ef8ce2f9dbbf0cf04ac83ba90b3281c8453a1b27
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
91     real             *vftab;
92     __m128           dummy_mask,cutoff_mask;
93     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
94     __m128           one     = _mm_set1_ps(1.0);
95     __m128           two     = _mm_set1_ps(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_ps(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_elec_vdw->data;
114     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
119     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
120     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
121     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = jnrC = jnrD = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127     j_coord_offsetC = 0;
128     j_coord_offsetD = 0;
129
130     outeriter        = 0;
131     inneriter        = 0;
132
133     for(iidx=0;iidx<4*DIM;iidx++)
134     {
135         scratch[iidx] = 0.0;
136     }
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
154                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
155
156         fix0             = _mm_setzero_ps();
157         fiy0             = _mm_setzero_ps();
158         fiz0             = _mm_setzero_ps();
159         fix1             = _mm_setzero_ps();
160         fiy1             = _mm_setzero_ps();
161         fiz1             = _mm_setzero_ps();
162         fix2             = _mm_setzero_ps();
163         fiy2             = _mm_setzero_ps();
164         fiz2             = _mm_setzero_ps();
165
166         /* Reset potential sums */
167         velecsum         = _mm_setzero_ps();
168         vvdwsum          = _mm_setzero_ps();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             jnrC             = jjnr[jidx+2];
178             jnrD             = jjnr[jidx+3];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181             j_coord_offsetC  = DIM*jnrC;
182             j_coord_offsetD  = DIM*jnrD;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               x+j_coord_offsetC,x+j_coord_offsetD,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm_sub_ps(ix0,jx0);
191             dy00             = _mm_sub_ps(iy0,jy0);
192             dz00             = _mm_sub_ps(iz0,jz0);
193             dx10             = _mm_sub_ps(ix1,jx0);
194             dy10             = _mm_sub_ps(iy1,jy0);
195             dz10             = _mm_sub_ps(iz1,jz0);
196             dx20             = _mm_sub_ps(ix2,jx0);
197             dy20             = _mm_sub_ps(iy2,jy0);
198             dz20             = _mm_sub_ps(iz2,jz0);
199
200             /* Calculate squared distance and things based on it */
201             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
202             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
203             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
204
205             rinv00           = gmx_mm_invsqrt_ps(rsq00);
206             rinv10           = gmx_mm_invsqrt_ps(rsq10);
207             rinv20           = gmx_mm_invsqrt_ps(rsq20);
208
209             /* Load parameters for j particles */
210             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
211                                                               charge+jnrC+0,charge+jnrD+0);
212             vdwjidx0A        = 2*vdwtype[jnrA+0];
213             vdwjidx0B        = 2*vdwtype[jnrB+0];
214             vdwjidx0C        = 2*vdwtype[jnrC+0];
215             vdwjidx0D        = 2*vdwtype[jnrD+0];
216
217             fjx0             = _mm_setzero_ps();
218             fjy0             = _mm_setzero_ps();
219             fjz0             = _mm_setzero_ps();
220
221             /**************************
222              * CALCULATE INTERACTIONS *
223              **************************/
224
225             r00              = _mm_mul_ps(rsq00,rinv00);
226
227             /* Compute parameters for interactions between i and j atoms */
228             qq00             = _mm_mul_ps(iq0,jq0);
229             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
230                                          vdwparam+vdwioffset0+vdwjidx0B,
231                                          vdwparam+vdwioffset0+vdwjidx0C,
232                                          vdwparam+vdwioffset0+vdwjidx0D,
233                                          &c6_00,&c12_00);
234
235             /* Calculate table index by multiplying r with table scale and truncate to integer */
236             rt               = _mm_mul_ps(r00,vftabscale);
237             vfitab           = _mm_cvttps_epi32(rt);
238 #ifdef __XOP__
239             vfeps            = _mm_frcz_ps(rt);
240 #else
241             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
242 #endif
243             twovfeps         = _mm_add_ps(vfeps,vfeps);
244             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
245
246             /* CUBIC SPLINE TABLE ELECTROSTATICS */
247             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
248             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
249             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
250             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
251             _MM_TRANSPOSE4_PS(Y,F,G,H);
252             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
253             VV               = _mm_macc_ps(vfeps,Fp,Y);
254             velec            = _mm_mul_ps(qq00,VV);
255             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
256             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
257
258             /* CUBIC SPLINE TABLE DISPERSION */
259             vfitab           = _mm_add_epi32(vfitab,ifour);
260             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
261             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
262             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
263             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
264             _MM_TRANSPOSE4_PS(Y,F,G,H);
265             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
266             VV               = _mm_macc_ps(vfeps,Fp,Y);
267             vvdw6            = _mm_mul_ps(c6_00,VV);
268             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
269             fvdw6            = _mm_mul_ps(c6_00,FF);
270
271             /* CUBIC SPLINE TABLE REPULSION */
272             vfitab           = _mm_add_epi32(vfitab,ifour);
