077             qq20             = _mm_mul_ps(iq2,jq0);
1078
1079             /* Calculate table index by multiplying r with table scale and truncate to integer */
1080             rt               = _mm_mul_ps(r20,vftabscale);
1081             vfitab           = _mm_cvttps_epi32(rt);
1082 #ifdef __XOP__
1083             vfeps            = _mm_frcz_ps(rt);
1084 #else
1085             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1086 #endif
1087             twovfeps         = _mm_add_ps(vfeps,vfeps);
1088             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1089
1090             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1091             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1092             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1093             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1094             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1095             _MM_TRANSPOSE4_PS(Y,F,G,H);
1096             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1097             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1098             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1099
1100             fscal            = felec;
1101
1102              /* Update vectorial force */
1103             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1104             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1105             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1106
1107             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1108             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1109             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1110
1111             /**************************
1112              * CALCULATE INTERACTIONS *
1113              **************************/
1114
1115             r30              = _mm_mul_ps(rsq30,rinv30);
1116
1117             /* Compute parameters for interactions between i and j atoms */
1118             qq30             = _mm_mul_ps(iq3,jq0);
1119
1120             /* Calculate table index by multiplying r with table scale and truncate to integer */
1121             rt               = _mm_mul_ps(r30,vftabscale);
1122             vfitab           = _mm_cvttps_epi32(rt);
1123 #ifdef __XOP__
1124             vfeps            = _mm_frcz_ps(rt);
1125 #else
1126             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1127 #endif
1128             twovfeps         = _mm_add_ps(vfeps,vfeps);
1129             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1130
1131             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1132             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1133             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1134             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1135             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1136             _MM_TRANSPOSE4_PS(Y,F,G,H);
1137             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1138             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1139             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1140
1141             fscal            = felec;
1142
1143              /* Update vectorial force */
1144             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1145             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1146             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1147
1148             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1149             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1150             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1151
1152             fjptrA             = f+j_coord_offsetA;
1153             fjptrB             = f+j_coord_offsetB;
1154             fjptrC             = f+j_coord_offsetC;
1155             fjptrD             = f+j_coord_offsetD;
1156
1157             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1158
1159             /* Inner loop uses 177 flops */
1160         }
1161
1162         if(jidx<j_index_end)
1163         {
1164
1165             /* Get j neighbor index, and coordinate index */
1166             jnrlistA         = jjnr[jidx];
1167             jnrlistB         = jjnr[jidx+1];
1168             jnrlistC         = jjnr[jidx+2];
1169             jnrlistD         = jjnr[jidx+3];
1170             /* Sign of each element will be negative for non-real atoms.
1171              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1172              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1173              */
1174             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1175             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1176             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1177             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1178             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1179             j_coord_offsetA  = DIM*jnrA;
1180             j_coord_offsetB  = DIM*jnrB;
1181             j_coord_offsetC  = DIM*jnrC;
1182             j_coord_offsetD  = DIM*jnrD;
1183
1184             /* load j atom coordinates */
1185             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1186                                               x+j_coord_offsetC,x+j_coord_offsetD,
1187                                               &jx0,&jy0,&jz0);
1188
1189             /* Calculate displacement vector */
1190             dx00             = _mm_sub_ps(ix0,jx0);
1191             dy00             = _mm_sub_ps(iy0,jy0);
1192             dz00             = _mm_sub_ps(iz0,jz0);
1193             dx10             = _mm_sub_ps(ix1,jx0);
1194             dy10             = _mm_sub_ps(iy1,jy0);
1195             dz10             = _mm_sub_ps(iz1,jz0);
1196             dx20             = _mm_sub_ps(ix2,jx0);
1197             dy20             = _mm_sub_ps(iy2,jy0);
1198             dz20             = _mm_sub_ps(iz2,jz0);
1199             dx30             = _mm_sub_ps(ix3,jx0);
1200             dy30             = _mm_sub_ps(iy3,jy0);
1201             dz30             = _mm_sub_ps(iz3,jz0);
1202
1203             /* Calculate squared distance and things based on it */
1204             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1205             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1206             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1207             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1208
1209             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1210             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1211             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1212             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1213
1214             /* Load parameters for j particles */
1215             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1216                                                               charge+jnrC+0,charge+jnrD+0);
1217             vdwjidx0A        = 2*vdwtype[jnrA+0];
1218             vdwjidx0B        = 2*vdwtype[jnrB+0];
1219             vdwjidx0C        = 2*vdwtype[jnrC+0];
1220             vdwjidx0D        = 2*vdwtype[jnrD+0];
1221
1222             fjx0             = _mm_setzero_ps();
1223             fjy0             = _mm_setzero_ps();
1224             fjz0             = _mm_setzero_ps();
1225
1226             /**************************
1227              * CALCULATE INTERACTIONS *
1228              **************************/
1229
1230             r00              = _mm_mul_ps(rsq00,rinv00);
1231             r00              = _mm_andnot_ps(dummy_mask,r00);
1232
1233             /* Compute parameters for interactions between i and j atoms */
1234             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1235                                          vdwparam+vdwioffset0+vdwjidx0B,
1236                                          vdwparam+vdwioffset0+vdwjidx0C,
1237                                          vdwparam+vdwioffset0+vdwjidx0D,
1238                                          &c6_00,&c12_00);
1239
1240             /* Calculate table index by multiplying r with table scale and truncate to integer */
1241             rt               = _mm_mul_ps(r00,vftabscale);
1242             vfitab           = _mm_cvttps_epi32(rt);
1243 #ifdef __XOP__
1244             vfeps            = _mm_frcz_ps(rt);
1245 #else
1246             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1247 #endif
1248             twovfeps         = _mm_add_ps(vfeps,vfeps);
1249             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1250
1251             /* CUBIC SPLINE TABLE DISPERSION */
1252             vfitab           = _mm_add_epi32(vfitab,ifour);
1253             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1254             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1255             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1256             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1257             _MM_TRANSPOSE4_PS(Y,F,G,H);
