Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRF_VdwLJ_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_avx_128_fma_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128d          dummy_mask,cutoff_mask;
94     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
95     __m128d          one     = _mm_set1_pd(1.0);
96     __m128d          two     = _mm_set1_pd(2.0);
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = _mm_set1_pd(fr->epsfac);
109     charge           = mdatoms->chargeA;
110     krf              = _mm_set1_pd(fr->ic->k_rf);
111     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
112     crf              = _mm_set1_pd(fr->ic->c_rf);
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     /* Avoid stupid compiler warnings */
118     jnrA = jnrB = 0;
119     j_coord_offsetA = 0;
120     j_coord_offsetB = 0;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     /* Start outer loop over neighborlists */
126     for(iidx=0; iidx<nri; iidx++)
127     {
128         /* Load shift vector for this list */
129         i_shift_offset   = DIM*shiftidx[iidx];
130
131         /* Load limits for loop over neighbors */
132         j_index_start    = jindex[iidx];
133         j_index_end      = jindex[iidx+1];
134
135         /* Get outer coordinate index */
136         inr              = iinr[iidx];
137         i_coord_offset   = DIM*inr;
138
139         /* Load i particle coords and add shift vector */
140         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
141
142         fix0             = _mm_setzero_pd();
143         fiy0             = _mm_setzero_pd();
144         fiz0             = _mm_setzero_pd();
145
146         /* Load parameters for i particles */
147         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
148         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
149
150         /* Reset potential sums */
151         velecsum         = _mm_setzero_pd();
152         vvdwsum          = _mm_setzero_pd();
153
154         /* Start inner kernel loop */
155         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
156         {
157
158             /* Get j neighbor index, and coordinate index */
159             jnrA             = jjnr[jidx];
160             jnrB             = jjnr[jidx+1];
161             j_coord_offsetA  = DIM*jnrA;
162             j_coord_offsetB  = DIM*jnrB;
163
164             /* load j atom coordinates */
165             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
166                                               &jx0,&jy0,&jz0);
167
168             /* Calculate displacement vector */
169             dx00             = _mm_sub_pd(ix0,jx0);
170             dy00             = _mm_sub_pd(iy0,jy0);
171             dz00             = _mm_sub_pd(iz0,jz0);
172
173             /* Calculate squared distance and things based on it */
174             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
175
176             rinv00           = gmx_mm_invsqrt_pd(rsq00);
177
178             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
179
180             /* Load parameters for j particles */
181             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
182             vdwjidx0A        = 2*vdwtype[jnrA+0];
183             vdwjidx0B        = 2*vdwtype[jnrB+0];
184
185             /**************************
186              * CALCULATE INTERACTIONS *
187              **************************/
188
189             /* Compute parameters for interactions between i and j atoms */
190             qq00             = _mm_mul_pd(iq0,jq0);
191             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
192                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
193
194             /* REACTION-FIELD ELECTROSTATICS */
195             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
196             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
197
198             /* LENNARD-JONES DISPERSION/REPULSION */
199
200             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
201             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
202             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
203             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
204             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
205
206             /* Update potential sum for this i atom from the interaction with this j atom. */
207             velecsum         = _mm_add_pd(velecsum,velec);
208             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
209
210             fscal            = _mm_add_pd(felec,fvdw);
211
212             /* Update vectorial force */
213             fix0             = _mm_macc_pd(dx00,fscal,fix0);
214             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
215             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
216             
217             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
218                                                    _mm_mul_pd(dx00,fscal),
219                                                    _mm_mul_pd(dy00,fscal),
220                                                    _mm_mul_pd(dz00,fscal));
221
222             /* Inner loop uses 47 flops */
223         }
224
225         if(jidx<j_index_end)
226         {
227
228             jnrA             = jjnr[jidx];
229             j_coord_offsetA  = DIM*jnrA;
230
231             /* load j atom coordinates */
232             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
233                                               &jx0,&jy0,&jz0);
234
235             /* Calculate displacement vector */
236             dx00             = _mm_sub_pd(ix0,jx0);
237             dy00             = _mm_sub_pd(iy0,jy0);
238             dz00             = _mm_sub_pd(iz0,jz0);
239
240             /* Calculate squared distance and things based on it */
241             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
242
243             rinv00           = gmx_mm_invsqrt_pd(rsq00);
244
245             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
246
247             /* Load parameters for j particles */
248             jq0              = _mm_load_sd(charge+jnrA+0);
249             vdwjidx0A        = 2*vdwtype[jnrA+0];
250
251             /**************************
252              * CALCULATE INTERACTIONS *
253              **************************/
254
255             /* Compute parameters for interactions between i and j atoms */
