Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRF_VdwLJ_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_avx_128_fma_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128d          dummy_mask,cutoff_mask;
100     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
101     __m128d          one     = _mm_set1_pd(1.0);
102     __m128d          two     = _mm_set1_pd(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_pd(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     krf              = _mm_set1_pd(fr->ic->k_rf);
117     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
118     crf              = _mm_set1_pd(fr->ic->c_rf);
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     /* Setup water-specific parameters */
124     inr              = nlist->iinr[0];
125     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
126     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
127     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
128     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
154                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
155
156         fix0             = _mm_setzero_pd();
157         fiy0             = _mm_setzero_pd();
158         fiz0             = _mm_setzero_pd();
159         fix1             = _mm_setzero_pd();
160         fiy1             = _mm_setzero_pd();
161         fiz1             = _mm_setzero_pd();
162         fix2             = _mm_setzero_pd();
163         fiy2             = _mm_setzero_pd();
164         fiz2             = _mm_setzero_pd();
165
166         /* Reset potential sums */
167         velecsum         = _mm_setzero_pd();
168         vvdwsum          = _mm_setzero_pd();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179
180             /* load j atom coordinates */
181             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
182                                               &jx0,&jy0,&jz0);
183
184             /* Calculate displacement vector */
185             dx00             = _mm_sub_pd(ix0,jx0);
186             dy00             = _mm_sub_pd(iy0,jy0);
187             dz00             = _mm_sub_pd(iz0,jz0);
188             dx10             = _mm_sub_pd(ix1,jx0);
189             dy10             = _mm_sub_pd(iy1,jy0);
190             dz10             = _mm_sub_pd(iz1,jz0);
191             dx20             = _mm_sub_pd(ix2,jx0);
192             dy20             = _mm_sub_pd(iy2,jy0);
193             dz20             = _mm_sub_pd(iz2,jz0);
194
195             /* Calculate squared distance and things based on it */
196             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
197             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
198             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
199
200             rinv00           = gmx_mm_invsqrt_pd(rsq00);
201             rinv10           = gmx_mm_invsqrt_pd(rsq10);
202             rinv20           = gmx_mm_invsqrt_pd(rsq20);
203
204             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
205             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
206             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
207
208             /* Load parameters for j particles */
209             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
210             vdwjidx0A        = 2*vdwtype[jnrA+0];
211             vdwjidx0B        = 2*vdwtype[jnrB+0];
212
213             fjx0             = _mm_setzero_pd();
214             fjy0             = _mm_setzero_pd();
215             fjz0             = _mm_setzero_pd();
216
217             /**************************
218              * CALCULATE INTERACTIONS *
219              **************************/
220
221             /* Compute parameters for interactions between i and j atoms */
222             qq00             = _mm_mul_pd(iq0,jq0);
223             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
224                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
225
226             /* REACTION-FIELD ELECTROSTATICS */
227             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
228             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
229
230             /* LENNARD-JONES DISPERSION/REPULSION */
231
232             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
233             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
234             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
235             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
236             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
237
238             /* Update potential sum for this i atom from the interaction with this j atom. */
239             velecsum         = _mm_add_pd(velecsum,velec);
240             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
241
242             fscal            = _mm_add_pd(felec,fvdw);
243
244             /* Update vectorial force */
245             fix0             = _mm_macc_pd(dx00,fscal,fix0);
246             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
247             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
248             
249             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
250             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
251             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             /* Compute parameters for interactions between i and j atoms */
258             qq10             = _mm_mul_pd(iq1,jq0);
259
260             /* REACTION-FIELD ELECTROSTATICS */
261             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
262             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
263
264             /* Update potential sum for this i atom from the interaction with this j atom. */
265             velecsum         = _mm_add_pd(velecsum,velec);
266
267             fscal            = felec;
268
269             /* Update vectorial force */
270             fix1             = _mm_macc_pd(dx10,fscal,fix1);
271             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
272             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
273             
274             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
275             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
