3f1a82314fc962b1feb2df63857a249116d39a7c
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
105     real             *vftab;
106     __m128           dummy_mask,cutoff_mask;
107     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108     __m128           one     = _mm_set1_ps(1.0);
109     __m128           two     = _mm_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_elec_vdw->data;
128     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
133     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
134     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = jnrC = jnrD = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141     j_coord_offsetC = 0;
142     j_coord_offsetD = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
169
170         fix0             = _mm_setzero_ps();
171         fiy0             = _mm_setzero_ps();
172         fiz0             = _mm_setzero_ps();
173         fix1             = _mm_setzero_ps();
174         fiy1             = _mm_setzero_ps();
175         fiz1             = _mm_setzero_ps();
176         fix2             = _mm_setzero_ps();
177         fiy2             = _mm_setzero_ps();
178         fiz2             = _mm_setzero_ps();
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_ps();
182         vvdwsum          = _mm_setzero_ps();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195             j_coord_offsetC  = DIM*jnrC;
196             j_coord_offsetD  = DIM*jnrD;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               x+j_coord_offsetC,x+j_coord_offsetD,
201                                               &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm_sub_ps(ix0,jx0);
205             dy00             = _mm_sub_ps(iy0,jy0);
206             dz00             = _mm_sub_ps(iz0,jz0);
207             dx10             = _mm_sub_ps(ix1,jx0);
208             dy10             = _mm_sub_ps(iy1,jy0);
209             dz10             = _mm_sub_ps(iz1,jz0);
210             dx20             = _mm_sub_ps(ix2,jx0);
211             dy20             = _mm_sub_ps(iy2,jy0);
212             dz20             = _mm_sub_ps(iz2,jz0);
213
214             /* Calculate squared distance and things based on it */
215             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
216             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
217             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
218
219             rinv00           = gmx_mm_invsqrt_ps(rsq00);
220             rinv10           = gmx_mm_invsqrt_ps(rsq10);
221             rinv20           = gmx_mm_invsqrt_ps(rsq20);
222
223             /* Load parameters for j particles */
224             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
225                                                               charge+jnrC+0,charge+jnrD+0);
226             vdwjidx0A        = 2*vdwtype[jnrA+0];
227             vdwjidx0B        = 2*vdwtype[jnrB+0];
228             vdwjidx0C        = 2*vdwtype[jnrC+0];
229             vdwjidx0D        = 2*vdwtype[jnrD+0];
230
231             fjx0             = _mm_setzero_ps();
232             fjy0             = _mm_setzero_ps();
233             fjz0             = _mm_setzero_ps();
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             r00              = _mm_mul_ps(rsq00,rinv00);
240
241             /* Compute parameters for interactions between i and j atoms */
242             qq00             = _mm_mul_ps(iq0,jq0);
243             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
244                                          vdwparam+vdwioffset0+vdwjidx0B,
245                                          vdwparam+vdwioffset0+vdwjidx0C,
246                                          vdwparam+vdwioffset0+vdwjidx0D,
247                                          &c6_00,&c12_00);
248
249             /* Calculate table index by multiplying r with table scale and truncate to integer */
250             rt               = _mm_mul_ps(r00,vftabscale);
251             vfitab           = _mm_cvttps_epi32(rt);
252 #ifdef __XOP__
253             vfeps            = _mm_frcz_ps(rt);
254 #else
255             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
256 #endif
257             twovfeps         = _mm_add_ps(vfeps,vfeps);
258             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
259
260             /* CUBIC SPLINE TABLE ELECTROSTATICS */
261             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
262             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
263             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
264             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
265             _MM_TRANSPOSE4_PS(Y,F,G,H);
266             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
267             VV               = _mm_macc_ps(vfeps,Fp,Y);
268             velec            = _mm_mul_ps(qq00,VV);
269             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
270             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
271
272             /* CUBIC SPLINE TABLE DISPERSION */
273             vfitab           = _mm_add_epi32(vfitab,ifour);
274             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
275             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
276             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
277             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
278             _MM_TRANSPOSE4_PS(Y,F,G,H);
279             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
280             VV               = _mm_macc_ps(vfeps,Fp,Y);
281             vvdw6            = _mm_mul_ps(c6_00,VV);
282             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
283             fvdw6            = _mm_mul_ps(c6_00,FF);
284
285             /* CUBIC SPLINE TABLE REPULSION */
286             vfitab           = _mm_add_epi32(vfitab,ifour);
287             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
288             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
289             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
290             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
