Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
100     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
104     real             *vftab;
105     __m128           dummy_mask,cutoff_mask;
106     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
107     __m128           one     = _mm_set1_ps(1.0);
108     __m128           two     = _mm_set1_ps(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_ps(fr->ic->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_elec_vdw->data;
127     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
132     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
133     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     for(iidx=0;iidx<4*DIM;iidx++)
147     {
148         scratch[iidx] = 0.0;
149     }
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
167                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
168
169         fix0             = _mm_setzero_ps();
170         fiy0             = _mm_setzero_ps();
171         fiz0             = _mm_setzero_ps();
172         fix1             = _mm_setzero_ps();
173         fiy1             = _mm_setzero_ps();
174         fiz1             = _mm_setzero_ps();
175         fix2             = _mm_setzero_ps();
176         fiy2             = _mm_setzero_ps();
177         fiz2             = _mm_setzero_ps();
178
179         /* Reset potential sums */
180         velecsum         = _mm_setzero_ps();
181         vvdwsum          = _mm_setzero_ps();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             jnrC             = jjnr[jidx+2];
191             jnrD             = jjnr[jidx+3];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194             j_coord_offsetC  = DIM*jnrC;
195             j_coord_offsetD  = DIM*jnrD;
196
197             /* load j atom coordinates */
198             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
199                                               x+j_coord_offsetC,x+j_coord_offsetD,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_ps(ix0,jx0);
204             dy00             = _mm_sub_ps(iy0,jy0);
205             dz00             = _mm_sub_ps(iz0,jz0);
206             dx10             = _mm_sub_ps(ix1,jx0);
207             dy10             = _mm_sub_ps(iy1,jy0);
208             dz10             = _mm_sub_ps(iz1,jz0);
209             dx20             = _mm_sub_ps(ix2,jx0);
210             dy20             = _mm_sub_ps(iy2,jy0);
211             dz20             = _mm_sub_ps(iz2,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
215             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
216             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
217
218             rinv00           = avx128fma_invsqrt_f(rsq00);
219             rinv10           = avx128fma_invsqrt_f(rsq10);
220             rinv20           = avx128fma_invsqrt_f(rsq20);
221
222             /* Load parameters for j particles */
223             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
224                                                               charge+jnrC+0,charge+jnrD+0);
225             vdwjidx0A        = 2*vdwtype[jnrA+0];
226             vdwjidx0B        = 2*vdwtype[jnrB+0];
227             vdwjidx0C        = 2*vdwtype[jnrC+0];
228             vdwjidx0D        = 2*vdwtype[jnrD+0];
229
230             fjx0             = _mm_setzero_ps();
231             fjy0             = _mm_setzero_ps();
232             fjz0             = _mm_setzero_ps();
233
234             /**************************
235              * CALCULATE INTERACTIONS *
236              **************************/
237
238             r00              = _mm_mul_ps(rsq00,rinv00);
239
240             /* Compute parameters for interactions between i and j atoms */
241             qq00             = _mm_mul_ps(iq0,jq0);
242             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
243                                          vdwparam+vdwioffset0+vdwjidx0B,
244                                          vdwparam+vdwioffset0+vdwjidx0C,
245                                          vdwparam+vdwioffset0+vdwjidx0D,
246                                          &c6_00,&c12_00);
247
248             /* Calculate table index by multiplying r with table scale and truncate to integer */
249             rt               = _mm_mul_ps(r00,vftabscale);
250             vfitab           = _mm_cvttps_epi32(rt);
251 #ifdef __XOP__
252             vfeps            = _mm_frcz_ps(rt);
253 #else
254             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
255 #endif
256             twovfeps         = _mm_add_ps(vfeps,vfeps);
257             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
258
259             /* CUBIC SPLINE TABLE ELECTROSTATICS */
260             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
261             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
262             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
263             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
264             _MM_TRANSPOSE4_PS(Y,F,G,H);
265             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
266             VV               = _mm_macc_ps(vfeps,Fp,Y);
267             velec            = _mm_mul_ps(qq00,VV);
268             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
269             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
270
271             /* CUBIC SPLINE TABLE DISPERSION */
272             vfitab           = _mm_add_epi32(vfitab,ifour);
273             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
274             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
275             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
276             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
277             _MM_TRANSPOSE4_PS(Y,F,G,H);
278             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
279             VV               = _mm_macc_ps(vfeps,Fp,Y);
280             vvdw6            = _mm_mul_ps(c6_00,VV);
281             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
282             fvdw6            = _mm_mul_ps(c6_00,FF);
283
284             /* CUBIC SPLINE TABLE REPULSION */