273             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
274             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
275             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
276             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
277             _MM_TRANSPOSE4_PS(Y,F,G,H);
278             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
279             VV               = _mm_macc_ps(vfeps,Fp,Y);
280             vvdw12           = _mm_mul_ps(c12_00,VV);
281             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
282             fvdw12           = _mm_mul_ps(c12_00,FF);
283             vvdw             = _mm_add_ps(vvdw12,vvdw6);
284             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             velecsum         = _mm_add_ps(velecsum,velec);
288             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
289
290             fscal            = _mm_add_ps(felec,fvdw);
291
292              /* Update vectorial force */
293             fix0             = _mm_macc_ps(dx00,fscal,fix0);
294             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
295             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
296
297             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
298             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
299             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             r10              = _mm_mul_ps(rsq10,rinv10);
306
307             /* Compute parameters for interactions between i and j atoms */
308             qq10             = _mm_mul_ps(iq1,jq0);
309
310             /* Calculate table index by multiplying r with table scale and truncate to integer */
311             rt               = _mm_mul_ps(r10,vftabscale);
312             vfitab           = _mm_cvttps_epi32(rt);
313 #ifdef __XOP__
314             vfeps            = _mm_frcz_ps(rt);
315 #else
316             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
317 #endif
318             twovfeps         = _mm_add_ps(vfeps,vfeps);
319             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
320
321             /* CUBIC SPLINE TABLE ELECTROSTATICS */
322             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
323             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
324             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
325             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
326             _MM_TRANSPOSE4_PS(Y,F,G,H);
327             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
328             VV               = _mm_macc_ps(vfeps,Fp,Y);
329             velec            = _mm_mul_ps(qq10,VV);
330             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
331             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
332
333             /* Update potential sum for this i atom from the interaction with this j atom. */
334             velecsum         = _mm_add_ps(velecsum,velec);
335
336             fscal            = felec;
337
338              /* Update vectorial force */
339             fix1             = _mm_macc_ps(dx10,fscal,fix1);
340             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
341             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
342
343             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
344             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
345             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
346
347             /**************************
348              * CALCULATE INTERACTIONS *
349              **************************/
350
351             r20              = _mm_mul_ps(rsq20,rinv20);
352
353             /* Compute parameters for interactions between i and j atoms */
354             qq20             = _mm_mul_ps(iq2,jq0);
355
356             /* Calculate table index by multiplying r with table scale and truncate to integer */
357             rt               = _mm_mul_ps(r20,vftabscale);
358             vfitab           = _mm_cvttps_epi32(rt);
359 #ifdef __XOP__
360             vfeps            = _mm_frcz_ps(rt);
361 #else
362             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
363 #endif
364             twovfeps         = _mm_add_ps(vfeps,vfeps);
365             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
366
367             /* CUBIC SPLINE TABLE ELECTROSTATICS */
368             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
369             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
370             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
371             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
372             _MM_TRANSPOSE4_PS(Y,F,G,H);
373             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
374             VV               = _mm_macc_ps(vfeps,Fp,Y);
375             velec            = _mm_mul_ps(qq20,VV);
376             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
377             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
378
379             /* Update potential sum for this i atom from the interaction with this j atom. */
380             velecsum         = _mm_add_ps(velecsum,velec);
381
382             fscal            = felec;
383
384              /* Update vectorial force */
385             fix2             = _mm_macc_ps(dx20,fscal,fix2);
386             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
387             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
388
389             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
390             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
391             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
392
393             fjptrA             = f+j_coord_offsetA;
394             fjptrB             = f+j_coord_offsetB;
395             fjptrC             = f+j_coord_offsetC;
396             fjptrD             = f+j_coord_offsetD;
397
398             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
399
400             /* Inner loop uses 168 flops */
401         }
402
403         if(jidx<j_index_end)
404         {
405
406             /* Get j neighbor index, and coordinate index */
407             jnrlistA         = jjnr[jidx];
408             jnrlistB         = jjnr[jidx+1];
409             jnrlistC         = jjnr[jidx+2];
410             jnrlistD         = jjnr[jidx+3];
411             /* Sign of each element will be negative for non-real atoms.