291             _MM_TRANSPOSE4_PS(Y,F,G,H);
292             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
293             VV               = _mm_macc_ps(vfeps,Fp,Y);
294             vvdw12           = _mm_mul_ps(c12_00,VV);
295             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
296             fvdw12           = _mm_mul_ps(c12_00,FF);
297             vvdw             = _mm_add_ps(vvdw12,vvdw6);
298             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             velecsum         = _mm_add_ps(velecsum,velec);
302             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
303
304             fscal            = _mm_add_ps(felec,fvdw);
305
306              /* Update vectorial force */
307             fix0             = _mm_macc_ps(dx00,fscal,fix0);
308             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
309             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
310
311             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
312             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
313             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             r10              = _mm_mul_ps(rsq10,rinv10);
320
321             /* Compute parameters for interactions between i and j atoms */
322             qq10             = _mm_mul_ps(iq1,jq0);
323
324             /* Calculate table index by multiplying r with table scale and truncate to integer */
325             rt               = _mm_mul_ps(r10,vftabscale);
326             vfitab           = _mm_cvttps_epi32(rt);
327 #ifdef __XOP__
328             vfeps            = _mm_frcz_ps(rt);
329 #else
330             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
331 #endif
332             twovfeps         = _mm_add_ps(vfeps,vfeps);
333             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
334
335             /* CUBIC SPLINE TABLE ELECTROSTATICS */
336             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
337             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
338             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
339             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
340             _MM_TRANSPOSE4_PS(Y,F,G,H);
341             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
342             VV               = _mm_macc_ps(vfeps,Fp,Y);
343             velec            = _mm_mul_ps(qq10,VV);
344             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
345             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velecsum         = _mm_add_ps(velecsum,velec);
349
350             fscal            = felec;
351
352              /* Update vectorial force */
353             fix1             = _mm_macc_ps(dx10,fscal,fix1);
354             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
355             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
356
357             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
358             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
359             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
360
361             /**************************
362              * CALCULATE INTERACTIONS *
363              **************************/
364
365             r20              = _mm_mul_ps(rsq20,rinv20);
366
367             /* Compute parameters for interactions between i and j atoms */
368             qq20             = _mm_mul_ps(iq2,jq0);
369
370             /* Calculate table index by multiplying r with table scale and truncate to integer */
371             rt               = _mm_mul_ps(r20,vftabscale);
372             vfitab           = _mm_cvttps_epi32(rt);
373 #ifdef __XOP__
374             vfeps            = _mm_frcz_ps(rt);
375 #else
376             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
377 #endif
378             twovfeps         = _mm_add_ps(vfeps,vfeps);
379             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
380
381             /* CUBIC SPLINE TABLE ELECTROSTATICS */
382             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
383             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
384             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
385             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
386             _MM_TRANSPOSE4_PS(Y,F,G,H);
387             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
388             VV               = _mm_macc_ps(vfeps,Fp,Y);
389             velec            = _mm_mul_ps(qq20,VV);
390             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
391             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
392
393             /* Update potential sum for this i atom from the interaction with this j atom. */
394             velecsum         = _mm_add_ps(velecsum,velec);
395
396             fscal            = felec;
397
398              /* Update vectorial force */
399             fix2             = _mm_macc_ps(dx20,fscal,fix2);
400             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
401             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
402
403             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
404             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
405             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
406
407             fjptrA             = f+j_coord_offsetA;
408             fjptrB             = f+j_coord_offsetB;
409             fjptrC             = f+j_coord_offsetC;
410             fjptrD             = f+j_coord_offsetD;
411
412             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
413
414             /* Inner loop uses 168 flops */
415         }
416
417         if(jidx<j_index_end)
418         {
419
420             /* Get j neighbor index, and coordinate index */
421             jnrlistA         = jjnr[jidx];
422             jnrlistB         = jjnr[jidx+1];
423             jnrlistC         = jjnr[jidx+2];
424             jnrlistD         = jjnr[jidx+3];
425             /* Sign of each element will be negative for non-real atoms.