285             vfitab           = _mm_add_epi32(vfitab,ifour);
286             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
287             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
288             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
289             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
290             _MM_TRANSPOSE4_PS(Y,F,G,H);
291             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
292             VV               = _mm_macc_ps(vfeps,Fp,Y);
293             vvdw12           = _mm_mul_ps(c12_00,VV);
294             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
295             fvdw12           = _mm_mul_ps(c12_00,FF);
296             vvdw             = _mm_add_ps(vvdw12,vvdw6);
297             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velecsum         = _mm_add_ps(velecsum,velec);
301             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
302
303             fscal            = _mm_add_ps(felec,fvdw);
304
305              /* Update vectorial force */
306             fix0             = _mm_macc_ps(dx00,fscal,fix0);
307             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
308             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
309
310             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
311             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
312             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             r10              = _mm_mul_ps(rsq10,rinv10);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq10             = _mm_mul_ps(iq1,jq0);
322
323             /* Calculate table index by multiplying r with table scale and truncate to integer */
324             rt               = _mm_mul_ps(r10,vftabscale);
325             vfitab           = _mm_cvttps_epi32(rt);
326 #ifdef __XOP__
327             vfeps            = _mm_frcz_ps(rt);
328 #else
329             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
330 #endif
331             twovfeps         = _mm_add_ps(vfeps,vfeps);
332             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
333
334             /* CUBIC SPLINE TABLE ELECTROSTATICS */
335             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
336             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
337             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
338             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
339             _MM_TRANSPOSE4_PS(Y,F,G,H);
340             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
341             VV               = _mm_macc_ps(vfeps,Fp,Y);
342             velec            = _mm_mul_ps(qq10,VV);
343             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
344             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velecsum         = _mm_add_ps(velecsum,velec);
348
349             fscal            = felec;
350
351              /* Update vectorial force */
352             fix1             = _mm_macc_ps(dx10,fscal,fix1);
353             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
354             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
355
356             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
357             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
358             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             r20              = _mm_mul_ps(rsq20,rinv20);
365
366             /* Compute parameters for interactions between i and j atoms */
367             qq20             = _mm_mul_ps(iq2,jq0);
368
369             /* Calculate table index by multiplying r with table scale and truncate to integer */
370             rt               = _mm_mul_ps(r20,vftabscale);
371             vfitab           = _mm_cvttps_epi32(rt);
372 #ifdef __XOP__
373             vfeps            = _mm_frcz_ps(rt);
374 #else
375             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
376 #endif
377             twovfeps         = _mm_add_ps(vfeps,vfeps);
378             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
379
380             /* CUBIC SPLINE TABLE ELECTROSTATICS */
381             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
382             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
383             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
384             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
385             _MM_TRANSPOSE4_PS(Y,F,G,H);
386             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
387             VV               = _mm_macc_ps(vfeps,Fp,Y);
388             velec            = _mm_mul_ps(qq20,VV);
389             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
390             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
391
392             /* Update potential sum for this i atom from the interaction with this j atom. */
393             velecsum         = _mm_add_ps(velecsum,velec);
394
395             fscal            = felec;
396
397              /* Update vectorial force */
398             fix2             = _mm_macc_ps(dx20,fscal,fix2);
399             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
400             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
401
402             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
403             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
404             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
405
406             fjptrA             = f+j_coord_offsetA;
407             fjptrB             = f+j_coord_offsetB;
408             fjptrC             = f+j_coord_offsetC;
409             fjptrD             = f+j_coord_offsetD;
410
411             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
412
413             /* Inner loop uses 168 flops */
414         }
415
416         if(jidx<j_index_end)
417         {
418
419             /* Get j neighbor index, and coordinate index */
420             jnrlistA         = jjnr[jidx];
421             jnrlistB         = jjnr[jidx+1];
422             jnrlistC         = jjnr[jidx+2];
423             jnrlistD         = jjnr[jidx+3];
424             /* Sign of each element will be negative for non-real atoms.
