Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRF_VdwCSTab_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwioffset3;
86     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87     int              vdwjidx0A,vdwjidx0B;
88     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
104     real             *vftab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->ic->epsfac);
121     charge           = mdatoms->chargeA;
122     krf              = _mm_set1_pd(fr->ic->k_rf);
123     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
124     crf              = _mm_set1_pd(fr->ic->c_rf);
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
135     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
136     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
163                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
164
165         fix0             = _mm_setzero_pd();
166         fiy0             = _mm_setzero_pd();
167         fiz0             = _mm_setzero_pd();
168         fix1             = _mm_setzero_pd();
169         fiy1             = _mm_setzero_pd();
170         fiz1             = _mm_setzero_pd();
171         fix2             = _mm_setzero_pd();
172         fiy2             = _mm_setzero_pd();
173         fiz2             = _mm_setzero_pd();
174         fix3             = _mm_setzero_pd();
175         fiy3             = _mm_setzero_pd();
176         fiz3             = _mm_setzero_pd();
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_pd();
180         vvdwsum          = _mm_setzero_pd();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_pd(ix0,jx0);
198             dy00             = _mm_sub_pd(iy0,jy0);
199             dz00             = _mm_sub_pd(iz0,jz0);
200             dx10             = _mm_sub_pd(ix1,jx0);
201             dy10             = _mm_sub_pd(iy1,jy0);
202             dz10             = _mm_sub_pd(iz1,jz0);
203             dx20             = _mm_sub_pd(ix2,jx0);
204             dy20             = _mm_sub_pd(iy2,jy0);
205             dz20             = _mm_sub_pd(iz2,jz0);
206             dx30             = _mm_sub_pd(ix3,jx0);
207             dy30             = _mm_sub_pd(iy3,jy0);
208             dz30             = _mm_sub_pd(iz3,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
212             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
213             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
214             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
215
216             rinv00           = avx128fma_invsqrt_d(rsq00);
217             rinv10           = avx128fma_invsqrt_d(rsq10);
218             rinv20           = avx128fma_invsqrt_d(rsq20);
219             rinv30           = avx128fma_invsqrt_d(rsq30);
220
221             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
222             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
223             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
227             vdwjidx0A        = 2*vdwtype[jnrA+0];
228             vdwjidx0B        = 2*vdwtype[jnrB+0];
229
230             fjx0             = _mm_setzero_pd();
231             fjy0             = _mm_setzero_pd();
232             fjz0             = _mm_setzero_pd();
233
234             /**************************
235              * CALCULATE INTERACTIONS *
236              **************************/
237
238             r00              = _mm_mul_pd(rsq00,rinv00);
239
240             /* Compute parameters for interactions between i and j atoms */
241             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
242                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
243
244             /* Calculate table index by multiplying r with table scale and truncate to integer */
245             rt               = _mm_mul_pd(r00,vftabscale);
246             vfitab           = _mm_cvttpd_epi32(rt);
247 #ifdef __XOP__
248             vfeps            = _mm_frcz_pd(rt);
249 #else
250             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
251 #endif
252             twovfeps         = _mm_add_pd(vfeps,vfeps);
253             vfitab           = _mm_slli_epi32(vfitab,3);
254
255             /* CUBIC SPLINE TABLE DISPERSION */
256             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
257             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
258             GMX_MM_TRANSPOSE2_PD(Y,F);
259             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
260             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
261             GMX_MM_TRANSPOSE2_PD(G,H);
262             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
263             VV               = _mm_macc_pd(vfeps,Fp,Y);
264             vvdw6            = _mm_mul_pd(c6_00,VV);
265             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
266             fvdw6            = _mm_mul_pd(c6_00,FF);
267
268             /* CUBIC SPLINE TABLE REPULSION */
269             vfitab           = _mm_add_epi32(vfitab,ifour);
270             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
271             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
272             GMX_MM_TRANSPOSE2_PD(Y,F);
273             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
274             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
275             GMX_MM_TRANSPOSE2_PD(G,H);
276             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
277             VV               = _mm_macc_pd(vfeps,Fp,Y);
278             vvdw12           = _mm_mul_pd(c12_00,VV);
279             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
280             fvdw12           = _mm_mul_pd(c12_00,FF);
281             vvdw             = _mm_add_pd(vvdw12,vvdw6);
282             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
283
284             /* Update potential sum for this i atom from the interaction with this j atom. */
285             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
286
287             fscal            = fvdw;
288
289             /* Update vectorial force */
290             fix0             = _mm_macc_pd(dx00,fscal,fix0);
291             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
292             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
293             
294             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
295             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
296             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
297
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             /* Compute parameters for interactions between i and j atoms */
303             qq10             = _mm_mul_pd(iq1,jq0);
304
305             /* REACTION-FIELD ELECTROSTATICS */
306             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
307             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             velecsum         = _mm_add_pd(velecsum,velec);
311
312             fscal            = felec;
313
314             /* Update vectorial force */
315             fix1             = _mm_macc_pd(dx10,fscal,fix1);
316             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
317             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
318             
319             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
320             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
321             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
322
323             /**************************
324              * CALCULATE INTERACTIONS *
325              **************************/
326
327             /* Compute parameters for interactions between i and j atoms */
328             qq20             = _mm_mul_pd(iq2,jq0);
329
330             /* REACTION-FIELD ELECTROSTATICS */