276             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
277
278             /**************************
279              * CALCULATE INTERACTIONS *
280              **************************/
281
282             /* Compute parameters for interactions between i and j atoms */
283             qq20             = _mm_mul_pd(iq2,jq0);
284
285             /* REACTION-FIELD ELECTROSTATICS */
286             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
287             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             velecsum         = _mm_add_pd(velecsum,velec);
291
292             fscal            = felec;
293
294             /* Update vectorial force */
295             fix2             = _mm_macc_pd(dx20,fscal,fix2);
296             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
297             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
298             
299             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
300             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
301             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
302
303             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
304
305             /* Inner loop uses 120 flops */
306         }
307
308         if(jidx<j_index_end)
309         {
310
311             jnrA             = jjnr[jidx];
312             j_coord_offsetA  = DIM*jnrA;
313
314             /* load j atom coordinates */
315             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
316                                               &jx0,&jy0,&jz0);
317
318             /* Calculate displacement vector */
319             dx00             = _mm_sub_pd(ix0,jx0);
320             dy00             = _mm_sub_pd(iy0,jy0);
321             dz00             = _mm_sub_pd(iz0,jz0);
322             dx10             = _mm_sub_pd(ix1,jx0);
323             dy10             = _mm_sub_pd(iy1,jy0);
324             dz10             = _mm_sub_pd(iz1,jz0);
325             dx20             = _mm_sub_pd(ix2,jx0);
326             dy20             = _mm_sub_pd(iy2,jy0);
327             dz20             = _mm_sub_pd(iz2,jz0);
328
329             /* Calculate squared distance and things based on it */
330             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
331             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
332             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
333
334             rinv00           = gmx_mm_invsqrt_pd(rsq00);
335             rinv10           = gmx_mm_invsqrt_pd(rsq10);
336             rinv20           = gmx_mm_invsqrt_pd(rsq20);
337
338             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
339             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
340             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
341
342             /* Load parameters for j particles */
343             jq0              = _mm_load_sd(charge+jnrA+0);
344             vdwjidx0A        = 2*vdwtype[jnrA+0];
345
346             fjx0             = _mm_setzero_pd();
347             fjy0             = _mm_setzero_pd();
348             fjz0             = _mm_setzero_pd();
349
350             /**************************
351              * CALCULATE INTERACTIONS *
352              **************************/
353
354             /* Compute parameters for interactions between i and j atoms */
355             qq00             = _mm_mul_pd(iq0,jq0);
356             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
357
358             /* REACTION-FIELD ELECTROSTATICS */
359             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
360             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
361
362             /* LENNARD-JONES DISPERSION/REPULSION */
363
364             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
365             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
366             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
367             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
368             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
369
370             /* Update potential sum for this i atom from the interaction with this j atom. */
371             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
372             velecsum         = _mm_add_pd(velecsum,velec);
373             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
374             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
375
376             fscal            = _mm_add_pd(felec,fvdw);
377
378             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
379
380             /* Update vectorial force */
381             fix0             = _mm_macc_pd(dx00,fscal,fix0);
382             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
383             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
384             
385             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
386             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
387             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
388
389             /**************************
390              * CALCULATE INTERACTIONS *
391              **************************/
392
393             /* Compute parameters for interactions between i and j atoms */
394             qq10             = _mm_mul_pd(iq1,jq0);
395
396             /* REACTION-FIELD ELECTROSTATICS */
397             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
398             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
399
400             /* Update potential sum for this i atom from the interaction with this j atom. */
401             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
402             velecsum         = _mm_add_pd(velecsum,velec);
403
404             fscal            = felec;
405
406             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
407
408             /* Update vectorial force */
409             fix1             = _mm_macc_pd(dx10,fscal,fix1);
410             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
411             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
412             
413             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
414             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