425              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
426              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
427              */
428             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
429             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
430             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
431             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
432             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
433             j_coord_offsetA  = DIM*jnrA;
434             j_coord_offsetB  = DIM*jnrB;
435             j_coord_offsetC  = DIM*jnrC;
436             j_coord_offsetD  = DIM*jnrD;
437
438             /* load j atom coordinates */
439             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
440                                               x+j_coord_offsetC,x+j_coord_offsetD,
441                                               &jx0,&jy0,&jz0);
442
443             /* Calculate displacement vector */
444             dx00             = _mm_sub_ps(ix0,jx0);
445             dy00             = _mm_sub_ps(iy0,jy0);
446             dz00             = _mm_sub_ps(iz0,jz0);
447             dx10             = _mm_sub_ps(ix1,jx0);
448             dy10             = _mm_sub_ps(iy1,jy0);
449             dz10             = _mm_sub_ps(iz1,jz0);
450             dx20             = _mm_sub_ps(ix2,jx0);
451             dy20             = _mm_sub_ps(iy2,jy0);
452             dz20             = _mm_sub_ps(iz2,jz0);
453
454             /* Calculate squared distance and things based on it */
455             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
456             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
457             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
458
459             rinv00           = avx128fma_invsqrt_f(rsq00);
460             rinv10           = avx128fma_invsqrt_f(rsq10);
461             rinv20           = avx128fma_invsqrt_f(rsq20);
462
463             /* Load parameters for j particles */
464             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
465                                                               charge+jnrC+0,charge+jnrD+0);
466             vdwjidx0A        = 2*vdwtype[jnrA+0];
467             vdwjidx0B        = 2*vdwtype[jnrB+0];
468             vdwjidx0C        = 2*vdwtype[jnrC+0];
469             vdwjidx0D        = 2*vdwtype[jnrD+0];
470
471             fjx0             = _mm_setzero_ps();
472             fjy0             = _mm_setzero_ps();
473             fjz0             = _mm_setzero_ps();
474
475             /**************************
476              * CALCULATE INTERACTIONS *
477              **************************/
478
479             r00              = _mm_mul_ps(rsq00,rinv00);
480             r00              = _mm_andnot_ps(dummy_mask,r00);
481
482             /* Compute parameters for interactions between i and j atoms */
483             qq00             = _mm_mul_ps(iq0,jq0);
484             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
485                                          vdwparam+vdwioffset0+vdwjidx0B,
486                                          vdwparam+vdwioffset0+vdwjidx0C,
487                                          vdwparam+vdwioffset0+vdwjidx0D,
488                                          &c6_00,&c12_00);
489
490             /* Calculate table index by multiplying r with table scale and truncate to integer */
491             rt               = _mm_mul_ps(r00,vftabscale);
492             vfitab           = _mm_cvttps_epi32(rt);
493 #ifdef __XOP__
494             vfeps            = _mm_frcz_ps(rt);
495 #else
496             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
497 #endif
498             twovfeps         = _mm_add_ps(vfeps,vfeps);
499             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
500
501             /* CUBIC SPLINE TABLE ELECTROSTATICS */
502             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
503             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
504             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
505             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
506             _MM_TRANSPOSE4_PS(Y,F,G,H);
507             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
508             VV               = _mm_macc_ps(vfeps,Fp,Y);
509             velec            = _mm_mul_ps(qq00,VV);
510             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
511             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
512
513             /* CUBIC SPLINE TABLE DISPERSION */
514             vfitab           = _mm_add_epi32(vfitab,ifour);
515             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
516             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
517             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
518             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
519             _MM_TRANSPOSE4_PS(Y,F,G,H);
520             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
521             VV               = _mm_macc_ps(vfeps,Fp,Y);
522             vvdw6            = _mm_mul_ps(c6_00,VV);
523             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
524             fvdw6            = _mm_mul_ps(c6_00,FF);
525
526             /* CUBIC SPLINE TABLE REPULSION */
527             vfitab           = _mm_add_epi32(vfitab,ifour);
528             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
529             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
530             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
531             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
532             _MM_TRANSPOSE4_PS(Y,F,G,H);
533             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
534             VV               = _mm_macc_ps(vfeps,Fp,Y);
535             vvdw12           = _mm_mul_ps(c12_00,VV);
536             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
537             fvdw12           = _mm_mul_ps(c12_00,FF);
538             vvdw             = _mm_add_ps(vvdw12,vvdw6);
539             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
540
541             /* Update potential sum for this i atom from the interaction with this j atom. */
542             velec            = _mm_andnot_ps(dummy_mask,velec);
543             velecsum         = _mm_add_ps(velecsum,velec);
544             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
545             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
546
547             fscal            = _mm_add_ps(felec,fvdw);
548
549             fscal            = _mm_andnot_ps(dummy_mask,fscal);
550
551              /* Update vectorial force */
552             fix0             = _mm_macc_ps(dx00,fscal,fix0);
553             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
554             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
555
556             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
557             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
558             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