412              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
413              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
414              */
415             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
416             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
417             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
418             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
419             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
420             j_coord_offsetA  = DIM*jnrA;
421             j_coord_offsetB  = DIM*jnrB;
422             j_coord_offsetC  = DIM*jnrC;
423             j_coord_offsetD  = DIM*jnrD;
424
425             /* load j atom coordinates */
426             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
427                                               x+j_coord_offsetC,x+j_coord_offsetD,
428                                               &jx0,&jy0,&jz0);
429
430             /* Calculate displacement vector */
431             dx00             = _mm_sub_ps(ix0,jx0);
432             dy00             = _mm_sub_ps(iy0,jy0);
433             dz00             = _mm_sub_ps(iz0,jz0);
434             dx10             = _mm_sub_ps(ix1,jx0);
435             dy10             = _mm_sub_ps(iy1,jy0);
436             dz10             = _mm_sub_ps(iz1,jz0);
437             dx20             = _mm_sub_ps(ix2,jx0);
438             dy20             = _mm_sub_ps(iy2,jy0);
439             dz20             = _mm_sub_ps(iz2,jz0);
440
441             /* Calculate squared distance and things based on it */
442             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
443             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
444             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
445
446             rinv00           = gmx_mm_invsqrt_ps(rsq00);
447             rinv10           = gmx_mm_invsqrt_ps(rsq10);
448             rinv20           = gmx_mm_invsqrt_ps(rsq20);
449
450             /* Load parameters for j particles */
451             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
452                                                               charge+jnrC+0,charge+jnrD+0);
453             vdwjidx0A        = 2*vdwtype[jnrA+0];
454             vdwjidx0B        = 2*vdwtype[jnrB+0];
455             vdwjidx0C        = 2*vdwtype[jnrC+0];
456             vdwjidx0D        = 2*vdwtype[jnrD+0];
457
458             fjx0             = _mm_setzero_ps();
459             fjy0             = _mm_setzero_ps();
460             fjz0             = _mm_setzero_ps();
461
462             /**************************
463              * CALCULATE INTERACTIONS *
464              **************************/
465
466             r00              = _mm_mul_ps(rsq00,rinv00);
467             r00              = _mm_andnot_ps(dummy_mask,r00);
468
469             /* Compute parameters for interactions between i and j atoms */
470             qq00             = _mm_mul_ps(iq0,jq0);
471             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
472                                          vdwparam+vdwioffset0+vdwjidx0B,
473                                          vdwparam+vdwioffset0+vdwjidx0C,
474                                          vdwparam+vdwioffset0+vdwjidx0D,
475                                          &c6_00,&c12_00);
476
477             /* Calculate table index by multiplying r with table scale and truncate to integer */
478             rt               = _mm_mul_ps(r00,vftabscale);
479             vfitab           = _mm_cvttps_epi32(rt);
480 #ifdef __XOP__
481             vfeps            = _mm_frcz_ps(rt);
482 #else
483             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
484 #endif
485             twovfeps         = _mm_add_ps(vfeps,vfeps);
486             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
487
488             /* CUBIC SPLINE TABLE ELECTROSTATICS */
489             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
490             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
491             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
492             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
493             _MM_TRANSPOSE4_PS(Y,F,G,H);
494             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
495             VV               = _mm_macc_ps(vfeps,Fp,Y);
496             velec            = _mm_mul_ps(qq00,VV);
497             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
498             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
499
500             /* CUBIC SPLINE TABLE DISPERSION */
501             vfitab           = _mm_add_epi32(vfitab,ifour);
502             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
503             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
504             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
505             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
506             _MM_TRANSPOSE4_PS(Y,F,G,H);
507             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
508             VV               = _mm_macc_ps(vfeps,Fp,Y);
509             vvdw6            = _mm_mul_ps(c6_00,VV);
510             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
511             fvdw6            = _mm_mul_ps(c6_00,FF);
512
513             /* CUBIC SPLINE TABLE REPULSION */
514             vfitab           = _mm_add_epi32(vfitab,ifour);
515             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
516             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
517             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
518             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
519             _MM_TRANSPOSE4_PS(Y,F,G,H);
520             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
521             VV               = _mm_macc_ps(vfeps,Fp,Y);
522             vvdw12           = _mm_mul_ps(c12_00,VV);
523             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
524             fvdw12           = _mm_mul_ps(c12_00,FF);
525             vvdw             = _mm_add_ps(vvdw12,vvdw6);
526             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
527
528             /* Update potential sum for this i atom from the interaction with this j atom. */
529             velec            = _mm_andnot_ps(dummy_mask,velec);
530             velecsum         = _mm_add_ps(velecsum,velec);
531             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
532             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
533
534             fscal            = _mm_add_ps(felec,fvdw);
535
536             fscal            = _mm_andnot_ps(dummy_mask,fscal);
537
538              /* Update vectorial force */
539             fix0             = _mm_macc_ps(dx00,fscal,fix0);
540             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
541             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
542
543             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
544             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
