Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
107     real             *vftab;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_elec_vdw->data;
130     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
135     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
136     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
171
172         fix0             = _mm_setzero_ps();
173         fiy0             = _mm_setzero_ps();
174         fiz0             = _mm_setzero_ps();
175         fix1             = _mm_setzero_ps();
176         fiy1             = _mm_setzero_ps();
177         fiz1             = _mm_setzero_ps();
178         fix2             = _mm_setzero_ps();
179         fiy2             = _mm_setzero_ps();
180         fiz2             = _mm_setzero_ps();
181
182         /* Reset potential sums */
183         velecsum         = _mm_setzero_ps();
184         vvdwsum          = _mm_setzero_ps();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197             j_coord_offsetC  = DIM*jnrC;
198             j_coord_offsetD  = DIM*jnrD;
199
200             /* load j atom coordinates */
201             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
202                                               x+j_coord_offsetC,x+j_coord_offsetD,
203                                               &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm_sub_ps(ix0,jx0);
207             dy00             = _mm_sub_ps(iy0,jy0);
208             dz00             = _mm_sub_ps(iz0,jz0);
209             dx10             = _mm_sub_ps(ix1,jx0);
210             dy10             = _mm_sub_ps(iy1,jy0);
211             dz10             = _mm_sub_ps(iz1,jz0);
212             dx20             = _mm_sub_ps(ix2,jx0);
213             dy20             = _mm_sub_ps(iy2,jy0);
214             dz20             = _mm_sub_ps(iz2,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
218             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
219             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
220
221             rinv00           = gmx_mm_invsqrt_ps(rsq00);
222             rinv10           = gmx_mm_invsqrt_ps(rsq10);
223             rinv20           = gmx_mm_invsqrt_ps(rsq20);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
227                                                               charge+jnrC+0,charge+jnrD+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230             vdwjidx0C        = 2*vdwtype[jnrC+0];
231             vdwjidx0D        = 2*vdwtype[jnrD+0];
232
233             fjx0             = _mm_setzero_ps();
234             fjy0             = _mm_setzero_ps();
235             fjz0             = _mm_setzero_ps();
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             r00              = _mm_mul_ps(rsq00,rinv00);
242
243             /* Compute parameters for interactions between i and j atoms */
244             qq00             = _mm_mul_ps(iq0,jq0);
245             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
246                                          vdwparam+vdwioffset0+vdwjidx0B,
247                                          vdwparam+vdwioffset0+vdwjidx0C,
248                                          vdwparam+vdwioffset0+vdwjidx0D,
249                                          &c6_00,&c12_00);
250
251             /* Calculate table index by multiplying r with table scale and truncate to integer */
252             rt               = _mm_mul_ps(r00,vftabscale);
253             vfitab           = _mm_cvttps_epi32(rt);
254 #ifdef __XOP__
255             vfeps            = _mm_frcz_ps(rt);
256 #else
257             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
258 #endif
259             twovfeps         = _mm_add_ps(vfeps,vfeps);
260             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
261
262             /* CUBIC SPLINE TABLE ELECTROSTATICS */
263             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
264             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
265             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
266             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
267             _MM_TRANSPOSE4_PS(Y,F,G,H);
268             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
269             VV               = _mm_macc_ps(vfeps,Fp,Y);
270             velec            = _mm_mul_ps(qq00,VV);
271             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
272             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
273
274             /* CUBIC SPLINE TABLE DISPERSION */
275             vfitab           = _mm_add_epi32(vfitab,ifour);
276             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
277             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
278             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
279             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
280             _MM_TRANSPOSE4_PS(Y,F,G,H);
281             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
282             VV               = _mm_macc_ps(vfeps,Fp,Y);
283             vvdw6            = _mm_mul_ps(c6_00,VV);
284             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
285             fvdw6            = _mm_mul_ps(c6_00,FF);
286
287             /* CUBIC SPLINE TABLE REPULSION */
288             vfitab           = _mm_add_epi32(vfitab,ifour);
289             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
290             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
291             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
292             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
293             _MM_TRANSPOSE4_PS(Y,F,G,H);
294             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
295             VV               = _mm_macc_ps(vfeps,Fp,Y);
296             vvdw12           = _mm_mul_ps(c12_00,VV);
297             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