415             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
416
417             /**************************
418              * CALCULATE INTERACTIONS *
419              **************************/
420
421             /* Compute parameters for interactions between i and j atoms */
422             qq20             = _mm_mul_pd(iq2,jq0);
423
424             /* REACTION-FIELD ELECTROSTATICS */
425             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
426             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
427
428             /* Update potential sum for this i atom from the interaction with this j atom. */
429             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
430             velecsum         = _mm_add_pd(velecsum,velec);
431
432             fscal            = felec;
433
434             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
435
436             /* Update vectorial force */
437             fix2             = _mm_macc_pd(dx20,fscal,fix2);
438             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
439             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
440             
441             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
442             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
443             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
444
445             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
446
447             /* Inner loop uses 120 flops */
448         }
449
450         /* End of innermost loop */
451
452         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
453                                               f+i_coord_offset,fshift+i_shift_offset);
454
455         ggid                        = gid[iidx];
456         /* Update potential energies */
457         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
458         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
459
460         /* Increment number of inner iterations */
461         inneriter                  += j_index_end - j_index_start;
462
463         /* Outer loop uses 20 flops */
464     }
465
466     /* Increment number of outer iterations */
467     outeriter        += nri;
468
469     /* Update outer/inner flops */
470
471     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*120);
472 }
473 /*
474  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_avx_128_fma_double
475  * Electrostatics interaction: ReactionField
476  * VdW interaction:            LennardJones
477  * Geometry:                   Water3-Particle
478  * Calculate force/pot:        Force
479  */
480 void
481 nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_avx_128_fma_double
482                     (t_nblist                    * gmx_restrict       nlist,
483                      rvec                        * gmx_restrict          xx,
484                      rvec                        * gmx_restrict          ff,
485                      t_forcerec                  * gmx_restrict          fr,
486                      t_mdatoms                   * gmx_restrict     mdatoms,
487                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
488                      t_nrnb                      * gmx_restrict        nrnb)
489 {
490     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
491      * just 0 for non-waters.
492      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
493      * jnr indices corresponding to data put in the four positions in the SIMD register.
494      */
495     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
496     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
497     int              jnrA,jnrB;
498     int              j_coord_offsetA,j_coord_offsetB;
499     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
500     real             rcutoff_scalar;
501     real             *shiftvec,*fshift,*x,*f;
502     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
503     int              vdwioffset0;
504     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
505     int              vdwioffset1;
506     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
507     int              vdwioffset2;
508     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
509     int              vdwjidx0A,vdwjidx0B;
510     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
511     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
512     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
513     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
514     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
515     real             *charge;
516     int              nvdwtype;
517     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
518     int              *vdwtype;
519     real             *vdwparam;
520     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
521     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
522     __m128d          dummy_mask,cutoff_mask;
523     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
524     __m128d          one     = _mm_set1_pd(1.0);
525     __m128d          two     = _mm_set1_pd(2.0);
526     x                = xx[0];
527     f                = ff[0];
528
529     nri              = nlist->nri;
530     iinr             = nlist->iinr;
531     jindex           = nlist->jindex;
532     jjnr             = nlist->jjnr;
533     shiftidx         = nlist->shift;
534     gid              = nlist->gid;
535     shiftvec         = fr->shift_vec[0];
536     fshift           = fr->fshift[0];
537     facel            = _mm_set1_pd(fr->epsfac);
538     charge           = mdatoms->chargeA;
539     krf              = _mm_set1_pd(fr->ic->k_rf);
540     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
541     crf              = _mm_set1_pd(fr->ic->c_rf);
542     nvdwtype         = fr->ntype;
543     vdwparam         = fr->nbfp;
544     vdwtype          = mdatoms->typeA;
545
546     /* Setup water-specific parameters */
547     inr              = nlist->iinr[0];
548     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
549     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
550     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
551     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
552
553     /* Avoid stupid compiler warnings */
554     jnrA = jnrB = 0;