545             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
546
547             /**************************
548              * CALCULATE INTERACTIONS *
549              **************************/
550
551             r10              = _mm_mul_ps(rsq10,rinv10);
552             r10              = _mm_andnot_ps(dummy_mask,r10);
553
554             /* Compute parameters for interactions between i and j atoms */
555             qq10             = _mm_mul_ps(iq1,jq0);
556
557             /* Calculate table index by multiplying r with table scale and truncate to integer */
558             rt               = _mm_mul_ps(r10,vftabscale);
559             vfitab           = _mm_cvttps_epi32(rt);
560 #ifdef __XOP__
561             vfeps            = _mm_frcz_ps(rt);
562 #else
563             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
564 #endif
565             twovfeps         = _mm_add_ps(vfeps,vfeps);
566             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
567
568             /* CUBIC SPLINE TABLE ELECTROSTATICS */
569             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
570             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
571             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
572             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
573             _MM_TRANSPOSE4_PS(Y,F,G,H);
574             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
575             VV               = _mm_macc_ps(vfeps,Fp,Y);
576             velec            = _mm_mul_ps(qq10,VV);
577             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
578             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
579
580             /* Update potential sum for this i atom from the interaction with this j atom. */
581             velec            = _mm_andnot_ps(dummy_mask,velec);
582             velecsum         = _mm_add_ps(velecsum,velec);
583
584             fscal            = felec;
585
586             fscal            = _mm_andnot_ps(dummy_mask,fscal);
587
588              /* Update vectorial force */
589             fix1             = _mm_macc_ps(dx10,fscal,fix1);
590             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
591             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
592
593             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
594             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
595             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
596
597             /**************************
598              * CALCULATE INTERACTIONS *
599              **************************/
600
601             r20              = _mm_mul_ps(rsq20,rinv20);
602             r20              = _mm_andnot_ps(dummy_mask,r20);
603
604             /* Compute parameters for interactions between i and j atoms */
605             qq20             = _mm_mul_ps(iq2,jq0);
606
607             /* Calculate table index by multiplying r with table scale and truncate to integer */
608             rt               = _mm_mul_ps(r20,vftabscale);
609             vfitab           = _mm_cvttps_epi32(rt);
610 #ifdef __XOP__
611             vfeps            = _mm_frcz_ps(rt);
612 #else
613             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
614 #endif
615             twovfeps         = _mm_add_ps(vfeps,vfeps);
616             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
617
618             /* CUBIC SPLINE TABLE ELECTROSTATICS */
619             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
620             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
621             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
622             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
623             _MM_TRANSPOSE4_PS(Y,F,G,H);
624             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
625             VV               = _mm_macc_ps(vfeps,Fp,Y);
626             velec            = _mm_mul_ps(qq20,VV);
627             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
628             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
629
630             /* Update potential sum for this i atom from the interaction with this j atom. */
631             velec            = _mm_andnot_ps(dummy_mask,velec);
632             velecsum         = _mm_add_ps(velecsum,velec);
633
634             fscal            = felec;
635
636             fscal            = _mm_andnot_ps(dummy_mask,fscal);
637
638              /* Update vectorial force */
639             fix2             = _mm_macc_ps(dx20,fscal,fix2);
640             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
641             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
642
643             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
644             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
645             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
646
647             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
648             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
649             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
650             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
651
652             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
653
654             /* Inner loop uses 171 flops */
655         }
656
657         /* End of innermost loop */
658
659         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
660                                               f+i_coord_offset,fshift+i_shift_offset);
661
662         ggid                        = gid[iidx];
663         /* Update potential energies */
664         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
665         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
666
667         /* Increment number of inner iterations */
668         inneriter                  += j_index_end - j_index_start;
669
670         /* Outer loop uses 20 flops */
671     }
672
673     /* Increment number of outer iterations */
674     outeriter        += nri;
675
676     /* Update outer/inner flops */
677
678     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*171);
679 }
680 /*
681  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_128_fma_single
682  * Electrostatics interaction: CubicSplineTable
683  * VdW interaction:            CubicSplineTable
684  * Geometry:                   Water3-Particle
685  * Calculate force/pot:        Force
686  */
687 void
688 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_128_fma_single
689                     (t_nblist * gmx_restrict                nlist,
690                      rvec * gmx_restrict                    xx,
691                      rvec * gmx_restrict                    ff,
692                      t_forcerec * gmx_restrict              fr,
693                      t_mdatoms * gmx_restrict               mdatoms,
694                      nb_kernel_data_t * gmx_restrict        kernel_data,
695                      t_nrnb * gmx_restrict                  nrnb)
696 {
697     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
698      * just 0 for non-waters.