298             fvdw12           = _mm_mul_ps(c12_00,FF);
299             vvdw             = _mm_add_ps(vvdw12,vvdw6);
300             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
301
302             /* Update potential sum for this i atom from the interaction with this j atom. */
303             velecsum         = _mm_add_ps(velecsum,velec);
304             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
305
306             fscal            = _mm_add_ps(felec,fvdw);
307
308              /* Update vectorial force */
309             fix0             = _mm_macc_ps(dx00,fscal,fix0);
310             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
311             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
312
313             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
314             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
315             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             r10              = _mm_mul_ps(rsq10,rinv10);
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq10             = _mm_mul_ps(iq1,jq0);
325
326             /* Calculate table index by multiplying r with table scale and truncate to integer */
327             rt               = _mm_mul_ps(r10,vftabscale);
328             vfitab           = _mm_cvttps_epi32(rt);
329 #ifdef __XOP__
330             vfeps            = _mm_frcz_ps(rt);
331 #else
332             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
333 #endif
334             twovfeps         = _mm_add_ps(vfeps,vfeps);
335             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
336
337             /* CUBIC SPLINE TABLE ELECTROSTATICS */
338             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
339             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
340             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
341             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
342             _MM_TRANSPOSE4_PS(Y,F,G,H);
343             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
344             VV               = _mm_macc_ps(vfeps,Fp,Y);
345             velec            = _mm_mul_ps(qq10,VV);
346             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
347             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
348
349             /* Update potential sum for this i atom from the interaction with this j atom. */
350             velecsum         = _mm_add_ps(velecsum,velec);
351
352             fscal            = felec;
353
354              /* Update vectorial force */
355             fix1             = _mm_macc_ps(dx10,fscal,fix1);
356             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
357             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
358
359             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
360             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
361             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
362
363             /**************************
364              * CALCULATE INTERACTIONS *
365              **************************/
366
367             r20              = _mm_mul_ps(rsq20,rinv20);
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq20             = _mm_mul_ps(iq2,jq0);
371
372             /* Calculate table index by multiplying r with table scale and truncate to integer */
373             rt               = _mm_mul_ps(r20,vftabscale);
374             vfitab           = _mm_cvttps_epi32(rt);
375 #ifdef __XOP__
376             vfeps            = _mm_frcz_ps(rt);
377 #else
378             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
379 #endif
380             twovfeps         = _mm_add_ps(vfeps,vfeps);
381             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
382
383             /* CUBIC SPLINE TABLE ELECTROSTATICS */
384             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
385             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
386             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
387             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
388             _MM_TRANSPOSE4_PS(Y,F,G,H);
389             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
390             VV               = _mm_macc_ps(vfeps,Fp,Y);
391             velec            = _mm_mul_ps(qq20,VV);
392             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
393             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
394
395             /* Update potential sum for this i atom from the interaction with this j atom. */
396             velecsum         = _mm_add_ps(velecsum,velec);
397
398             fscal            = felec;
399
400              /* Update vectorial force */
401             fix2             = _mm_macc_ps(dx20,fscal,fix2);
402             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
403             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
404
405             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
406             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
407             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
408
409             fjptrA             = f+j_coord_offsetA;
410             fjptrB             = f+j_coord_offsetB;
411             fjptrC             = f+j_coord_offsetC;
412             fjptrD             = f+j_coord_offsetD;
413
414             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
415
416             /* Inner loop uses 168 flops */
417         }
418
419         if(jidx<j_index_end)
420         {
421
422             /* Get j neighbor index, and coordinate index */
423             jnrlistA         = jjnr[jidx];
424             jnrlistB         = jjnr[jidx+1];
425             jnrlistC         = jjnr[jidx+2];
426             jnrlistD         = jjnr[jidx+3];
427             /* Sign of each element will be negative for non-real atoms.