426              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
427              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
428              */
429             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
430             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
431             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
432             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
433             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
434             j_coord_offsetA  = DIM*jnrA;
435             j_coord_offsetB  = DIM*jnrB;
436             j_coord_offsetC  = DIM*jnrC;
437             j_coord_offsetD  = DIM*jnrD;
438
439             /* load j atom coordinates */
440             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
441                                               x+j_coord_offsetC,x+j_coord_offsetD,
442                                               &jx0,&jy0,&jz0);
443
444             /* Calculate displacement vector */
445             dx00             = _mm_sub_ps(ix0,jx0);
446             dy00             = _mm_sub_ps(iy0,jy0);
447             dz00             = _mm_sub_ps(iz0,jz0);
448             dx10             = _mm_sub_ps(ix1,jx0);
449             dy10             = _mm_sub_ps(iy1,jy0);
450             dz10             = _mm_sub_ps(iz1,jz0);
451             dx20             = _mm_sub_ps(ix2,jx0);
452             dy20             = _mm_sub_ps(iy2,jy0);
453             dz20             = _mm_sub_ps(iz2,jz0);
454
455             /* Calculate squared distance and things based on it */
456             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
457             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
458             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
459
460             rinv00           = gmx_mm_invsqrt_ps(rsq00);
461             rinv10           = gmx_mm_invsqrt_ps(rsq10);
462             rinv20           = gmx_mm_invsqrt_ps(rsq20);
463
464             /* Load parameters for j particles */
465             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
466                                                               charge+jnrC+0,charge+jnrD+0);
467             vdwjidx0A        = 2*vdwtype[jnrA+0];
468             vdwjidx0B        = 2*vdwtype[jnrB+0];
469             vdwjidx0C        = 2*vdwtype[jnrC+0];
470             vdwjidx0D        = 2*vdwtype[jnrD+0];
471
472             fjx0             = _mm_setzero_ps();
473             fjy0             = _mm_setzero_ps();
474             fjz0             = _mm_setzero_ps();
475
476             /**************************
477              * CALCULATE INTERACTIONS *
478              **************************/
479
480             r00              = _mm_mul_ps(rsq00,rinv00);
481             r00              = _mm_andnot_ps(dummy_mask,r00);
482
483             /* Compute parameters for interactions between i and j atoms */
484             qq00             = _mm_mul_ps(iq0,jq0);
485             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
486                                          vdwparam+vdwioffset0+vdwjidx0B,
487                                          vdwparam+vdwioffset0+vdwjidx0C,
488                                          vdwparam+vdwioffset0+vdwjidx0D,
489                                          &c6_00,&c12_00);
490
491             /* Calculate table index by multiplying r with table scale and truncate to integer */
492             rt               = _mm_mul_ps(r00,vftabscale);
493             vfitab           = _mm_cvttps_epi32(rt);
494 #ifdef __XOP__
495             vfeps            = _mm_frcz_ps(rt);
496 #else
497             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
498 #endif
499             twovfeps         = _mm_add_ps(vfeps,vfeps);
500             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
501
502             /* CUBIC SPLINE TABLE ELECTROSTATICS */
503             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
504             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
505             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
506             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
507             _MM_TRANSPOSE4_PS(Y,F,G,H);
508             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
509             VV               = _mm_macc_ps(vfeps,Fp,Y);
510             velec            = _mm_mul_ps(qq00,VV);
511             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
512             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
513
514             /* CUBIC SPLINE TABLE DISPERSION */
515             vfitab           = _mm_add_epi32(vfitab,ifour);
516             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
517             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
518             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
519             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
520             _MM_TRANSPOSE4_PS(Y,F,G,H);
521             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
522             VV               = _mm_macc_ps(vfeps,Fp,Y);
523             vvdw6            = _mm_mul_ps(c6_00,VV);
524             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
525             fvdw6            = _mm_mul_ps(c6_00,FF);
526
527             /* CUBIC SPLINE TABLE REPULSION */
528             vfitab           = _mm_add_epi32(vfitab,ifour);
529             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
530             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
531             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
532             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
533             _MM_TRANSPOSE4_PS(Y,F,G,H);
534             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
535             VV               = _mm_macc_ps(vfeps,Fp,Y);
536             vvdw12           = _mm_mul_ps(c12_00,VV);
537             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
538             fvdw12           = _mm_mul_ps(c12_00,FF);
539             vvdw             = _mm_add_ps(vvdw12,vvdw6);
540             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
541
542             /* Update potential sum for this i atom from the interaction with this j atom. */
543             velec            = _mm_andnot_ps(dummy_mask,velec);
544             velecsum         = _mm_add_ps(velecsum,velec);
545             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
546             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
547
548             fscal            = _mm_add_ps(felec,fvdw);
549
550             fscal            = _mm_andnot_ps(dummy_mask,fscal);
551
552              /* Update vectorial force */
553             fix0             = _mm_macc_ps(dx00,fscal,fix0);
554             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
555             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
556
557             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
558             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