559
560             /**************************
561              * CALCULATE INTERACTIONS *
562              **************************/
563
564             r10              = _mm_mul_ps(rsq10,rinv10);
565             r10              = _mm_andnot_ps(dummy_mask,r10);
566
567             /* Compute parameters for interactions between i and j atoms */
568             qq10             = _mm_mul_ps(iq1,jq0);
569
570             /* Calculate table index by multiplying r with table scale and truncate to integer */
571             rt               = _mm_mul_ps(r10,vftabscale);
572             vfitab           = _mm_cvttps_epi32(rt);
573 #ifdef __XOP__
574             vfeps            = _mm_frcz_ps(rt);
575 #else
576             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
577 #endif
578             twovfeps         = _mm_add_ps(vfeps,vfeps);
579             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
580
581             /* CUBIC SPLINE TABLE ELECTROSTATICS */
582             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
583             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
584             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
585             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
586             _MM_TRANSPOSE4_PS(Y,F,G,H);
587             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
588             VV               = _mm_macc_ps(vfeps,Fp,Y);
589             velec            = _mm_mul_ps(qq10,VV);
590             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
591             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
592
593             /* Update potential sum for this i atom from the interaction with this j atom. */
594             velec            = _mm_andnot_ps(dummy_mask,velec);
595             velecsum         = _mm_add_ps(velecsum,velec);
596
597             fscal            = felec;
598
599             fscal            = _mm_andnot_ps(dummy_mask,fscal);
600
601              /* Update vectorial force */
602             fix1             = _mm_macc_ps(dx10,fscal,fix1);
603             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
604             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
605
606             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
607             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
608             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
609
610             /**************************
611              * CALCULATE INTERACTIONS *
612              **************************/
613
614             r20              = _mm_mul_ps(rsq20,rinv20);
615             r20              = _mm_andnot_ps(dummy_mask,r20);
616
617             /* Compute parameters for interactions between i and j atoms */
618             qq20             = _mm_mul_ps(iq2,jq0);
619
620             /* Calculate table index by multiplying r with table scale and truncate to integer */
621             rt               = _mm_mul_ps(r20,vftabscale);
622             vfitab           = _mm_cvttps_epi32(rt);
623 #ifdef __XOP__
624             vfeps            = _mm_frcz_ps(rt);
625 #else
626             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
627 #endif
628             twovfeps         = _mm_add_ps(vfeps,vfeps);
629             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
630
631             /* CUBIC SPLINE TABLE ELECTROSTATICS */
632             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
633             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
634             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
635             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
636             _MM_TRANSPOSE4_PS(Y,F,G,H);
637             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
638             VV               = _mm_macc_ps(vfeps,Fp,Y);
639             velec            = _mm_mul_ps(qq20,VV);
640             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
641             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
642
643             /* Update potential sum for this i atom from the interaction with this j atom. */
644             velec            = _mm_andnot_ps(dummy_mask,velec);
645             velecsum         = _mm_add_ps(velecsum,velec);
646
647             fscal            = felec;
648
649             fscal            = _mm_andnot_ps(dummy_mask,fscal);
650
651              /* Update vectorial force */
652             fix2             = _mm_macc_ps(dx20,fscal,fix2);
653             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
654             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
655
656             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
657             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
658             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
659
660             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
661             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
662             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
663             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
664
665             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
666
667             /* Inner loop uses 171 flops */
668         }
669
670         /* End of innermost loop */
671
672         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
673                                               f+i_coord_offset,fshift+i_shift_offset);
674
675         ggid                        = gid[iidx];
676         /* Update potential energies */
677         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
678         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
679
680         /* Increment number of inner iterations */
681         inneriter                  += j_index_end - j_index_start;
682
683         /* Outer loop uses 20 flops */
684     }
685
686     /* Increment number of outer iterations */
687     outeriter        += nri;
688
689     /* Update outer/inner flops */
690
691     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*171);
692 }
693 /*
694  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_128_fma_single
695  * Electrostatics interaction: CubicSplineTable
696  * VdW interaction:            CubicSplineTable
697  * Geometry:                   Water3-Particle
698  * Calculate force/pot:        Force
699  */
700 void
701 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_128_fma_single
702                     (t_nblist                    * gmx_restrict       nlist,
703                      rvec                        * gmx_restrict          xx,
704                      rvec                        * gmx_restrict          ff,
705                      struct t_forcerec           * gmx_restrict          fr,
706                      t_mdatoms                   * gmx_restrict     mdatoms,
707                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
708                      t_nrnb                      * gmx_restrict        nrnb)
709 {
710     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
711      * just 0 for non-waters.