428              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
429              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
430              */
431             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
432             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
433             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
434             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
435             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
436             j_coord_offsetA  = DIM*jnrA;
437             j_coord_offsetB  = DIM*jnrB;
438             j_coord_offsetC  = DIM*jnrC;
439             j_coord_offsetD  = DIM*jnrD;
440
441             /* load j atom coordinates */
442             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
443                                               x+j_coord_offsetC,x+j_coord_offsetD,
444                                               &jx0,&jy0,&jz0);
445
446             /* Calculate displacement vector */
447             dx00             = _mm_sub_ps(ix0,jx0);
448             dy00             = _mm_sub_ps(iy0,jy0);
449             dz00             = _mm_sub_ps(iz0,jz0);
450             dx10             = _mm_sub_ps(ix1,jx0);
451             dy10             = _mm_sub_ps(iy1,jy0);
452             dz10             = _mm_sub_ps(iz1,jz0);
453             dx20             = _mm_sub_ps(ix2,jx0);
454             dy20             = _mm_sub_ps(iy2,jy0);
455             dz20             = _mm_sub_ps(iz2,jz0);
456
457             /* Calculate squared distance and things based on it */
458             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
459             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
460             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
461
462             rinv00           = gmx_mm_invsqrt_ps(rsq00);
463             rinv10           = gmx_mm_invsqrt_ps(rsq10);
464             rinv20           = gmx_mm_invsqrt_ps(rsq20);
465
466             /* Load parameters for j particles */
467             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
468                                                               charge+jnrC+0,charge+jnrD+0);
469             vdwjidx0A        = 2*vdwtype[jnrA+0];
470             vdwjidx0B        = 2*vdwtype[jnrB+0];
471             vdwjidx0C        = 2*vdwtype[jnrC+0];
472             vdwjidx0D        = 2*vdwtype[jnrD+0];
473
474             fjx0             = _mm_setzero_ps();
475             fjy0             = _mm_setzero_ps();
476             fjz0             = _mm_setzero_ps();
477
478             /**************************
479              * CALCULATE INTERACTIONS *
480              **************************/
481
482             r00              = _mm_mul_ps(rsq00,rinv00);
483             r00              = _mm_andnot_ps(dummy_mask,r00);
484
485             /* Compute parameters for interactions between i and j atoms */
486             qq00             = _mm_mul_ps(iq0,jq0);
487             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
488                                          vdwparam+vdwioffset0+vdwjidx0B,
489                                          vdwparam+vdwioffset0+vdwjidx0C,
490                                          vdwparam+vdwioffset0+vdwjidx0D,
491                                          &c6_00,&c12_00);
492
493             /* Calculate table index by multiplying r with table scale and truncate to integer */
494             rt               = _mm_mul_ps(r00,vftabscale);
495             vfitab           = _mm_cvttps_epi32(rt);
496 #ifdef __XOP__
497             vfeps            = _mm_frcz_ps(rt);
498 #else
499             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
500 #endif
501             twovfeps         = _mm_add_ps(vfeps,vfeps);
502             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
503
504             /* CUBIC SPLINE TABLE ELECTROSTATICS */
505             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
506             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
507             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
508             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
509             _MM_TRANSPOSE4_PS(Y,F,G,H);
510             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
511             VV               = _mm_macc_ps(vfeps,Fp,Y);
512             velec            = _mm_mul_ps(qq00,VV);
513             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
514             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
515
516             /* CUBIC SPLINE TABLE DISPERSION */
517             vfitab           = _mm_add_epi32(vfitab,ifour);
518             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
519             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
520             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
521             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
522             _MM_TRANSPOSE4_PS(Y,F,G,H);
523             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
524             VV               = _mm_macc_ps(vfeps,Fp,Y);
525             vvdw6            = _mm_mul_ps(c6_00,VV);
526             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
527             fvdw6            = _mm_mul_ps(c6_00,FF);
528
529             /* CUBIC SPLINE TABLE REPULSION */
530             vfitab           = _mm_add_epi32(vfitab,ifour);
531             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
532             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
533             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
534             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
535             _MM_TRANSPOSE4_PS(Y,F,G,H);
536             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
537             VV               = _mm_macc_ps(vfeps,Fp,Y);
538             vvdw12           = _mm_mul_ps(c12_00,VV);
539             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
540             fvdw12           = _mm_mul_ps(c12_00,FF);
541             vvdw             = _mm_add_ps(vvdw12,vvdw6);
542             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
543
544             /* Update potential sum for this i atom from the interaction with this j atom. */
545             velec            = _mm_andnot_ps(dummy_mask,velec);
546             velecsum         = _mm_add_ps(velecsum,velec);
547             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
548             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
549
550             fscal            = _mm_add_ps(felec,fvdw);
551
552             fscal            = _mm_andnot_ps(dummy_mask,fscal);
553
554              /* Update vectorial force */
555             fix0             = _mm_macc_ps(dx00,fscal,fix0);
556             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
557             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
558
559             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
560             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
561             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