256             qq00             = _mm_mul_pd(iq0,jq0);
257             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
258
259             /* REACTION-FIELD ELECTROSTATICS */
260             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
261             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
262
263             /* LENNARD-JONES DISPERSION/REPULSION */
264
265             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
266             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
267             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
268             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
269             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
270
271             /* Update potential sum for this i atom from the interaction with this j atom. */
272             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
273             velecsum         = _mm_add_pd(velecsum,velec);
274             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
275             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
276
277             fscal            = _mm_add_pd(felec,fvdw);
278
279             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
280
281             /* Update vectorial force */
282             fix0             = _mm_macc_pd(dx00,fscal,fix0);
283             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
284             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
285             
286             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
287                                                    _mm_mul_pd(dx00,fscal),
288                                                    _mm_mul_pd(dy00,fscal),
289                                                    _mm_mul_pd(dz00,fscal));
290
291             /* Inner loop uses 47 flops */
292         }
293
294         /* End of innermost loop */
295
296         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
297                                               f+i_coord_offset,fshift+i_shift_offset);
298
299         ggid                        = gid[iidx];
300         /* Update potential energies */
301         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
302         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
303
304         /* Increment number of inner iterations */
305         inneriter                  += j_index_end - j_index_start;
306
307         /* Outer loop uses 9 flops */
308     }
309
310     /* Increment number of outer iterations */
311     outeriter        += nri;
312
313     /* Update outer/inner flops */
314
315     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*47);
316 }
317 /*
318  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_avx_128_fma_double
319  * Electrostatics interaction: ReactionField
320  * VdW interaction:            LennardJones
321  * Geometry:                   Particle-Particle
322  * Calculate force/pot:        Force
323  */
324 void
325 nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_avx_128_fma_double
326                     (t_nblist                    * gmx_restrict       nlist,
327                      rvec                        * gmx_restrict          xx,
328                      rvec                        * gmx_restrict          ff,
329                      t_forcerec                  * gmx_restrict          fr,
330                      t_mdatoms                   * gmx_restrict     mdatoms,
331                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
332                      t_nrnb                      * gmx_restrict        nrnb)
333 {
334     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
335      * just 0 for non-waters.
336      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
337      * jnr indices corresponding to data put in the four positions in the SIMD register.
338      */
339     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
340     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
341     int              jnrA,jnrB;
342     int              j_coord_offsetA,j_coord_offsetB;
343     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
344     real             rcutoff_scalar;
345     real             *shiftvec,*fshift,*x,*f;
346     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
347     int              vdwioffset0;
348     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
349     int              vdwjidx0A,vdwjidx0B;
350     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
351     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
352     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
353     real             *charge;
354     int              nvdwtype;
355     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
356     int              *vdwtype;
357     real             *vdwparam;
358     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
359     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
360     __m128d          dummy_mask,cutoff_mask;
361     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
362     __m128d          one     = _mm_set1_pd(1.0);
363     __m128d          two     = _mm_set1_pd(2.0);
364     x                = xx[0];
365     f                = ff[0];
366
367     nri              = nlist->nri;
368     iinr             = nlist->iinr;
369     jindex           = nlist->jindex;
370     jjnr             = nlist->jjnr;
371     shiftidx         = nlist->shift;
372     gid              = nlist->gid;
373     shiftvec         = fr->shift_vec[0];
374     fshift           = fr->fshift[0];
375     facel            = _mm_set1_pd(fr->epsfac);
376     charge           = mdatoms->chargeA;
377     krf              = _mm_set1_pd(fr->ic->k_rf);
378     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
379     crf              = _mm_set1_pd(fr->ic->c_rf);
380     nvdwtype         = fr->ntype;
381     vdwparam         = fr->nbfp;
382     vdwtype          = mdatoms->typeA;
383
384     /* Avoid stupid compiler warnings */
385     jnrA = jnrB = 0;
386     j_coord_offsetA = 0;
387     j_coord_offsetB = 0;
388
389     outeriter        = 0;
390     inneriter        = 0;
391
392     /* Start outer loop over neighborlists */
393     for(iidx=0; iidx<nri; iidx++)
394     {
395         /* Load shift vector for this list */
396         i_shift_offset   = DIM*shiftidx[iidx];
397
398         /* Load limits for loop over neighbors */
399         j_index_start    = jindex[iidx];