559             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
560
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             r10              = _mm_mul_ps(rsq10,rinv10);
566             r10              = _mm_andnot_ps(dummy_mask,r10);
567
568             /* Compute parameters for interactions between i and j atoms */
569             qq10             = _mm_mul_ps(iq1,jq0);
570
571             /* Calculate table index by multiplying r with table scale and truncate to integer */
572             rt               = _mm_mul_ps(r10,vftabscale);
573             vfitab           = _mm_cvttps_epi32(rt);
574 #ifdef __XOP__
575             vfeps            = _mm_frcz_ps(rt);
576 #else
577             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
578 #endif
579             twovfeps         = _mm_add_ps(vfeps,vfeps);
580             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
581
582             /* CUBIC SPLINE TABLE ELECTROSTATICS */
583             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
584             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
585             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
586             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
587             _MM_TRANSPOSE4_PS(Y,F,G,H);
588             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
589             VV               = _mm_macc_ps(vfeps,Fp,Y);
590             velec            = _mm_mul_ps(qq10,VV);
591             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
592             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
593
594             /* Update potential sum for this i atom from the interaction with this j atom. */
595             velec            = _mm_andnot_ps(dummy_mask,velec);
596             velecsum         = _mm_add_ps(velecsum,velec);
597
598             fscal            = felec;
599
600             fscal            = _mm_andnot_ps(dummy_mask,fscal);
601
602              /* Update vectorial force */
603             fix1             = _mm_macc_ps(dx10,fscal,fix1);
604             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
605             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
606
607             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
608             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
609             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
610
611             /**************************
612              * CALCULATE INTERACTIONS *
613              **************************/
614
615             r20              = _mm_mul_ps(rsq20,rinv20);
616             r20              = _mm_andnot_ps(dummy_mask,r20);
617
618             /* Compute parameters for interactions between i and j atoms */
619             qq20             = _mm_mul_ps(iq2,jq0);
620
621             /* Calculate table index by multiplying r with table scale and truncate to integer */
622             rt               = _mm_mul_ps(r20,vftabscale);
623             vfitab           = _mm_cvttps_epi32(rt);
624 #ifdef __XOP__
625             vfeps            = _mm_frcz_ps(rt);
626 #else
627             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
628 #endif
629             twovfeps         = _mm_add_ps(vfeps,vfeps);
630             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
631
632             /* CUBIC SPLINE TABLE ELECTROSTATICS */
633             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
634             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
635             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
636             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
637             _MM_TRANSPOSE4_PS(Y,F,G,H);
638             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
639             VV               = _mm_macc_ps(vfeps,Fp,Y);
640             velec            = _mm_mul_ps(qq20,VV);
641             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
642             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
643
644             /* Update potential sum for this i atom from the interaction with this j atom. */
645             velec            = _mm_andnot_ps(dummy_mask,velec);
646             velecsum         = _mm_add_ps(velecsum,velec);
647
648             fscal            = felec;
649
650             fscal            = _mm_andnot_ps(dummy_mask,fscal);
651
652              /* Update vectorial force */
653             fix2             = _mm_macc_ps(dx20,fscal,fix2);
654             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
655             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
656
657             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
658             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
659             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
660
661             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
662             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
663             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
664             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
665
666             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
667
668             /* Inner loop uses 171 flops */
669         }
670
671         /* End of innermost loop */
672
673         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
674                                               f+i_coord_offset,fshift+i_shift_offset);
675
676         ggid                        = gid[iidx];
677         /* Update potential energies */
678         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
679         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
680
681         /* Increment number of inner iterations */
682         inneriter                  += j_index_end - j_index_start;
683
684         /* Outer loop uses 20 flops */
685     }
686
687     /* Increment number of outer iterations */
688     outeriter        += nri;
689
690     /* Update outer/inner flops */
691
692     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*171);
693 }
694 /*
695  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_128_fma_single
696  * Electrostatics interaction: CubicSplineTable
697  * VdW interaction:            CubicSplineTable
698  * Geometry:                   Water3-Particle
699  * Calculate force/pot:        Force
700  */
701 void
702 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_128_fma_single
703                     (t_nblist                    * gmx_restrict       nlist,
704                      rvec                        * gmx_restrict          xx,
705                      rvec                        * gmx_restrict          ff,
706                      t_forcerec                  * gmx_restrict          fr,
707                      t_mdatoms                   * gmx_restrict     mdatoms,
708                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
709                      t_nrnb                      * gmx_restrict        nrnb)
710 {
711     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
712      * just 0 for non-waters.