562
563             /**************************
564              * CALCULATE INTERACTIONS *
565              **************************/
566
567             r10              = _mm_mul_ps(rsq10,rinv10);
568             r10              = _mm_andnot_ps(dummy_mask,r10);
569
570             /* Compute parameters for interactions between i and j atoms */
571             qq10             = _mm_mul_ps(iq1,jq0);
572
573             /* Calculate table index by multiplying r with table scale and truncate to integer */
574             rt               = _mm_mul_ps(r10,vftabscale);
575             vfitab           = _mm_cvttps_epi32(rt);
576 #ifdef __XOP__
577             vfeps            = _mm_frcz_ps(rt);
578 #else
579             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
580 #endif
581             twovfeps         = _mm_add_ps(vfeps,vfeps);
582             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
583
584             /* CUBIC SPLINE TABLE ELECTROSTATICS */
585             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
586             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
587             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
588             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
589             _MM_TRANSPOSE4_PS(Y,F,G,H);
590             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
591             VV               = _mm_macc_ps(vfeps,Fp,Y);
592             velec            = _mm_mul_ps(qq10,VV);
593             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
594             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
595
596             /* Update potential sum for this i atom from the interaction with this j atom. */
597             velec            = _mm_andnot_ps(dummy_mask,velec);
598             velecsum         = _mm_add_ps(velecsum,velec);
599
600             fscal            = felec;
601
602             fscal            = _mm_andnot_ps(dummy_mask,fscal);
603
604              /* Update vectorial force */
605             fix1             = _mm_macc_ps(dx10,fscal,fix1);
606             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
607             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
608
609             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
610             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
611             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
612
613             /**************************
614              * CALCULATE INTERACTIONS *
615              **************************/
616
617             r20              = _mm_mul_ps(rsq20,rinv20);
618             r20              = _mm_andnot_ps(dummy_mask,r20);
619
620             /* Compute parameters for interactions between i and j atoms */
621             qq20             = _mm_mul_ps(iq2,jq0);
622
623             /* Calculate table index by multiplying r with table scale and truncate to integer */
624             rt               = _mm_mul_ps(r20,vftabscale);
625             vfitab           = _mm_cvttps_epi32(rt);
626 #ifdef __XOP__
627             vfeps            = _mm_frcz_ps(rt);
628 #else
629             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
630 #endif
631             twovfeps         = _mm_add_ps(vfeps,vfeps);
632             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
633
634             /* CUBIC SPLINE TABLE ELECTROSTATICS */
635             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
636             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
637             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
638             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
639             _MM_TRANSPOSE4_PS(Y,F,G,H);
640             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
641             VV               = _mm_macc_ps(vfeps,Fp,Y);
642             velec            = _mm_mul_ps(qq20,VV);
643             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
644             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
645
646             /* Update potential sum for this i atom from the interaction with this j atom. */
647             velec            = _mm_andnot_ps(dummy_mask,velec);
648             velecsum         = _mm_add_ps(velecsum,velec);
649
650             fscal            = felec;
651
652             fscal            = _mm_andnot_ps(dummy_mask,fscal);
653
654              /* Update vectorial force */
655             fix2             = _mm_macc_ps(dx20,fscal,fix2);
656             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
657             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
658
659             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
660             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
661             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
662
663             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
664             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
665             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
666             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
667
668             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
669
670             /* Inner loop uses 171 flops */
671         }
672
673         /* End of innermost loop */
674
675         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
676                                               f+i_coord_offset,fshift+i_shift_offset);
677
678         ggid                        = gid[iidx];
679         /* Update potential energies */
680         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
681         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
682
683         /* Increment number of inner iterations */
684         inneriter                  += j_index_end - j_index_start;
685
686         /* Outer loop uses 20 flops */
687     }
688
689     /* Increment number of outer iterations */
690     outeriter        += nri;
691
692     /* Update outer/inner flops */
693
694     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*171);
695 }
696 /*
697  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_128_fma_single
698  * Electrostatics interaction: CubicSplineTable
699  * VdW interaction:            CubicSplineTable
700  * Geometry:                   Water3-Particle
701  * Calculate force/pot:        Force
702  */
703 void
704 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_128_fma_single
705                     (t_nblist                    * gmx_restrict       nlist,
706                      rvec                        * gmx_restrict          xx,
707                      rvec                        * gmx_restrict          ff,
708                      t_forcerec                  * gmx_restrict          fr,
709                      t_mdatoms                   * gmx_restrict     mdatoms,
710                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
711                      t_nrnb                      * gmx_restrict        nrnb)
712 {
713     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
714      * just 0 for non-waters.