555     j_coord_offsetA = 0;
556     j_coord_offsetB = 0;
557
558     outeriter        = 0;
559     inneriter        = 0;
560
561     /* Start outer loop over neighborlists */
562     for(iidx=0; iidx<nri; iidx++)
563     {
564         /* Load shift vector for this list */
565         i_shift_offset   = DIM*shiftidx[iidx];
566
567         /* Load limits for loop over neighbors */
568         j_index_start    = jindex[iidx];
569         j_index_end      = jindex[iidx+1];
570
571         /* Get outer coordinate index */
572         inr              = iinr[iidx];
573         i_coord_offset   = DIM*inr;
574
575         /* Load i particle coords and add shift vector */
576         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
577                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
578
579         fix0             = _mm_setzero_pd();
580         fiy0             = _mm_setzero_pd();
581         fiz0             = _mm_setzero_pd();
582         fix1             = _mm_setzero_pd();
583         fiy1             = _mm_setzero_pd();
584         fiz1             = _mm_setzero_pd();
585         fix2             = _mm_setzero_pd();
586         fiy2             = _mm_setzero_pd();
587         fiz2             = _mm_setzero_pd();
588
589         /* Start inner kernel loop */
590         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
591         {
592
593             /* Get j neighbor index, and coordinate index */
594             jnrA             = jjnr[jidx];
595             jnrB             = jjnr[jidx+1];
596             j_coord_offsetA  = DIM*jnrA;
597             j_coord_offsetB  = DIM*jnrB;
598
599             /* load j atom coordinates */
600             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
601                                               &jx0,&jy0,&jz0);
602
603             /* Calculate displacement vector */
604             dx00             = _mm_sub_pd(ix0,jx0);
605             dy00             = _mm_sub_pd(iy0,jy0);
606             dz00             = _mm_sub_pd(iz0,jz0);
607             dx10             = _mm_sub_pd(ix1,jx0);
608             dy10             = _mm_sub_pd(iy1,jy0);
609             dz10             = _mm_sub_pd(iz1,jz0);
610             dx20             = _mm_sub_pd(ix2,jx0);
611             dy20             = _mm_sub_pd(iy2,jy0);
612             dz20             = _mm_sub_pd(iz2,jz0);
613
614             /* Calculate squared distance and things based on it */
615             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
616             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
617             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
618
619             rinv00           = gmx_mm_invsqrt_pd(rsq00);
620             rinv10           = gmx_mm_invsqrt_pd(rsq10);
621             rinv20           = gmx_mm_invsqrt_pd(rsq20);
622
623             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
624             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
625             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
626
627             /* Load parameters for j particles */
628             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
629             vdwjidx0A        = 2*vdwtype[jnrA+0];
630             vdwjidx0B        = 2*vdwtype[jnrB+0];
631
632             fjx0             = _mm_setzero_pd();
633             fjy0             = _mm_setzero_pd();
634             fjz0             = _mm_setzero_pd();
635
636             /**************************
637              * CALCULATE INTERACTIONS *
638              **************************/
639
640             /* Compute parameters for interactions between i and j atoms */
641             qq00             = _mm_mul_pd(iq0,jq0);
642             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
643                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
644
645             /* REACTION-FIELD ELECTROSTATICS */
646             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
647
648             /* LENNARD-JONES DISPERSION/REPULSION */
649
650             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
651             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
652
653             fscal            = _mm_add_pd(felec,fvdw);
654
655             /* Update vectorial force */
656             fix0             = _mm_macc_pd(dx00,fscal,fix0);
657             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
658             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
659             
660             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
661             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
662             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
663
664             /**************************
665              * CALCULATE INTERACTIONS *
666              **************************/
667
668             /* Compute parameters for interactions between i and j atoms */
669             qq10             = _mm_mul_pd(iq1,jq0);
670
671             /* REACTION-FIELD ELECTROSTATICS */
672             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
673
674             fscal            = felec;
675
676             /* Update vectorial force */
677             fix1             = _mm_macc_pd(dx10,fscal,fix1);
678             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
679             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
680             
681             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
682             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
683             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
684
685             /**************************
686              * CALCULATE INTERACTIONS *
687              **************************/
688
689             /* Compute parameters for interactions between i and j atoms */
690             qq20             = _mm_mul_pd(iq2,jq0);
691
692             /* REACTION-FIELD ELECTROSTATICS */
693             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
694
695             fscal            = felec;
696
697             /* Update vectorial force */
698             fix2             = _mm_macc_pd(dx20,fscal,fix2);
699             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