713      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
714      * jnr indices corresponding to data put in the four positions in the SIMD register.
715      */
716     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
717     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
718     int              jnrA,jnrB,jnrC,jnrD;
719     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
720     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
721     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
722     real             rcutoff_scalar;
723     real             *shiftvec,*fshift,*x,*f;
724     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
725     real             scratch[4*DIM];
726     __m128           fscal,rcutoff,rcutoff2,jidxall;
727     int              vdwioffset0;
728     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
729     int              vdwioffset1;
730     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
731     int              vdwioffset2;
732     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
733     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
734     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
735     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
736     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
737     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
738     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
739     real             *charge;
740     int              nvdwtype;
741     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
742     int              *vdwtype;
743     real             *vdwparam;
744     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
745     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
746     __m128i          vfitab;
747     __m128i          ifour       = _mm_set1_epi32(4);
748     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
749     real             *vftab;
750     __m128           dummy_mask,cutoff_mask;
751     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
752     __m128           one     = _mm_set1_ps(1.0);
753     __m128           two     = _mm_set1_ps(2.0);
754     x                = xx[0];
755     f                = ff[0];
756
757     nri              = nlist->nri;
758     iinr             = nlist->iinr;
759     jindex           = nlist->jindex;
760     jjnr             = nlist->jjnr;
761     shiftidx         = nlist->shift;
762     gid              = nlist->gid;
763     shiftvec         = fr->shift_vec[0];
764     fshift           = fr->fshift[0];
765     facel            = _mm_set1_ps(fr->epsfac);
766     charge           = mdatoms->chargeA;
767     nvdwtype         = fr->ntype;
768     vdwparam         = fr->nbfp;
769     vdwtype          = mdatoms->typeA;
770
771     vftab            = kernel_data->table_elec_vdw->data;
772     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
773
774     /* Setup water-specific parameters */
775     inr              = nlist->iinr[0];
776     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
777     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
778     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
779     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
780
781     /* Avoid stupid compiler warnings */
782     jnrA = jnrB = jnrC = jnrD = 0;
783     j_coord_offsetA = 0;
784     j_coord_offsetB = 0;
785     j_coord_offsetC = 0;
786     j_coord_offsetD = 0;
787
788     outeriter        = 0;
789     inneriter        = 0;
790
791     for(iidx=0;iidx<4*DIM;iidx++)
792     {
793         scratch[iidx] = 0.0;
794     }
795
796     /* Start outer loop over neighborlists */
797     for(iidx=0; iidx<nri; iidx++)
798     {
799         /* Load shift vector for this list */
800         i_shift_offset   = DIM*shiftidx[iidx];
801
802         /* Load limits for loop over neighbors */
803         j_index_start    = jindex[iidx];
804         j_index_end      = jindex[iidx+1];
805
806         /* Get outer coordinate index */
807         inr              = iinr[iidx];
808         i_coord_offset   = DIM*inr;
809
810         /* Load i particle coords and add shift vector */
811         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
812                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
813
814         fix0             = _mm_setzero_ps();
815         fiy0             = _mm_setzero_ps();
816         fiz0             = _mm_setzero_ps();
817         fix1             = _mm_setzero_ps();
818         fiy1             = _mm_setzero_ps();
819         fiz1             = _mm_setzero_ps();
820         fix2             = _mm_setzero_ps();
821         fiy2             = _mm_setzero_ps();
822         fiz2             = _mm_setzero_ps();
823
824         /* Start inner kernel loop */
825         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
826         {
827
828             /* Get j neighbor index, and coordinate index */
829             jnrA             = jjnr[jidx];
830             jnrB             = jjnr[jidx+1];
831             jnrC             = jjnr[jidx+2];
832             jnrD             = jjnr[jidx+3];
833             j_coord_offsetA  = DIM*jnrA;
834             j_coord_offsetB  = DIM*jnrB;
835             j_coord_offsetC  = DIM*jnrC;
836             j_coord_offsetD  = DIM*jnrD;
837
838             /* load j atom coordinates */
839             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
840                                               x+j_coord_offsetC,x+j_coord_offsetD,
841                                               &jx0,&jy0,&jz0);
842
843             /* Calculate displacement vector */
844             dx00             = _mm_sub_ps(ix0,jx0);
845             dy00             = _mm_sub_ps(iy0,jy0);
846             dz00             = _mm_sub_ps(iz0,jz0);
847             dx10             = _mm_sub_ps(ix1,jx0);
848             dy10             = _mm_sub_ps(iy1,jy0);
849             dz10             = _mm_sub_ps(iz1,jz0);
850             dx20             = _mm_sub_ps(ix2,jx0);
851             dy20             = _mm_sub_ps(iy2,jy0);
852             dz20             = _mm_sub_ps(iz2,jz0);
853
854             /* Calculate squared distance and things based on it */
855             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
856             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
857             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
858
859             rinv00           = gmx_mm_invsqrt_ps(rsq00);
860             rinv10           = gmx_mm_invsqrt_ps(rsq10);
861             rinv20           = gmx_mm_invsqrt_ps(rsq20);
862
863             /* Load parameters for j particles */
864             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
865                                                               charge+jnrC+0,charge+jnrD+0);