712      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
713      * jnr indices corresponding to data put in the four positions in the SIMD register.
714      */
715     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
716     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
717     int              jnrA,jnrB,jnrC,jnrD;
718     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
719     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
720     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
721     real             rcutoff_scalar;
722     real             *shiftvec,*fshift,*x,*f;
723     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
724     real             scratch[4*DIM];
725     __m128           fscal,rcutoff,rcutoff2,jidxall;
726     int              vdwioffset0;
727     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
728     int              vdwioffset1;
729     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
730     int              vdwioffset2;
731     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
732     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
733     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
734     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
735     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
736     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
737     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
738     real             *charge;
739     int              nvdwtype;
740     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
741     int              *vdwtype;
742     real             *vdwparam;
743     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
744     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
745     __m128i          vfitab;
746     __m128i          ifour       = _mm_set1_epi32(4);
747     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
748     real             *vftab;
749     __m128           dummy_mask,cutoff_mask;
750     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
751     __m128           one     = _mm_set1_ps(1.0);
752     __m128           two     = _mm_set1_ps(2.0);
753     x                = xx[0];
754     f                = ff[0];
755
756     nri              = nlist->nri;
757     iinr             = nlist->iinr;
758     jindex           = nlist->jindex;
759     jjnr             = nlist->jjnr;
760     shiftidx         = nlist->shift;
761     gid              = nlist->gid;
762     shiftvec         = fr->shift_vec[0];
763     fshift           = fr->fshift[0];
764     facel            = _mm_set1_ps(fr->ic->epsfac);
765     charge           = mdatoms->chargeA;
766     nvdwtype         = fr->ntype;
767     vdwparam         = fr->nbfp;
768     vdwtype          = mdatoms->typeA;
769
770     vftab            = kernel_data->table_elec_vdw->data;
771     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
772
773     /* Setup water-specific parameters */
774     inr              = nlist->iinr[0];
775     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
776     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
777     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
778     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
779
780     /* Avoid stupid compiler warnings */
781     jnrA = jnrB = jnrC = jnrD = 0;
782     j_coord_offsetA = 0;
783     j_coord_offsetB = 0;
784     j_coord_offsetC = 0;
785     j_coord_offsetD = 0;
786
787     outeriter        = 0;
788     inneriter        = 0;
789
790     for(iidx=0;iidx<4*DIM;iidx++)
791     {
792         scratch[iidx] = 0.0;
793     }
794
795     /* Start outer loop over neighborlists */
796     for(iidx=0; iidx<nri; iidx++)
797     {
798         /* Load shift vector for this list */
799         i_shift_offset   = DIM*shiftidx[iidx];
800
801         /* Load limits for loop over neighbors */
802         j_index_start    = jindex[iidx];
803         j_index_end      = jindex[iidx+1];
804
805         /* Get outer coordinate index */
806         inr              = iinr[iidx];
807         i_coord_offset   = DIM*inr;
808
809         /* Load i particle coords and add shift vector */
810         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
811                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
812
813         fix0             = _mm_setzero_ps();
814         fiy0             = _mm_setzero_ps();
815         fiz0             = _mm_setzero_ps();
816         fix1             = _mm_setzero_ps();
817         fiy1             = _mm_setzero_ps();
818         fiz1             = _mm_setzero_ps();
819         fix2             = _mm_setzero_ps();
820         fiy2             = _mm_setzero_ps();
821         fiz2             = _mm_setzero_ps();
822
823         /* Start inner kernel loop */
824         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
825         {
826
827             /* Get j neighbor index, and coordinate index */
828             jnrA             = jjnr[jidx];
829             jnrB             = jjnr[jidx+1];
830             jnrC             = jjnr[jidx+2];
831             jnrD             = jjnr[jidx+3];
832             j_coord_offsetA  = DIM*jnrA;
833             j_coord_offsetB  = DIM*jnrB;
834             j_coord_offsetC  = DIM*jnrC;
835             j_coord_offsetD  = DIM*jnrD;
836
837             /* load j atom coordinates */
838             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
839                                               x+j_coord_offsetC,x+j_coord_offsetD,
840                                               &jx0,&jy0,&jz0);
841
842             /* Calculate displacement vector */
843             dx00             = _mm_sub_ps(ix0,jx0);
844             dy00             = _mm_sub_ps(iy0,jy0);
845             dz00             = _mm_sub_ps(iz0,jz0);
846             dx10             = _mm_sub_ps(ix1,jx0);
847             dy10             = _mm_sub_ps(iy1,jy0);
848             dz10             = _mm_sub_ps(iz1,jz0);
849             dx20             = _mm_sub_ps(ix2,jx0);
850             dy20             = _mm_sub_ps(iy2,jy0);
851             dz20             = _mm_sub_ps(iz2,jz0);
852
853             /* Calculate squared distance and things based on it */
854             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
855             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
856             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
857
858             rinv00           = avx128fma_invsqrt_f(rsq00);
859             rinv10           = avx128fma_invsqrt_f(rsq10);
860             rinv20           = avx128fma_invsqrt_f(rsq20);
861
862             /* Load parameters for j particles */
863             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
864                                                               charge+jnrC+0,charge+jnrD+0);
865             vdwjidx0A        = 2*vdwtype[jnrA+0];