699      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
700      * jnr indices corresponding to data put in the four positions in the SIMD register.
701      */
702     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
703     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
704     int              jnrA,jnrB,jnrC,jnrD;
705     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
706     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
707     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
708     real             rcutoff_scalar;
709     real             *shiftvec,*fshift,*x,*f;
710     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
711     real             scratch[4*DIM];
712     __m128           fscal,rcutoff,rcutoff2,jidxall;
713     int              vdwioffset0;
714     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
715     int              vdwioffset1;
716     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
717     int              vdwioffset2;
718     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
719     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
720     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
721     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
722     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
723     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
724     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
725     real             *charge;
726     int              nvdwtype;
727     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
728     int              *vdwtype;
729     real             *vdwparam;
730     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
731     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
732     __m128i          vfitab;
733     __m128i          ifour       = _mm_set1_epi32(4);
734     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
735     real             *vftab;
736     __m128           dummy_mask,cutoff_mask;
737     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
738     __m128           one     = _mm_set1_ps(1.0);
739     __m128           two     = _mm_set1_ps(2.0);
740     x                = xx[0];
741     f                = ff[0];
742
743     nri              = nlist->nri;
744     iinr             = nlist->iinr;
745     jindex           = nlist->jindex;
746     jjnr             = nlist->jjnr;
747     shiftidx         = nlist->shift;
748     gid              = nlist->gid;
749     shiftvec         = fr->shift_vec[0];
750     fshift           = fr->fshift[0];
751     facel            = _mm_set1_ps(fr->epsfac);
752     charge           = mdatoms->chargeA;
753     nvdwtype         = fr->ntype;
754     vdwparam         = fr->nbfp;
755     vdwtype          = mdatoms->typeA;
756
757     vftab            = kernel_data->table_elec_vdw->data;
758     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
759
760     /* Setup water-specific parameters */
761     inr              = nlist->iinr[0];
762     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
763     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
764     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
765     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
766
767     /* Avoid stupid compiler warnings */
768     jnrA = jnrB = jnrC = jnrD = 0;
769     j_coord_offsetA = 0;
770     j_coord_offsetB = 0;
771     j_coord_offsetC = 0;
772     j_coord_offsetD = 0;
773
774     outeriter        = 0;
775     inneriter        = 0;
776
777     for(iidx=0;iidx<4*DIM;iidx++)
778     {
779         scratch[iidx] = 0.0;
780     }
781
782     /* Start outer loop over neighborlists */
783     for(iidx=0; iidx<nri; iidx++)
784     {
785         /* Load shift vector for this list */
786         i_shift_offset   = DIM*shiftidx[iidx];
787
788         /* Load limits for loop over neighbors */
789         j_index_start    = jindex[iidx];
790         j_index_end      = jindex[iidx+1];
791
792         /* Get outer coordinate index */
793         inr              = iinr[iidx];
794         i_coord_offset   = DIM*inr;
795
796         /* Load i particle coords and add shift vector */
797         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
798                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
799
800         fix0             = _mm_setzero_ps();
801         fiy0             = _mm_setzero_ps();
802         fiz0             = _mm_setzero_ps();
803         fix1             = _mm_setzero_ps();
804         fiy1             = _mm_setzero_ps();
805         fiz1             = _mm_setzero_ps();
806         fix2             = _mm_setzero_ps();
807         fiy2             = _mm_setzero_ps();
808         fiz2             = _mm_setzero_ps();
809
810         /* Start inner kernel loop */
811         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
812         {
813
814             /* Get j neighbor index, and coordinate index */
815             jnrA             = jjnr[jidx];
816             jnrB             = jjnr[jidx+1];
817             jnrC             = jjnr[jidx+2];
818             jnrD             = jjnr[jidx+3];
819             j_coord_offsetA  = DIM*jnrA;
820             j_coord_offsetB  = DIM*jnrB;
821             j_coord_offsetC  = DIM*jnrC;
822             j_coord_offsetD  = DIM*jnrD;
823
824             /* load j atom coordinates */
825             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
826                                               x+j_coord_offsetC,x+j_coord_offsetD,
827                                               &jx0,&jy0,&jz0);
828
829             /* Calculate displacement vector */
830             dx00             = _mm_sub_ps(ix0,jx0);
831             dy00             = _mm_sub_ps(iy0,jy0);
832             dz00             = _mm_sub_ps(iz0,jz0);
833             dx10             = _mm_sub_ps(ix1,jx0);
834             dy10             = _mm_sub_ps(iy1,jy0);
835             dz10             = _mm_sub_ps(iz1,jz0);
836             dx20             = _mm_sub_ps(ix2,jx0);
837             dy20             = _mm_sub_ps(iy2,jy0);
838             dz20             = _mm_sub_ps(iz2,jz0);
839
840             /* Calculate squared distance and things based on it */
841             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
842             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
843             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
844
845             rinv00           = gmx_mm_invsqrt_ps(rsq00);
846             rinv10           = gmx_mm_invsqrt_ps(rsq10);
847             rinv20           = gmx_mm_invsqrt_ps(rsq20);
848
849             /* Load parameters for j particles */
850             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
851                                                               charge+jnrC+0,charge+jnrD+0);
852             vdwjidx0A        = 2*vdwtype[jnrA+0];