866             vdwjidx0A        = 2*vdwtype[jnrA+0];
867             vdwjidx0B        = 2*vdwtype[jnrB+0];
868             vdwjidx0C        = 2*vdwtype[jnrC+0];
869             vdwjidx0D        = 2*vdwtype[jnrD+0];
870
871             fjx0             = _mm_setzero_ps();
872             fjy0             = _mm_setzero_ps();
873             fjz0             = _mm_setzero_ps();
874
875             /**************************
876              * CALCULATE INTERACTIONS *
877              **************************/
878
879             r00              = _mm_mul_ps(rsq00,rinv00);
880
881             /* Compute parameters for interactions between i and j atoms */
882             qq00             = _mm_mul_ps(iq0,jq0);
883             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
884                                          vdwparam+vdwioffset0+vdwjidx0B,
885                                          vdwparam+vdwioffset0+vdwjidx0C,
886                                          vdwparam+vdwioffset0+vdwjidx0D,
887                                          &c6_00,&c12_00);
888
889             /* Calculate table index by multiplying r with table scale and truncate to integer */
890             rt               = _mm_mul_ps(r00,vftabscale);
891             vfitab           = _mm_cvttps_epi32(rt);
892 #ifdef __XOP__
893             vfeps            = _mm_frcz_ps(rt);
894 #else
895             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
896 #endif
897             twovfeps         = _mm_add_ps(vfeps,vfeps);
898             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
899
900             /* CUBIC SPLINE TABLE ELECTROSTATICS */
901             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
902             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
903             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
904             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
905             _MM_TRANSPOSE4_PS(Y,F,G,H);
906             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
907             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
908             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
909
910             /* CUBIC SPLINE TABLE DISPERSION */
911             vfitab           = _mm_add_epi32(vfitab,ifour);
912             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
913             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
914             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
915             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
916             _MM_TRANSPOSE4_PS(Y,F,G,H);
917             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
918             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
919             fvdw6            = _mm_mul_ps(c6_00,FF);
920
921             /* CUBIC SPLINE TABLE REPULSION */
922             vfitab           = _mm_add_epi32(vfitab,ifour);
923             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
924             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
925             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
926             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
927             _MM_TRANSPOSE4_PS(Y,F,G,H);
928             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
929             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
930             fvdw12           = _mm_mul_ps(c12_00,FF);
931             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
932
933             fscal            = _mm_add_ps(felec,fvdw);
934
935              /* Update vectorial force */
936             fix0             = _mm_macc_ps(dx00,fscal,fix0);
937             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
938             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
939
940             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
941             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
942             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
943
944             /**************************
945              * CALCULATE INTERACTIONS *
946              **************************/
947
948             r10              = _mm_mul_ps(rsq10,rinv10);
949
950             /* Compute parameters for interactions between i and j atoms */
951             qq10             = _mm_mul_ps(iq1,jq0);
952
953             /* Calculate table index by multiplying r with table scale and truncate to integer */
954             rt               = _mm_mul_ps(r10,vftabscale);
955             vfitab           = _mm_cvttps_epi32(rt);
956 #ifdef __XOP__
957             vfeps            = _mm_frcz_ps(rt);
958 #else
959             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
960 #endif
961             twovfeps         = _mm_add_ps(vfeps,vfeps);
962             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
963
964             /* CUBIC SPLINE TABLE ELECTROSTATICS */
965             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
966             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
967             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
968             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
969             _MM_TRANSPOSE4_PS(Y,F,G,H);
970             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
971             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
972             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
973
974             fscal            = felec;
975
976              /* Update vectorial force */
977             fix1             = _mm_macc_ps(dx10,fscal,fix1);
978             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
979             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
980
981             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
982             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
983             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
984
985             /**************************
986              * CALCULATE INTERACTIONS *
987              **************************/
988
989             r20              = _mm_mul_ps(rsq20,rinv20);
990
991             /* Compute parameters for interactions between i and j atoms */
992             qq20             = _mm_mul_ps(iq2,jq0);
993
994             /* Calculate table index by multiplying r with table scale and truncate to integer */
995             rt               = _mm_mul_ps(r20,vftabscale);
996             vfitab           = _mm_cvttps_epi32(rt);
997 #ifdef __XOP__
998             vfeps            = _mm_frcz_ps(rt);
999 #else
1000             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1001 #endif
1002             twovfeps         = _mm_add_ps(vfeps,vfeps);
1003             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1004