715      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
716      * jnr indices corresponding to data put in the four positions in the SIMD register.
717      */
718     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
719     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
720     int              jnrA,jnrB,jnrC,jnrD;
721     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
722     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
723     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
724     real             rcutoff_scalar;
725     real             *shiftvec,*fshift,*x,*f;
726     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
727     real             scratch[4*DIM];
728     __m128           fscal,rcutoff,rcutoff2,jidxall;
729     int              vdwioffset0;
730     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
731     int              vdwioffset1;
732     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
733     int              vdwioffset2;
734     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
735     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
736     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
737     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
738     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
739     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
740     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
741     real             *charge;
742     int              nvdwtype;
743     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
744     int              *vdwtype;
745     real             *vdwparam;
746     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
747     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
748     __m128i          vfitab;
749     __m128i          ifour       = _mm_set1_epi32(4);
750     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
751     real             *vftab;
752     __m128           dummy_mask,cutoff_mask;
753     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
754     __m128           one     = _mm_set1_ps(1.0);
755     __m128           two     = _mm_set1_ps(2.0);
756     x                = xx[0];
757     f                = ff[0];
758
759     nri              = nlist->nri;
760     iinr             = nlist->iinr;
761     jindex           = nlist->jindex;
762     jjnr             = nlist->jjnr;
763     shiftidx         = nlist->shift;
764     gid              = nlist->gid;
765     shiftvec         = fr->shift_vec[0];
766     fshift           = fr->fshift[0];
767     facel            = _mm_set1_ps(fr->epsfac);
768     charge           = mdatoms->chargeA;
769     nvdwtype         = fr->ntype;
770     vdwparam         = fr->nbfp;
771     vdwtype          = mdatoms->typeA;
772
773     vftab            = kernel_data->table_elec_vdw->data;
774     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
775
776     /* Setup water-specific parameters */
777     inr              = nlist->iinr[0];
778     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
779     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
780     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
781     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
782
783     /* Avoid stupid compiler warnings */
784     jnrA = jnrB = jnrC = jnrD = 0;
785     j_coord_offsetA = 0;
786     j_coord_offsetB = 0;
787     j_coord_offsetC = 0;
788     j_coord_offsetD = 0;
789
790     outeriter        = 0;
791     inneriter        = 0;
792
793     for(iidx=0;iidx<4*DIM;iidx++)
794     {
795         scratch[iidx] = 0.0;
796     }
797
798     /* Start outer loop over neighborlists */
799     for(iidx=0; iidx<nri; iidx++)
800     {
801         /* Load shift vector for this list */
802         i_shift_offset   = DIM*shiftidx[iidx];
803
804         /* Load limits for loop over neighbors */
805         j_index_start    = jindex[iidx];
806         j_index_end      = jindex[iidx+1];
807
808         /* Get outer coordinate index */
809         inr              = iinr[iidx];
810         i_coord_offset   = DIM*inr;
811
812         /* Load i particle coords and add shift vector */
813         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
814                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
815
816         fix0             = _mm_setzero_ps();
817         fiy0             = _mm_setzero_ps();
818         fiz0             = _mm_setzero_ps();
819         fix1             = _mm_setzero_ps();
820         fiy1             = _mm_setzero_ps();
821         fiz1             = _mm_setzero_ps();
822         fix2             = _mm_setzero_ps();
823         fiy2             = _mm_setzero_ps();
824         fiz2             = _mm_setzero_ps();
825
826         /* Start inner kernel loop */
827         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
828         {
829
830             /* Get j neighbor index, and coordinate index */
831             jnrA             = jjnr[jidx];
832             jnrB             = jjnr[jidx+1];
833             jnrC             = jjnr[jidx+2];
834             jnrD             = jjnr[jidx+3];
835             j_coord_offsetA  = DIM*jnrA;
836             j_coord_offsetB  = DIM*jnrB;
837             j_coord_offsetC  = DIM*jnrC;
838             j_coord_offsetD  = DIM*jnrD;
839
840             /* load j atom coordinates */
841             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
842                                               x+j_coord_offsetC,x+j_coord_offsetD,
843                                               &jx0,&jy0,&jz0);
844
845             /* Calculate displacement vector */
846             dx00             = _mm_sub_ps(ix0,jx0);
847             dy00             = _mm_sub_ps(iy0,jy0);
848             dz00             = _mm_sub_ps(iz0,jz0);
849             dx10             = _mm_sub_ps(ix1,jx0);
850             dy10             = _mm_sub_ps(iy1,jy0);
851             dz10             = _mm_sub_ps(iz1,jz0);
852             dx20             = _mm_sub_ps(ix2,jx0);
853             dy20             = _mm_sub_ps(iy2,jy0);
854             dz20             = _mm_sub_ps(iz2,jz0);
855
856             /* Calculate squared distance and things based on it */
857             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
858             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
859             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
860
861             rinv00           = gmx_mm_invsqrt_ps(rsq00);
862             rinv10           = gmx_mm_invsqrt_ps(rsq10);
863             rinv20           = gmx_mm_invsqrt_ps(rsq20);
864
865             /* Load parameters for j particles */
866             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
867                                                               charge+jnrC+0,charge+jnrD+0);
868             vdwjidx0A        = 2*vdwtype[jnrA+0];