853             vdwjidx0B        = 2*vdwtype[jnrB+0];
854             vdwjidx0C        = 2*vdwtype[jnrC+0];
855             vdwjidx0D        = 2*vdwtype[jnrD+0];
856
857             fjx0             = _mm_setzero_ps();
858             fjy0             = _mm_setzero_ps();
859             fjz0             = _mm_setzero_ps();
860
861             /**************************
862              * CALCULATE INTERACTIONS *
863              **************************/
864
865             r00              = _mm_mul_ps(rsq00,rinv00);
866
867             /* Compute parameters for interactions between i and j atoms */
868             qq00             = _mm_mul_ps(iq0,jq0);
869             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
870                                          vdwparam+vdwioffset0+vdwjidx0B,
871                                          vdwparam+vdwioffset0+vdwjidx0C,
872                                          vdwparam+vdwioffset0+vdwjidx0D,
873                                          &c6_00,&c12_00);
874
875             /* Calculate table index by multiplying r with table scale and truncate to integer */
876             rt               = _mm_mul_ps(r00,vftabscale);
877             vfitab           = _mm_cvttps_epi32(rt);
878 #ifdef __XOP__
879             vfeps            = _mm_frcz_ps(rt);
880 #else
881             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
882 #endif
883             twovfeps         = _mm_add_ps(vfeps,vfeps);
884             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
885
886             /* CUBIC SPLINE TABLE ELECTROSTATICS */
887             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
888             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
889             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
890             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
891             _MM_TRANSPOSE4_PS(Y,F,G,H);
892             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
893             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
894             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
895
896             /* CUBIC SPLINE TABLE DISPERSION */
897             vfitab           = _mm_add_epi32(vfitab,ifour);
898             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
899             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
900             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
901             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
902             _MM_TRANSPOSE4_PS(Y,F,G,H);
903             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
904             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
905             fvdw6            = _mm_mul_ps(c6_00,FF);
906
907             /* CUBIC SPLINE TABLE REPULSION */
908             vfitab           = _mm_add_epi32(vfitab,ifour);
909             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
910             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
911             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
912             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
913             _MM_TRANSPOSE4_PS(Y,F,G,H);
914             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
915             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
916             fvdw12           = _mm_mul_ps(c12_00,FF);
917             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
918
919             fscal            = _mm_add_ps(felec,fvdw);
920
921              /* Update vectorial force */
922             fix0             = _mm_macc_ps(dx00,fscal,fix0);
923             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
924             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
925
926             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
927             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
928             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
929
930             /**************************
931              * CALCULATE INTERACTIONS *
932              **************************/
933
934             r10              = _mm_mul_ps(rsq10,rinv10);
935
936             /* Compute parameters for interactions between i and j atoms */
937             qq10             = _mm_mul_ps(iq1,jq0);
938
939             /* Calculate table index by multiplying r with table scale and truncate to integer */
940             rt               = _mm_mul_ps(r10,vftabscale);
941             vfitab           = _mm_cvttps_epi32(rt);
942 #ifdef __XOP__
943             vfeps            = _mm_frcz_ps(rt);
944 #else
945             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
946 #endif
947             twovfeps         = _mm_add_ps(vfeps,vfeps);
948             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
949
950             /* CUBIC SPLINE TABLE ELECTROSTATICS */
951             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
952             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
953             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
954             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
955             _MM_TRANSPOSE4_PS(Y,F,G,H);
956             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
957             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
958             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
959
960             fscal            = felec;
961
962              /* Update vectorial force */
963             fix1             = _mm_macc_ps(dx10,fscal,fix1);
964             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
965             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
966
967             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
968             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
969             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
970
971             /**************************
972              * CALCULATE INTERACTIONS *
973              **************************/
974
975             r20              = _mm_mul_ps(rsq20,rinv20);
976
977             /* Compute parameters for interactions between i and j atoms */
978             qq20             = _mm_mul_ps(iq2,jq0);
979
980             /* Calculate table index by multiplying r with table scale and truncate to integer */
981             rt               = _mm_mul_ps(r20,vftabscale);
982             vfitab           = _mm_cvttps_epi32(rt);
983 #ifdef __XOP__
984             vfeps            = _mm_frcz_ps(rt);
985 #else
986             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
987 #endif
988             twovfeps         = _mm_add_ps(vfeps,vfeps);
989             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
990