331             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
332             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
333
334             /* Update potential sum for this i atom from the interaction with this j atom. */
335             velecsum         = _mm_add_pd(velecsum,velec);
336
337             fscal            = felec;
338
339             /* Update vectorial force */
340             fix2             = _mm_macc_pd(dx20,fscal,fix2);
341             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
342             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
343             
344             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
345             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
346             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
347
348             /**************************
349              * CALCULATE INTERACTIONS *
350              **************************/
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq30             = _mm_mul_pd(iq3,jq0);
354
355             /* REACTION-FIELD ELECTROSTATICS */
356             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_macc_pd(krf,rsq30,rinv30),crf));
357             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velecsum         = _mm_add_pd(velecsum,velec);
361
362             fscal            = felec;
363
364             /* Update vectorial force */
365             fix3             = _mm_macc_pd(dx30,fscal,fix3);
366             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
367             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
368             
369             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
370             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
371             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
372
373             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
374
375             /* Inner loop uses 167 flops */
376         }
377
378         if(jidx<j_index_end)
379         {
380
381             jnrA             = jjnr[jidx];
382             j_coord_offsetA  = DIM*jnrA;
383
384             /* load j atom coordinates */
385             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
386                                               &jx0,&jy0,&jz0);
387
388             /* Calculate displacement vector */
389             dx00             = _mm_sub_pd(ix0,jx0);
390             dy00             = _mm_sub_pd(iy0,jy0);
391             dz00             = _mm_sub_pd(iz0,jz0);
392             dx10             = _mm_sub_pd(ix1,jx0);
393             dy10             = _mm_sub_pd(iy1,jy0);
394             dz10             = _mm_sub_pd(iz1,jz0);
395             dx20             = _mm_sub_pd(ix2,jx0);
396             dy20             = _mm_sub_pd(iy2,jy0);
397             dz20             = _mm_sub_pd(iz2,jz0);
398             dx30             = _mm_sub_pd(ix3,jx0);
399             dy30             = _mm_sub_pd(iy3,jy0);
400             dz30             = _mm_sub_pd(iz3,jz0);
401
402             /* Calculate squared distance and things based on it */
403             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
404             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
405             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
406             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
407
408             rinv00           = avx128fma_invsqrt_d(rsq00);
409             rinv10           = avx128fma_invsqrt_d(rsq10);
410             rinv20           = avx128fma_invsqrt_d(rsq20);
411             rinv30           = avx128fma_invsqrt_d(rsq30);
412
413             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
414             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
415             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
416
417             /* Load parameters for j particles */
418             jq0              = _mm_load_sd(charge+jnrA+0);
419             vdwjidx0A        = 2*vdwtype[jnrA+0];
420
421             fjx0             = _mm_setzero_pd();
422             fjy0             = _mm_setzero_pd();
423             fjz0             = _mm_setzero_pd();
424
425             /**************************
426              * CALCULATE INTERACTIONS *
427              **************************/
428
429             r00              = _mm_mul_pd(rsq00,rinv00);
430
431             /* Compute parameters for interactions between i and j atoms */
432             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
433
434             /* Calculate table index by multiplying r with table scale and truncate to integer */
435             rt               = _mm_mul_pd(r00,vftabscale);
436             vfitab           = _mm_cvttpd_epi32(rt);
437 #ifdef __XOP__
438             vfeps            = _mm_frcz_pd(rt);
439 #else
440             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
441 #endif
442             twovfeps         = _mm_add_pd(vfeps,vfeps);
443             vfitab           = _mm_slli_epi32(vfitab,3);
444
445             /* CUBIC SPLINE TABLE DISPERSION */
446             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
447             F                = _mm_setzero_pd();
448             GMX_MM_TRANSPOSE2_PD(Y,F);
449             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
450             H                = _mm_setzero_pd();
451             GMX_MM_TRANSPOSE2_PD(G,H);
452             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
453             VV               = _mm_macc_pd(vfeps,Fp,Y);
454             vvdw6            = _mm_mul_pd(c6_00,VV);
455             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
456             fvdw6            = _mm_mul_pd(c6_00,FF);
457
458             /* CUBIC SPLINE TABLE REPULSION */
459             vfitab           = _mm_add_epi32(vfitab,ifour);
460             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
461             F                = _mm_setzero_pd();
462             GMX_MM_TRANSPOSE2_PD(Y,F);
463             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
464             H                = _mm_setzero_pd();
465             GMX_MM_TRANSPOSE2_PD(G,H);
466             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
467             VV               = _mm_macc_pd(vfeps,Fp,Y);
468             vvdw12           = _mm_mul_pd(c12_00,VV);
469             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
470             fvdw12           = _mm_mul_pd(c12_00,FF);
471             vvdw             = _mm_add_pd(vvdw12,vvdw6);
472             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
473
474             /* Update potential sum for this i atom from the interaction with this j atom. */
475             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
476             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
477
478             fscal            = fvdw;
479
480             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
481
482             /* Update vectorial force */
483             fix0             = _mm_macc_pd(dx00,fscal,fix0);
484             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
485             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
486             
487             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
488             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
489             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
490
491             /**************************
492              * CALCULATE INTERACTIONS *
493              **************************/
494
495             /* Compute parameters for interactions between i and j atoms */
496             qq10             = _mm_mul_pd(iq1,jq0);