866             vdwjidx0B        = 2*vdwtype[jnrB+0];
867             vdwjidx0C        = 2*vdwtype[jnrC+0];
868             vdwjidx0D        = 2*vdwtype[jnrD+0];
869
870             fjx0             = _mm_setzero_ps();
871             fjy0             = _mm_setzero_ps();
872             fjz0             = _mm_setzero_ps();
873
874             /**************************
875              * CALCULATE INTERACTIONS *
876              **************************/
877
878             r00              = _mm_mul_ps(rsq00,rinv00);
879
880             /* Compute parameters for interactions between i and j atoms */
881             qq00             = _mm_mul_ps(iq0,jq0);
882             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
883                                          vdwparam+vdwioffset0+vdwjidx0B,
884                                          vdwparam+vdwioffset0+vdwjidx0C,
885                                          vdwparam+vdwioffset0+vdwjidx0D,
886                                          &c6_00,&c12_00);
887
888             /* Calculate table index by multiplying r with table scale and truncate to integer */
889             rt               = _mm_mul_ps(r00,vftabscale);
890             vfitab           = _mm_cvttps_epi32(rt);
891 #ifdef __XOP__
892             vfeps            = _mm_frcz_ps(rt);
893 #else
894             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
895 #endif
896             twovfeps         = _mm_add_ps(vfeps,vfeps);
897             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
898
899             /* CUBIC SPLINE TABLE ELECTROSTATICS */
900             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
901             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
902             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
903             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
904             _MM_TRANSPOSE4_PS(Y,F,G,H);
905             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
906             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
907             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
908
909             /* CUBIC SPLINE TABLE DISPERSION */
910             vfitab           = _mm_add_epi32(vfitab,ifour);
911             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
912             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
913             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
914             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
915             _MM_TRANSPOSE4_PS(Y,F,G,H);
916             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
917             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
918             fvdw6            = _mm_mul_ps(c6_00,FF);
919
920             /* CUBIC SPLINE TABLE REPULSION */
921             vfitab           = _mm_add_epi32(vfitab,ifour);
922             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
923             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
924             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
925             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
926             _MM_TRANSPOSE4_PS(Y,F,G,H);
927             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
928             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
929             fvdw12           = _mm_mul_ps(c12_00,FF);
930             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
931
932             fscal            = _mm_add_ps(felec,fvdw);
933
934              /* Update vectorial force */
935             fix0             = _mm_macc_ps(dx00,fscal,fix0);
936             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
937             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
938
939             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
940             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
941             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
942
943             /**************************
944              * CALCULATE INTERACTIONS *
945              **************************/
946
947             r10              = _mm_mul_ps(rsq10,rinv10);
948
949             /* Compute parameters for interactions between i and j atoms */
950             qq10             = _mm_mul_ps(iq1,jq0);
951
952             /* Calculate table index by multiplying r with table scale and truncate to integer */
953             rt               = _mm_mul_ps(r10,vftabscale);
954             vfitab           = _mm_cvttps_epi32(rt);
955 #ifdef __XOP__
956             vfeps            = _mm_frcz_ps(rt);
957 #else
958             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
959 #endif
960             twovfeps         = _mm_add_ps(vfeps,vfeps);
961             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
962
963             /* CUBIC SPLINE TABLE ELECTROSTATICS */
964             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
965             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
966             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
967             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
968             _MM_TRANSPOSE4_PS(Y,F,G,H);
969             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
970             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
971             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
972
973             fscal            = felec;
974
975              /* Update vectorial force */
976             fix1             = _mm_macc_ps(dx10,fscal,fix1);
977             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
978             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
979
980             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
981             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
982             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
983
984             /**************************
985              * CALCULATE INTERACTIONS *
986              **************************/
987
988             r20              = _mm_mul_ps(rsq20,rinv20);
989
990             /* Compute parameters for interactions between i and j atoms */
991             qq20             = _mm_mul_ps(iq2,jq0);
992
993             /* Calculate table index by multiplying r with table scale and truncate to integer */
994             rt               = _mm_mul_ps(r20,vftabscale);
995             vfitab           = _mm_cvttps_epi32(rt);
996 #ifdef __XOP__
997             vfeps            = _mm_frcz_ps(rt);
998 #else
999             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1000 #endif
1001             twovfeps         = _mm_add_ps(vfeps,vfeps);
1002             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1003