991             /* CUBIC SPLINE TABLE ELECTROSTATICS */
992             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
993             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
994             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
995             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
996             _MM_TRANSPOSE4_PS(Y,F,G,H);
997             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
998             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
999             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1000
1001             fscal            = felec;
1002
1003              /* Update vectorial force */
1004             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1005             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1006             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1007
1008             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1009             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1010             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1011
1012             fjptrA             = f+j_coord_offsetA;
1013             fjptrB             = f+j_coord_offsetB;
1014             fjptrC             = f+j_coord_offsetC;
1015             fjptrD             = f+j_coord_offsetD;
1016
1017             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1018
1019             /* Inner loop uses 148 flops */
1020         }
1021
1022         if(jidx<j_index_end)
1023         {
1024
1025             /* Get j neighbor index, and coordinate index */
1026             jnrlistA         = jjnr[jidx];
1027             jnrlistB         = jjnr[jidx+1];
1028             jnrlistC         = jjnr[jidx+2];
1029             jnrlistD         = jjnr[jidx+3];
1030             /* Sign of each element will be negative for non-real atoms.
1031              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1032              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1033              */
1034             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1035             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1036             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1037             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1038             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1039             j_coord_offsetA  = DIM*jnrA;
1040             j_coord_offsetB  = DIM*jnrB;
1041             j_coord_offsetC  = DIM*jnrC;
1042             j_coord_offsetD  = DIM*jnrD;
1043
1044             /* load j atom coordinates */
1045             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1046                                               x+j_coord_offsetC,x+j_coord_offsetD,
1047                                               &jx0,&jy0,&jz0);
1048
1049             /* Calculate displacement vector */
1050             dx00             = _mm_sub_ps(ix0,jx0);
1051             dy00             = _mm_sub_ps(iy0,jy0);
1052             dz00             = _mm_sub_ps(iz0,jz0);
1053             dx10             = _mm_sub_ps(ix1,jx0);
1054             dy10             = _mm_sub_ps(iy1,jy0);
1055             dz10             = _mm_sub_ps(iz1,jz0);
1056             dx20             = _mm_sub_ps(ix2,jx0);
1057             dy20             = _mm_sub_ps(iy2,jy0);
1058             dz20             = _mm_sub_ps(iz2,jz0);
1059
1060             /* Calculate squared distance and things based on it */
1061             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1062             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1063             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1064
1065             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1066             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1067             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1068
1069             /* Load parameters for j particles */
1070             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1071                                                               charge+jnrC+0,charge+jnrD+0);
1072             vdwjidx0A        = 2*vdwtype[jnrA+0];
1073             vdwjidx0B        = 2*vdwtype[jnrB+0];
1074             vdwjidx0C        = 2*vdwtype[jnrC+0];
1075             vdwjidx0D        = 2*vdwtype[jnrD+0];
1076
1077             fjx0             = _mm_setzero_ps();
1078             fjy0             = _mm_setzero_ps();
1079             fjz0             = _mm_setzero_ps();
1080
1081             /**************************
1082              * CALCULATE INTERACTIONS *
1083              **************************/
1084
1085             r00              = _mm_mul_ps(rsq00,rinv00);
1086             r00              = _mm_andnot_ps(dummy_mask,r00);
1087
1088             /* Compute parameters for interactions between i and j atoms */
1089             qq00             = _mm_mul_ps(iq0,jq0);
1090             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1091                                          vdwparam+vdwioffset0+vdwjidx0B,
1092                                          vdwparam+vdwioffset0+vdwjidx0C,
1093                                          vdwparam+vdwioffset0+vdwjidx0D,
1094                                          &c6_00,&c12_00);
1095
1096             /* Calculate table index by multiplying r with table scale and truncate to integer */
1097             rt               = _mm_mul_ps(r00,vftabscale);
1098             vfitab           = _mm_cvttps_epi32(rt);
1099 #ifdef __XOP__
1100             vfeps            = _mm_frcz_ps(rt);
1101 #else
1102             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1103 #endif
1104             twovfeps         = _mm_add_ps(vfeps,vfeps);
1105             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1106
1107             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1108             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1109             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1110             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1111             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1112             _MM_TRANSPOSE4_PS(Y,F,G,H);
1113             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1114             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1115             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
1116
1117             /* CUBIC SPLINE TABLE DISPERSION */
1118             vfitab           = _mm_add_epi32(vfitab,ifour);
1119             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1120             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1121             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1122             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1123             _MM_TRANSPOSE4_PS(Y,F,G,H);