869             vdwjidx0B        = 2*vdwtype[jnrB+0];
870             vdwjidx0C        = 2*vdwtype[jnrC+0];
871             vdwjidx0D        = 2*vdwtype[jnrD+0];
872
873             fjx0             = _mm_setzero_ps();
874             fjy0             = _mm_setzero_ps();
875             fjz0             = _mm_setzero_ps();
876
877             /**************************
878              * CALCULATE INTERACTIONS *
879              **************************/
880
881             r00              = _mm_mul_ps(rsq00,rinv00);
882
883             /* Compute parameters for interactions between i and j atoms */
884             qq00             = _mm_mul_ps(iq0,jq0);
885             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
886                                          vdwparam+vdwioffset0+vdwjidx0B,
887                                          vdwparam+vdwioffset0+vdwjidx0C,
888                                          vdwparam+vdwioffset0+vdwjidx0D,
889                                          &c6_00,&c12_00);
890
891             /* Calculate table index by multiplying r with table scale and truncate to integer */
892             rt               = _mm_mul_ps(r00,vftabscale);
893             vfitab           = _mm_cvttps_epi32(rt);
894 #ifdef __XOP__
895             vfeps            = _mm_frcz_ps(rt);
896 #else
897             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
898 #endif
899             twovfeps         = _mm_add_ps(vfeps,vfeps);
900             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
901
902             /* CUBIC SPLINE TABLE ELECTROSTATICS */
903             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
904             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
905             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
906             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
907             _MM_TRANSPOSE4_PS(Y,F,G,H);
908             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
909             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
910             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
911
912             /* CUBIC SPLINE TABLE DISPERSION */
913             vfitab           = _mm_add_epi32(vfitab,ifour);
914             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
915             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
916             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
917             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
918             _MM_TRANSPOSE4_PS(Y,F,G,H);
919             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
920             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
921             fvdw6            = _mm_mul_ps(c6_00,FF);
922
923             /* CUBIC SPLINE TABLE REPULSION */
924             vfitab           = _mm_add_epi32(vfitab,ifour);
925             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
926             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
927             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
928             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
929             _MM_TRANSPOSE4_PS(Y,F,G,H);
930             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
931             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
932             fvdw12           = _mm_mul_ps(c12_00,FF);
933             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
934
935             fscal            = _mm_add_ps(felec,fvdw);
936
937              /* Update vectorial force */
938             fix0             = _mm_macc_ps(dx00,fscal,fix0);
939             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
940             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
941
942             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
943             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
944             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
945
946             /**************************
947              * CALCULATE INTERACTIONS *
948              **************************/
949
950             r10              = _mm_mul_ps(rsq10,rinv10);
951
952             /* Compute parameters for interactions between i and j atoms */
953             qq10             = _mm_mul_ps(iq1,jq0);
954
955             /* Calculate table index by multiplying r with table scale and truncate to integer */
956             rt               = _mm_mul_ps(r10,vftabscale);
957             vfitab           = _mm_cvttps_epi32(rt);
958 #ifdef __XOP__
959             vfeps            = _mm_frcz_ps(rt);
960 #else
961             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
962 #endif
963             twovfeps         = _mm_add_ps(vfeps,vfeps);
964             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
965
966             /* CUBIC SPLINE TABLE ELECTROSTATICS */
967             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
968             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
969             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
970             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
971             _MM_TRANSPOSE4_PS(Y,F,G,H);
972             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
973             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
974             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
975
976             fscal            = felec;
977
978              /* Update vectorial force */
979             fix1             = _mm_macc_ps(dx10,fscal,fix1);
980             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
981             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
982
983             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
984             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
985             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
986
987             /**************************
988              * CALCULATE INTERACTIONS *
989              **************************/
990
991             r20              = _mm_mul_ps(rsq20,rinv20);
992
993             /* Compute parameters for interactions between i and j atoms */
994             qq20             = _mm_mul_ps(iq2,jq0);
995
996             /* Calculate table index by multiplying r with table scale and truncate to integer */
997             rt               = _mm_mul_ps(r20,vftabscale);
998             vfitab           = _mm_cvttps_epi32(rt);
999 #ifdef __XOP__
1000             vfeps            = _mm_frcz_ps(rt);
1001 #else
1002             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1003 #endif
1004             twovfeps         = _mm_add_ps(vfeps,vfeps);
1005             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1006