1005             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1006             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1007             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1008             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1009             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1010             _MM_TRANSPOSE4_PS(Y,F,G,H);
1011             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1012             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1013             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1014
1015             fscal            = felec;
1016
1017              /* Update vectorial force */
1018             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1019             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1020             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1021
1022             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1023             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1024             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1025
1026             fjptrA             = f+j_coord_offsetA;
1027             fjptrB             = f+j_coord_offsetB;
1028             fjptrC             = f+j_coord_offsetC;
1029             fjptrD             = f+j_coord_offsetD;
1030
1031             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1032
1033             /* Inner loop uses 148 flops */
1034         }
1035
1036         if(jidx<j_index_end)
1037         {
1038
1039             /* Get j neighbor index, and coordinate index */
1040             jnrlistA         = jjnr[jidx];
1041             jnrlistB         = jjnr[jidx+1];
1042             jnrlistC         = jjnr[jidx+2];
1043             jnrlistD         = jjnr[jidx+3];
1044             /* Sign of each element will be negative for non-real atoms.
1045              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1046              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1047              */
1048             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1049             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1050             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1051             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1052             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1053             j_coord_offsetA  = DIM*jnrA;
1054             j_coord_offsetB  = DIM*jnrB;
1055             j_coord_offsetC  = DIM*jnrC;
1056             j_coord_offsetD  = DIM*jnrD;
1057
1058             /* load j atom coordinates */
1059             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1060                                               x+j_coord_offsetC,x+j_coord_offsetD,
1061                                               &jx0,&jy0,&jz0);
1062
1063             /* Calculate displacement vector */
1064             dx00             = _mm_sub_ps(ix0,jx0);
1065             dy00             = _mm_sub_ps(iy0,jy0);
1066             dz00             = _mm_sub_ps(iz0,jz0);
1067             dx10             = _mm_sub_ps(ix1,jx0);
1068             dy10             = _mm_sub_ps(iy1,jy0);
1069             dz10             = _mm_sub_ps(iz1,jz0);
1070             dx20             = _mm_sub_ps(ix2,jx0);
1071             dy20             = _mm_sub_ps(iy2,jy0);
1072             dz20             = _mm_sub_ps(iz2,jz0);
1073
1074             /* Calculate squared distance and things based on it */
1075             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1076             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1077             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1078
1079             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1080             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1081             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1082
1083             /* Load parameters for j particles */
1084             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1085                                                               charge+jnrC+0,charge+jnrD+0);
1086             vdwjidx0A        = 2*vdwtype[jnrA+0];
1087             vdwjidx0B        = 2*vdwtype[jnrB+0];
1088             vdwjidx0C        = 2*vdwtype[jnrC+0];
1089             vdwjidx0D        = 2*vdwtype[jnrD+0];
1090
1091             fjx0             = _mm_setzero_ps();
1092             fjy0             = _mm_setzero_ps();
1093             fjz0             = _mm_setzero_ps();
1094
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             r00              = _mm_mul_ps(rsq00,rinv00);
1100             r00              = _mm_andnot_ps(dummy_mask,r00);
1101
1102             /* Compute parameters for interactions between i and j atoms */
1103             qq00             = _mm_mul_ps(iq0,jq0);
1104             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1105                                          vdwparam+vdwioffset0+vdwjidx0B,
1106                                          vdwparam+vdwioffset0+vdwjidx0C,
1107                                          vdwparam+vdwioffset0+vdwjidx0D,
1108                                          &c6_00,&c12_00);
1109
1110             /* Calculate table index by multiplying r with table scale and truncate to integer */
1111             rt               = _mm_mul_ps(r00,vftabscale);
1112             vfitab           = _mm_cvttps_epi32(rt);
1113 #ifdef __XOP__
1114             vfeps            = _mm_frcz_ps(rt);
1115 #else
1116             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1117 #endif
1118             twovfeps         = _mm_add_ps(vfeps,vfeps);
1119             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1120
1121             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1122             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1123             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1124             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1125             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1126             _MM_TRANSPOSE4_PS(Y,F,G,H);
1127             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1128             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1129             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
1130
1131             /* CUBIC SPLINE TABLE DISPERSION */
1132             vfitab           = _mm_add_epi32(vfitab,ifour);
1133             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1134             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1135             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1136             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1137             _MM_TRANSPOSE4_PS(Y,F,G,H);