1124             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1125             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1126             fvdw6            = _mm_mul_ps(c6_00,FF);
1127
1128             /* CUBIC SPLINE TABLE REPULSION */
1129             vfitab           = _mm_add_epi32(vfitab,ifour);
1130             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1131             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1132             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1133             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1134             _MM_TRANSPOSE4_PS(Y,F,G,H);
1135             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1136             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1137             fvdw12           = _mm_mul_ps(c12_00,FF);
1138             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1139
1140             fscal            = _mm_add_ps(felec,fvdw);
1141
1142             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1143
1144              /* Update vectorial force */
1145             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1146             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1147             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1148
1149             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1150             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1151             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1152
1153             /**************************
1154              * CALCULATE INTERACTIONS *
1155              **************************/
1156
1157             r10              = _mm_mul_ps(rsq10,rinv10);
1158             r10              = _mm_andnot_ps(dummy_mask,r10);
1159
1160             /* Compute parameters for interactions between i and j atoms */
1161             qq10             = _mm_mul_ps(iq1,jq0);
1162
1163             /* Calculate table index by multiplying r with table scale and truncate to integer */
1164             rt               = _mm_mul_ps(r10,vftabscale);
1165             vfitab           = _mm_cvttps_epi32(rt);
1166 #ifdef __XOP__
1167             vfeps            = _mm_frcz_ps(rt);
1168 #else
1169             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1170 #endif
1171             twovfeps         = _mm_add_ps(vfeps,vfeps);
1172             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1173
1174             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1175             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1176             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1177             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1178             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1179             _MM_TRANSPOSE4_PS(Y,F,G,H);
1180             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1181             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1182             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1183
1184             fscal            = felec;
1185
1186             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1187
1188              /* Update vectorial force */
1189             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1190             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1191             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1192
1193             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1194             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1195             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1196
1197             /**************************
1198              * CALCULATE INTERACTIONS *
1199              **************************/
1200
1201             r20              = _mm_mul_ps(rsq20,rinv20);
1202             r20              = _mm_andnot_ps(dummy_mask,r20);
1203
1204             /* Compute parameters for interactions between i and j atoms */
1205             qq20             = _mm_mul_ps(iq2,jq0);
1206
1207             /* Calculate table index by multiplying r with table scale and truncate to integer */
1208             rt               = _mm_mul_ps(r20,vftabscale);
1209             vfitab           = _mm_cvttps_epi32(rt);
1210 #ifdef __XOP__
1211             vfeps            = _mm_frcz_ps(rt);
1212 #else
1213             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1214 #endif
1215             twovfeps         = _mm_add_ps(vfeps,vfeps);
1216             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1217
1218             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1219             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1220             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1221             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1222             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1223             _MM_TRANSPOSE4_PS(Y,F,G,H);
1224             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1225             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1226             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1227
1228             fscal            = felec;
1229
1230             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1231
1232              /* Update vectorial force */
1233             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1234             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1235             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1236
1237             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1238             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1239             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1240
1241             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1242             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1243             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1244             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1245
1246             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1247
1248             /* Inner loop uses 151 flops */
1249         }
1250
1251         /* End of innermost loop */
1252
1253         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1254                                               f+i_coord_offset,fshift+i_shift_offset);
1255
1256         /* Increment number of inner iterations */
1257         inneriter                  += j_index_end - j_index_start;
1258
1259         /* Outer loop uses 18 flops */
1260     }
1261
1262     /* Increment number of outer iterations */
1263     outeriter        += nri;
1264
1265     /* Update outer/inner flops */
1266
1267     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*151);
1268 }