1007             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1008             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1009             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1010             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1011             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1012             _MM_TRANSPOSE4_PS(Y,F,G,H);
1013             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1014             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1015             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1016
1017             fscal            = felec;
1018
1019              /* Update vectorial force */
1020             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1021             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1022             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1023
1024             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1025             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1026             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1027
1028             fjptrA             = f+j_coord_offsetA;
1029             fjptrB             = f+j_coord_offsetB;
1030             fjptrC             = f+j_coord_offsetC;
1031             fjptrD             = f+j_coord_offsetD;
1032
1033             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1034
1035             /* Inner loop uses 148 flops */
1036         }
1037
1038         if(jidx<j_index_end)
1039         {
1040
1041             /* Get j neighbor index, and coordinate index */
1042             jnrlistA         = jjnr[jidx];
1043             jnrlistB         = jjnr[jidx+1];
1044             jnrlistC         = jjnr[jidx+2];
1045             jnrlistD         = jjnr[jidx+3];
1046             /* Sign of each element will be negative for non-real atoms.
1047              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1048              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1049              */
1050             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1051             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1052             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1053             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1054             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1055             j_coord_offsetA  = DIM*jnrA;
1056             j_coord_offsetB  = DIM*jnrB;
1057             j_coord_offsetC  = DIM*jnrC;
1058             j_coord_offsetD  = DIM*jnrD;
1059
1060             /* load j atom coordinates */
1061             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1062                                               x+j_coord_offsetC,x+j_coord_offsetD,
1063                                               &jx0,&jy0,&jz0);
1064
1065             /* Calculate displacement vector */
1066             dx00             = _mm_sub_ps(ix0,jx0);
1067             dy00             = _mm_sub_ps(iy0,jy0);
1068             dz00             = _mm_sub_ps(iz0,jz0);
1069             dx10             = _mm_sub_ps(ix1,jx0);
1070             dy10             = _mm_sub_ps(iy1,jy0);
1071             dz10             = _mm_sub_ps(iz1,jz0);
1072             dx20             = _mm_sub_ps(ix2,jx0);
1073             dy20             = _mm_sub_ps(iy2,jy0);
1074             dz20             = _mm_sub_ps(iz2,jz0);
1075
1076             /* Calculate squared distance and things based on it */
1077             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1078             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1079             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1080
1081             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1082             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1083             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1084
1085             /* Load parameters for j particles */
1086             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1087                                                               charge+jnrC+0,charge+jnrD+0);
1088             vdwjidx0A        = 2*vdwtype[jnrA+0];
1089             vdwjidx0B        = 2*vdwtype[jnrB+0];
1090             vdwjidx0C        = 2*vdwtype[jnrC+0];
1091             vdwjidx0D        = 2*vdwtype[jnrD+0];
1092
1093             fjx0             = _mm_setzero_ps();
1094             fjy0             = _mm_setzero_ps();
1095             fjz0             = _mm_setzero_ps();
1096
1097             /**************************
1098              * CALCULATE INTERACTIONS *
1099              **************************/
1100
1101             r00              = _mm_mul_ps(rsq00,rinv00);
1102             r00              = _mm_andnot_ps(dummy_mask,r00);
1103
1104             /* Compute parameters for interactions between i and j atoms */
1105             qq00             = _mm_mul_ps(iq0,jq0);
1106             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1107                                          vdwparam+vdwioffset0+vdwjidx0B,
1108                                          vdwparam+vdwioffset0+vdwjidx0C,
1109                                          vdwparam+vdwioffset0+vdwjidx0D,
1110                                          &c6_00,&c12_00);
1111
1112             /* Calculate table index by multiplying r with table scale and truncate to integer */
1113             rt               = _mm_mul_ps(r00,vftabscale);
1114             vfitab           = _mm_cvttps_epi32(rt);
1115 #ifdef __XOP__
1116             vfeps            = _mm_frcz_ps(rt);
1117 #else
1118             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1119 #endif
1120             twovfeps         = _mm_add_ps(vfeps,vfeps);
1121             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1122
1123             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1124             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1125             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1126             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1127             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1128             _MM_TRANSPOSE4_PS(Y,F,G,H);
1129             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1130             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1131             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
1132
1133             /* CUBIC SPLINE TABLE DISPERSION */
1134             vfitab           = _mm_add_epi32(vfitab,ifour);
1135             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1136             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1137             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1138             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1139             _MM_TRANSPOSE4_PS(Y,F,G,H);