1138             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1139             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1140             fvdw6            = _mm_mul_ps(c6_00,FF);
1141
1142             /* CUBIC SPLINE TABLE REPULSION */
1143             vfitab           = _mm_add_epi32(vfitab,ifour);
1144             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1145             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1146             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1147             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1148             _MM_TRANSPOSE4_PS(Y,F,G,H);
1149             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1150             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1151             fvdw12           = _mm_mul_ps(c12_00,FF);
1152             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1153
1154             fscal            = _mm_add_ps(felec,fvdw);
1155
1156             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1157
1158              /* Update vectorial force */
1159             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1160             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1161             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1162
1163             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1164             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1165             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1166
1167             /**************************
1168              * CALCULATE INTERACTIONS *
1169              **************************/
1170
1171             r10              = _mm_mul_ps(rsq10,rinv10);
1172             r10              = _mm_andnot_ps(dummy_mask,r10);
1173
1174             /* Compute parameters for interactions between i and j atoms */
1175             qq10             = _mm_mul_ps(iq1,jq0);
1176
1177             /* Calculate table index by multiplying r with table scale and truncate to integer */
1178             rt               = _mm_mul_ps(r10,vftabscale);
1179             vfitab           = _mm_cvttps_epi32(rt);
1180 #ifdef __XOP__
1181             vfeps            = _mm_frcz_ps(rt);
1182 #else
1183             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1184 #endif
1185             twovfeps         = _mm_add_ps(vfeps,vfeps);
1186             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1187
1188             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1189             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1190             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1191             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1192             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1193             _MM_TRANSPOSE4_PS(Y,F,G,H);
1194             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1195             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1196             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1197
1198             fscal            = felec;
1199
1200             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1201
1202              /* Update vectorial force */
1203             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1204             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1205             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1206
1207             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1208             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1209             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1210
1211             /**************************
1212              * CALCULATE INTERACTIONS *
1213              **************************/
1214
1215             r20              = _mm_mul_ps(rsq20,rinv20);
1216             r20              = _mm_andnot_ps(dummy_mask,r20);
1217
1218             /* Compute parameters for interactions between i and j atoms */
1219             qq20             = _mm_mul_ps(iq2,jq0);
1220
1221             /* Calculate table index by multiplying r with table scale and truncate to integer */
1222             rt               = _mm_mul_ps(r20,vftabscale);
1223             vfitab           = _mm_cvttps_epi32(rt);
1224 #ifdef __XOP__
1225             vfeps            = _mm_frcz_ps(rt);
1226 #else
1227             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1228 #endif
1229             twovfeps         = _mm_add_ps(vfeps,vfeps);
1230             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1231
1232             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1233             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1234             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1235             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1236             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1237             _MM_TRANSPOSE4_PS(Y,F,G,H);
1238             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1239             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1240             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1241
1242             fscal            = felec;
1243
1244             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1245
1246              /* Update vectorial force */
1247             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1248             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1249             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1250
1251             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1252             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1253             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1254
1255             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1256             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1257             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1258             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1259
1260             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1261
1262             /* Inner loop uses 151 flops */
1263         }
1264
1265         /* End of innermost loop */
1266
1267         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1268                                               f+i_coord_offset,fshift+i_shift_offset);
1269
1270         /* Increment number of inner iterations */
1271         inneriter                  += j_index_end - j_index_start;
1272
1273         /* Outer loop uses 18 flops */
1274     }
1275
1276     /* Increment number of outer iterations */
1277     outeriter        += nri;
1278
1279     /* Update outer/inner flops */
1280
1281     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*151);
1282 }