1004             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1005             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1006             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1007             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1008             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1009             _MM_TRANSPOSE4_PS(Y,F,G,H);
1010             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1011             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1012             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1013
1014             fscal            = felec;
1015
1016              /* Update vectorial force */
1017             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1018             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1019             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1020
1021             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1022             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1023             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1024
1025             fjptrA             = f+j_coord_offsetA;
1026             fjptrB             = f+j_coord_offsetB;
1027             fjptrC             = f+j_coord_offsetC;
1028             fjptrD             = f+j_coord_offsetD;
1029
1030             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1031
1032             /* Inner loop uses 148 flops */
1033         }
1034
1035         if(jidx<j_index_end)
1036         {
1037
1038             /* Get j neighbor index, and coordinate index */
1039             jnrlistA         = jjnr[jidx];
1040             jnrlistB         = jjnr[jidx+1];
1041             jnrlistC         = jjnr[jidx+2];
1042             jnrlistD         = jjnr[jidx+3];
1043             /* Sign of each element will be negative for non-real atoms.
1044              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1045              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1046              */
1047             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1048             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1049             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1050             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1051             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1052             j_coord_offsetA  = DIM*jnrA;
1053             j_coord_offsetB  = DIM*jnrB;
1054             j_coord_offsetC  = DIM*jnrC;
1055             j_coord_offsetD  = DIM*jnrD;
1056
1057             /* load j atom coordinates */
1058             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1059                                               x+j_coord_offsetC,x+j_coord_offsetD,
1060                                               &jx0,&jy0,&jz0);
1061
1062             /* Calculate displacement vector */
1063             dx00             = _mm_sub_ps(ix0,jx0);
1064             dy00             = _mm_sub_ps(iy0,jy0);
1065             dz00             = _mm_sub_ps(iz0,jz0);
1066             dx10             = _mm_sub_ps(ix1,jx0);
1067             dy10             = _mm_sub_ps(iy1,jy0);
1068             dz10             = _mm_sub_ps(iz1,jz0);
1069             dx20             = _mm_sub_ps(ix2,jx0);
1070             dy20             = _mm_sub_ps(iy2,jy0);
1071             dz20             = _mm_sub_ps(iz2,jz0);
1072
1073             /* Calculate squared distance and things based on it */
1074             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1075             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1076             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1077
1078             rinv00           = avx128fma_invsqrt_f(rsq00);
1079             rinv10           = avx128fma_invsqrt_f(rsq10);
1080             rinv20           = avx128fma_invsqrt_f(rsq20);
1081
1082             /* Load parameters for j particles */
1083             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1084                                                               charge+jnrC+0,charge+jnrD+0);
1085             vdwjidx0A        = 2*vdwtype[jnrA+0];
1086             vdwjidx0B        = 2*vdwtype[jnrB+0];
1087             vdwjidx0C        = 2*vdwtype[jnrC+0];
1088             vdwjidx0D        = 2*vdwtype[jnrD+0];
1089
1090             fjx0             = _mm_setzero_ps();
1091             fjy0             = _mm_setzero_ps();
1092             fjz0             = _mm_setzero_ps();
1093
1094             /**************************
1095              * CALCULATE INTERACTIONS *
1096              **************************/
1097
1098             r00              = _mm_mul_ps(rsq00,rinv00);
1099             r00              = _mm_andnot_ps(dummy_mask,r00);
1100
1101             /* Compute parameters for interactions between i and j atoms */
1102             qq00             = _mm_mul_ps(iq0,jq0);
1103             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1104                                          vdwparam+vdwioffset0+vdwjidx0B,
1105                                          vdwparam+vdwioffset0+vdwjidx0C,
1106                                          vdwparam+vdwioffset0+vdwjidx0D,
1107                                          &c6_00,&c12_00);
1108
1109             /* Calculate table index by multiplying r with table scale and truncate to integer */
1110             rt               = _mm_mul_ps(r00,vftabscale);
1111             vfitab           = _mm_cvttps_epi32(rt);
1112 #ifdef __XOP__
1113             vfeps            = _mm_frcz_ps(rt);
1114 #else
1115             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1116 #endif
1117             twovfeps         = _mm_add_ps(vfeps,vfeps);
1118             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1119
1120             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1121             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1122             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1123             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1124             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1125             _MM_TRANSPOSE4_PS(Y,F,G,H);
1126             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1127             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1128             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
1129
1130             /* CUBIC SPLINE TABLE DISPERSION */
1131             vfitab           = _mm_add_epi32(vfitab,ifour);
1132             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1133             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1134             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1135             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1136             _MM_TRANSPOSE4_PS(Y,F,G,H);