1140             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1141             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1142             fvdw6            = _mm_mul_ps(c6_00,FF);
1143
1144             /* CUBIC SPLINE TABLE REPULSION */
1145             vfitab           = _mm_add_epi32(vfitab,ifour);
1146             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1147             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1148             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1149             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1150             _MM_TRANSPOSE4_PS(Y,F,G,H);
1151             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1152             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1153             fvdw12           = _mm_mul_ps(c12_00,FF);
1154             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1155
1156             fscal            = _mm_add_ps(felec,fvdw);
1157
1158             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1159
1160              /* Update vectorial force */
1161             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1162             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1163             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1164
1165             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1166             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1167             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1168
1169             /**************************
1170              * CALCULATE INTERACTIONS *
1171              **************************/
1172
1173             r10              = _mm_mul_ps(rsq10,rinv10);
1174             r10              = _mm_andnot_ps(dummy_mask,r10);
1175
1176             /* Compute parameters for interactions between i and j atoms */
1177             qq10             = _mm_mul_ps(iq1,jq0);
1178
1179             /* Calculate table index by multiplying r with table scale and truncate to integer */
1180             rt               = _mm_mul_ps(r10,vftabscale);
1181             vfitab           = _mm_cvttps_epi32(rt);
1182 #ifdef __XOP__
1183             vfeps            = _mm_frcz_ps(rt);
1184 #else
1185             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1186 #endif
1187             twovfeps         = _mm_add_ps(vfeps,vfeps);
1188             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1189
1190             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1191             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1192             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1193             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1194             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1195             _MM_TRANSPOSE4_PS(Y,F,G,H);
1196             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1197             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1198             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1199
1200             fscal            = felec;
1201
1202             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1203
1204              /* Update vectorial force */
1205             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1206             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1207             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1208
1209             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1210             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1211             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1212
1213             /**************************
1214              * CALCULATE INTERACTIONS *
1215              **************************/
1216
1217             r20              = _mm_mul_ps(rsq20,rinv20);
1218             r20              = _mm_andnot_ps(dummy_mask,r20);
1219
1220             /* Compute parameters for interactions between i and j atoms */
1221             qq20             = _mm_mul_ps(iq2,jq0);
1222
1223             /* Calculate table index by multiplying r with table scale and truncate to integer */
1224             rt               = _mm_mul_ps(r20,vftabscale);
1225             vfitab           = _mm_cvttps_epi32(rt);
1226 #ifdef __XOP__
1227             vfeps            = _mm_frcz_ps(rt);
1228 #else
1229             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1230 #endif
1231             twovfeps         = _mm_add_ps(vfeps,vfeps);
1232             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1233
1234             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1235             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1236             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1237             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1238             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1239             _MM_TRANSPOSE4_PS(Y,F,G,H);
1240             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1241             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1242             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1243
1244             fscal            = felec;
1245
1246             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1247
1248              /* Update vectorial force */
1249             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1250             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1251             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1252
1253             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1254             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1255             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1256
1257             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1258             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1259             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1260             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1261
1262             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1263
1264             /* Inner loop uses 151 flops */
1265         }
1266
1267         /* End of innermost loop */
1268
1269         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1270                                               f+i_coord_offset,fshift+i_shift_offset);
1271
1272         /* Increment number of inner iterations */
1273         inneriter                  += j_index_end - j_index_start;
1274
1275         /* Outer loop uses 18 flops */
1276     }
1277
1278     /* Increment number of outer iterations */
1279     outeriter        += nri;
1280
1281     /* Update outer/inner flops */
1282
1283     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*151);
1284 }