700             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
701             
702             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
703             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
704             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
705
706             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
707
708             /* Inner loop uses 100 flops */
709         }
710
711         if(jidx<j_index_end)
712         {
713
714             jnrA             = jjnr[jidx];
715             j_coord_offsetA  = DIM*jnrA;
716
717             /* load j atom coordinates */
718             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
719                                               &jx0,&jy0,&jz0);
720
721             /* Calculate displacement vector */
722             dx00             = _mm_sub_pd(ix0,jx0);
723             dy00             = _mm_sub_pd(iy0,jy0);
724             dz00             = _mm_sub_pd(iz0,jz0);
725             dx10             = _mm_sub_pd(ix1,jx0);
726             dy10             = _mm_sub_pd(iy1,jy0);
727             dz10             = _mm_sub_pd(iz1,jz0);
728             dx20             = _mm_sub_pd(ix2,jx0);
729             dy20             = _mm_sub_pd(iy2,jy0);
730             dz20             = _mm_sub_pd(iz2,jz0);
731
732             /* Calculate squared distance and things based on it */
733             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
734             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
735             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
736
737             rinv00           = gmx_mm_invsqrt_pd(rsq00);
738             rinv10           = gmx_mm_invsqrt_pd(rsq10);
739             rinv20           = gmx_mm_invsqrt_pd(rsq20);
740
741             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
742             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
743             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
744
745             /* Load parameters for j particles */
746             jq0              = _mm_load_sd(charge+jnrA+0);
747             vdwjidx0A        = 2*vdwtype[jnrA+0];
748
749             fjx0             = _mm_setzero_pd();
750             fjy0             = _mm_setzero_pd();
751             fjz0             = _mm_setzero_pd();
752
753             /**************************
754              * CALCULATE INTERACTIONS *
755              **************************/
756
757             /* Compute parameters for interactions between i and j atoms */
758             qq00             = _mm_mul_pd(iq0,jq0);
759             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
760
761             /* REACTION-FIELD ELECTROSTATICS */
762             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
763
764             /* LENNARD-JONES DISPERSION/REPULSION */
765
766             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
767             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
768
769             fscal            = _mm_add_pd(felec,fvdw);
770
771             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
772
773             /* Update vectorial force */
774             fix0             = _mm_macc_pd(dx00,fscal,fix0);
775             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
776             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
777             
778             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
779             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
780             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
781
782             /**************************
783              * CALCULATE INTERACTIONS *
784              **************************/
785
786             /* Compute parameters for interactions between i and j atoms */
787             qq10             = _mm_mul_pd(iq1,jq0);
788
789             /* REACTION-FIELD ELECTROSTATICS */
790             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
791
792             fscal            = felec;
793
794             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
795
796             /* Update vectorial force */
797             fix1             = _mm_macc_pd(dx10,fscal,fix1);
798             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
799             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
800             
801             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
802             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
803             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
804
805             /**************************
806              * CALCULATE INTERACTIONS *
807              **************************/
808
809             /* Compute parameters for interactions between i and j atoms */
810             qq20             = _mm_mul_pd(iq2,jq0);
811
812             /* REACTION-FIELD ELECTROSTATICS */
813             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
814
815             fscal            = felec;
816
817             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
818
819             /* Update vectorial force */
820             fix2             = _mm_macc_pd(dx20,fscal,fix2);
821             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
822             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
823             
824             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
825             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
826             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
827
828             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
829
830             /* Inner loop uses 100 flops */
831         }
832
833         /* End of innermost loop */
834
835         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
836                                               f+i_coord_offset,fshift+i_shift_offset);
837
838         /* Increment number of inner iterations */
839         inneriter                  += j_index_end - j_index_start;
840
841         /* Outer loop uses 18 flops */
842     }
843
844     /* Increment number of outer iterations */
845     outeriter        += nri;
846
847     /* Update outer/inner flops */
848
849     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*100);
850 }