1137             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1138             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1139             fvdw6            = _mm_mul_ps(c6_00,FF);
1140
1141             /* CUBIC SPLINE TABLE REPULSION */
1142             vfitab           = _mm_add_epi32(vfitab,ifour);
1143             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1144             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1145             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1146             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1147             _MM_TRANSPOSE4_PS(Y,F,G,H);
1148             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1149             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1150             fvdw12           = _mm_mul_ps(c12_00,FF);
1151             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1152
1153             fscal            = _mm_add_ps(felec,fvdw);
1154
1155             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1156
1157              /* Update vectorial force */
1158             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1159             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1160             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1161
1162             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1163             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1164             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1165
1166             /**************************
1167              * CALCULATE INTERACTIONS *
1168              **************************/
1169
1170             r10              = _mm_mul_ps(rsq10,rinv10);
1171             r10              = _mm_andnot_ps(dummy_mask,r10);
1172
1173             /* Compute parameters for interactions between i and j atoms */
1174             qq10             = _mm_mul_ps(iq1,jq0);
1175
1176             /* Calculate table index by multiplying r with table scale and truncate to integer */
1177             rt               = _mm_mul_ps(r10,vftabscale);
1178             vfitab           = _mm_cvttps_epi32(rt);
1179 #ifdef __XOP__
1180             vfeps            = _mm_frcz_ps(rt);
1181 #else
1182             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1183 #endif
1184             twovfeps         = _mm_add_ps(vfeps,vfeps);
1185             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1186
1187             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1188             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1189             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1190             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1191             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1192             _MM_TRANSPOSE4_PS(Y,F,G,H);
1193             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1194             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1195             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1196
1197             fscal            = felec;
1198
1199             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1200
1201              /* Update vectorial force */
1202             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1203             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1204             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1205
1206             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1207             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1208             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1209
1210             /**************************
1211              * CALCULATE INTERACTIONS *
1212              **************************/
1213
1214             r20              = _mm_mul_ps(rsq20,rinv20);
1215             r20              = _mm_andnot_ps(dummy_mask,r20);
1216
1217             /* Compute parameters for interactions between i and j atoms */
1218             qq20             = _mm_mul_ps(iq2,jq0);
1219
1220             /* Calculate table index by multiplying r with table scale and truncate to integer */
1221             rt               = _mm_mul_ps(r20,vftabscale);
1222             vfitab           = _mm_cvttps_epi32(rt);
1223 #ifdef __XOP__
1224             vfeps            = _mm_frcz_ps(rt);
1225 #else
1226             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1227 #endif
1228             twovfeps         = _mm_add_ps(vfeps,vfeps);
1229             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1230
1231             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1232             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1233             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1234             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1235             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1236             _MM_TRANSPOSE4_PS(Y,F,G,H);
1237             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1238             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1239             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1240
1241             fscal            = felec;
1242
1243             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1244
1245              /* Update vectorial force */
1246             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1247             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1248             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1249
1250             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1251             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1252             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1253
1254             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1255             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1256             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1257             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1258
1259             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1260
1261             /* Inner loop uses 151 flops */
1262         }
1263
1264         /* End of innermost loop */
1265
1266         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1267                                               f+i_coord_offset,fshift+i_shift_offset);
1268
1269         /* Increment number of inner iterations */
1270         inneriter                  += j_index_end - j_index_start;
1271
1272         /* Outer loop uses 18 flops */
1273     }
1274
1275     /* Increment number of outer iterations */
1276     outeriter        += nri;
1277
1278     /* Update outer/inner flops */
1279
1280     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*151);
1281 }