400         j_index_end      = jindex[iidx+1];
401
402         /* Get outer coordinate index */
403         inr              = iinr[iidx];
404         i_coord_offset   = DIM*inr;
405
406         /* Load i particle coords and add shift vector */
407         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
408
409         fix0             = _mm_setzero_pd();
410         fiy0             = _mm_setzero_pd();
411         fiz0             = _mm_setzero_pd();
412
413         /* Load parameters for i particles */
414         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
415         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
416
417         /* Start inner kernel loop */
418         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
419         {
420
421             /* Get j neighbor index, and coordinate index */
422             jnrA             = jjnr[jidx];
423             jnrB             = jjnr[jidx+1];
424             j_coord_offsetA  = DIM*jnrA;
425             j_coord_offsetB  = DIM*jnrB;
426
427             /* load j atom coordinates */
428             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
429                                               &jx0,&jy0,&jz0);
430
431             /* Calculate displacement vector */
432             dx00             = _mm_sub_pd(ix0,jx0);
433             dy00             = _mm_sub_pd(iy0,jy0);
434             dz00             = _mm_sub_pd(iz0,jz0);
435
436             /* Calculate squared distance and things based on it */
437             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
438
439             rinv00           = gmx_mm_invsqrt_pd(rsq00);
440
441             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
442
443             /* Load parameters for j particles */
444             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
445             vdwjidx0A        = 2*vdwtype[jnrA+0];
446             vdwjidx0B        = 2*vdwtype[jnrB+0];
447
448             /**************************
449              * CALCULATE INTERACTIONS *
450              **************************/
451
452             /* Compute parameters for interactions between i and j atoms */
453             qq00             = _mm_mul_pd(iq0,jq0);
454             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
455                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
456
457             /* REACTION-FIELD ELECTROSTATICS */
458             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
459
460             /* LENNARD-JONES DISPERSION/REPULSION */
461
462             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
463             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
464
465             fscal            = _mm_add_pd(felec,fvdw);
466
467             /* Update vectorial force */
468             fix0             = _mm_macc_pd(dx00,fscal,fix0);
469             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
470             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
471             
472             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
473                                                    _mm_mul_pd(dx00,fscal),
474                                                    _mm_mul_pd(dy00,fscal),
475                                                    _mm_mul_pd(dz00,fscal));
476
477             /* Inner loop uses 37 flops */
478         }
479
480         if(jidx<j_index_end)
481         {
482
483             jnrA             = jjnr[jidx];
484             j_coord_offsetA  = DIM*jnrA;
485
486             /* load j atom coordinates */
487             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
488                                               &jx0,&jy0,&jz0);
489
490             /* Calculate displacement vector */
491             dx00             = _mm_sub_pd(ix0,jx0);
492             dy00             = _mm_sub_pd(iy0,jy0);
493             dz00             = _mm_sub_pd(iz0,jz0);
494
495             /* Calculate squared distance and things based on it */
496             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
497
498             rinv00           = gmx_mm_invsqrt_pd(rsq00);
499
500             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
501
502             /* Load parameters for j particles */
503             jq0              = _mm_load_sd(charge+jnrA+0);
504             vdwjidx0A        = 2*vdwtype[jnrA+0];
505
506             /**************************
507              * CALCULATE INTERACTIONS *
508              **************************/
509
510             /* Compute parameters for interactions between i and j atoms */
511             qq00             = _mm_mul_pd(iq0,jq0);
512             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
513
514             /* REACTION-FIELD ELECTROSTATICS */
515             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
516
517             /* LENNARD-JONES DISPERSION/REPULSION */
518
519             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
520             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
521
522             fscal            = _mm_add_pd(felec,fvdw);
523
524             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
525
526             /* Update vectorial force */
527             fix0             = _mm_macc_pd(dx00,fscal,fix0);
528             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
529             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
530             
531             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
532                                                    _mm_mul_pd(dx00,fscal),
533                                                    _mm_mul_pd(dy00,fscal),
534                                                    _mm_mul_pd(dz00,fscal));
535
536             /* Inner loop uses 37 flops */
537         }
538
539         /* End of innermost loop */
540
541         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
542                                               f+i_coord_offset,fshift+i_shift_offset);
543
544         /* Increment number of inner iterations */
545         inneriter                  += j_index_end - j_index_start;
546
547         /* Outer loop uses 7 flops */
548     }
549
550     /* Increment number of outer iterations */
551     outeriter        += nri;
552
553     /* Update outer/inner flops */
554
555     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);
556 }