1258             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1259             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1260             fvdw6            = _mm_mul_ps(c6_00,FF);
1261
1262             /* CUBIC SPLINE TABLE REPULSION */
1263             vfitab           = _mm_add_epi32(vfitab,ifour);
1264             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1265             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1266             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1267             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1268             _MM_TRANSPOSE4_PS(Y,F,G,H);
1269             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1270             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1271             fvdw12           = _mm_mul_ps(c12_00,FF);
1272             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1273
1274             fscal            = fvdw;
1275
1276             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1277
1278              /* Update vectorial force */
1279             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1280             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1281             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1282
1283             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1284             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1285             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1286
1287             /**************************
1288              * CALCULATE INTERACTIONS *
1289              **************************/
1290
1291             r10              = _mm_mul_ps(rsq10,rinv10);
1292             r10              = _mm_andnot_ps(dummy_mask,r10);
1293
1294             /* Compute parameters for interactions between i and j atoms */
1295             qq10             = _mm_mul_ps(iq1,jq0);
1296
1297             /* Calculate table index by multiplying r with table scale and truncate to integer */
1298             rt               = _mm_mul_ps(r10,vftabscale);
1299             vfitab           = _mm_cvttps_epi32(rt);
1300 #ifdef __XOP__
1301             vfeps            = _mm_frcz_ps(rt);
1302 #else
1303             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1304 #endif
1305             twovfeps         = _mm_add_ps(vfeps,vfeps);
1306             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1307
1308             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1309             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1310             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1311             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1312             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1313             _MM_TRANSPOSE4_PS(Y,F,G,H);
1314             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1315             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1316             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1317
1318             fscal            = felec;
1319
1320             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1321
1322              /* Update vectorial force */
1323             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1324             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1325             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1326
1327             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1328             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1329             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1330
1331             /**************************
1332              * CALCULATE INTERACTIONS *
1333              **************************/
1334
1335             r20              = _mm_mul_ps(rsq20,rinv20);
1336             r20              = _mm_andnot_ps(dummy_mask,r20);
1337
1338             /* Compute parameters for interactions between i and j atoms */
1339             qq20             = _mm_mul_ps(iq2,jq0);
1340
1341             /* Calculate table index by multiplying r with table scale and truncate to integer */
1342             rt               = _mm_mul_ps(r20,vftabscale);
1343             vfitab           = _mm_cvttps_epi32(rt);
1344 #ifdef __XOP__
1345             vfeps            = _mm_frcz_ps(rt);
1346 #else
1347             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1348 #endif
1349             twovfeps         = _mm_add_ps(vfeps,vfeps);
1350             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1351
1352             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1353             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1354             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1355             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1356             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1357             _MM_TRANSPOSE4_PS(Y,F,G,H);
1358             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1359             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1360             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1361
1362             fscal            = felec;
1363
1364             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1365
1366              /* Update vectorial force */
1367             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1368             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1369             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1370
1371             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1372             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1373             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1374
1375             /**************************
1376              * CALCULATE INTERACTIONS *
1377              **************************/
1378
1379             r30              = _mm_mul_ps(rsq30,rinv30);
1380             r30              = _mm_andnot_ps(dummy_mask,r30);
1381
1382             /* Compute parameters for interactions between i and j atoms */
1383             qq30             = _mm_mul_ps(iq3,jq0);
1384
1385             /* Calculate table index by multiplying r with table scale and truncate to integer */
1386             rt               = _mm_mul_ps(r30,vftabscale);
1387             vfitab           = _mm_cvttps_epi32(rt);
1388 #ifdef __XOP__
1389             vfeps            = _mm_frcz_ps(rt);
1390 #else
1391             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1392 #endif
1393             twovfeps         = _mm_add_ps(vfeps,vfeps);
1394             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1395
1396             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1397             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1398             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1399             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1400             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1401             _MM_TRANSPOSE4_PS(Y,F,G,H);
1402             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1403             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1404             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1405
1406             fscal            = felec;
1407
1408             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1409
1410              /* Update vectorial force */
1411             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1412             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1413             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1414
1415             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1416             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1417             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1418
1419             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1420             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1421             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1422             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1423
1424             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1425
1426             /* Inner loop uses 181 flops */
1427         }
1428
1429         /* End of innermost loop */
1430
1431         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1432                                               f+i_coord_offset,fshift+i_shift_offset);
1433
1434         /* Increment number of inner iterations */
1435         inneriter                  += j_index_end - j_index_start;
1436
1437         /* Outer loop uses 24 flops */
1438     }
1439
1440     /* Increment number of outer iterations */
1441     outeriter        += nri;
1442
1443     /* Update outer/inner flops */
1444
1445     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*181);
1446 }