497
498             /* REACTION-FIELD ELECTROSTATICS */
499             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
500             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
501
502             /* Update potential sum for this i atom from the interaction with this j atom. */
503             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
504             velecsum         = _mm_add_pd(velecsum,velec);
505
506             fscal            = felec;
507
508             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
509
510             /* Update vectorial force */
511             fix1             = _mm_macc_pd(dx10,fscal,fix1);
512             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
513             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
514             
515             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
516             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
517             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
518
519             /**************************
520              * CALCULATE INTERACTIONS *
521              **************************/
522
523             /* Compute parameters for interactions between i and j atoms */
524             qq20             = _mm_mul_pd(iq2,jq0);
525
526             /* REACTION-FIELD ELECTROSTATICS */
527             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
528             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
529
530             /* Update potential sum for this i atom from the interaction with this j atom. */
531             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
532             velecsum         = _mm_add_pd(velecsum,velec);
533
534             fscal            = felec;
535
536             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
537
538             /* Update vectorial force */
539             fix2             = _mm_macc_pd(dx20,fscal,fix2);
540             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
541             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
542             
543             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
544             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
545             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
546
547             /**************************
548              * CALCULATE INTERACTIONS *
549              **************************/
550
551             /* Compute parameters for interactions between i and j atoms */
552             qq30             = _mm_mul_pd(iq3,jq0);
553
554             /* REACTION-FIELD ELECTROSTATICS */
555             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_macc_pd(krf,rsq30,rinv30),crf));
556             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
557
558             /* Update potential sum for this i atom from the interaction with this j atom. */
559             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
560             velecsum         = _mm_add_pd(velecsum,velec);
561
562             fscal            = felec;
563
564             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
565
566             /* Update vectorial force */
567             fix3             = _mm_macc_pd(dx30,fscal,fix3);
568             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
569             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
570             
571             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
572             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
573             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
574
575             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
576
577             /* Inner loop uses 167 flops */
578         }
579
580         /* End of innermost loop */
581
582         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
583                                               f+i_coord_offset,fshift+i_shift_offset);
584
585         ggid                        = gid[iidx];
586         /* Update potential energies */
587         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
588         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
589
590         /* Increment number of inner iterations */
591         inneriter                  += j_index_end - j_index_start;
592
593         /* Outer loop uses 26 flops */
594     }
595
596     /* Increment number of outer iterations */
597     outeriter        += nri;
598
599     /* Update outer/inner flops */
600
601     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*167);
602 }
603 /*
604  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_128_fma_double
605  * Electrostatics interaction: ReactionField
606  * VdW interaction:            CubicSplineTable
607  * Geometry:                   Water4-Particle
608  * Calculate force/pot:        Force
609  */
610 void
611 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_128_fma_double
612                     (t_nblist                    * gmx_restrict       nlist,
613                      rvec                        * gmx_restrict          xx,
614                      rvec                        * gmx_restrict          ff,
615                      struct t_forcerec           * gmx_restrict          fr,
616                      t_mdatoms                   * gmx_restrict     mdatoms,
617                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
618                      t_nrnb                      * gmx_restrict        nrnb)
619 {
620     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
621      * just 0 for non-waters.
622      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
623      * jnr indices corresponding to data put in the four positions in the SIMD register.
624      */
625     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
626     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
627     int              jnrA,jnrB;
628     int              j_coord_offsetA,j_coord_offsetB;
629     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
630     real             rcutoff_scalar;
631     real             *shiftvec,*fshift,*x,*f;
632     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
633     int              vdwioffset0;
634     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
635     int              vdwioffset1;
636     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
637     int              vdwioffset2;
638     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
639     int              vdwioffset3;
640     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
641     int              vdwjidx0A,vdwjidx0B;
642     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
643     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
644     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
645     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
646     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
647     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
648     real             *charge;
649     int              nvdwtype;
650     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
651     int              *vdwtype;
652     real             *vdwparam;
653     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
654     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
655     __m128i          vfitab;
656     __m128i          ifour       = _mm_set1_epi32(4);
657     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
658     real             *vftab;
659     __m128d          dummy_mask,cutoff_mask;
660     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
661     __m128d          one     = _mm_set1_pd(1.0);
662     __m128d          two     = _mm_set1_pd(2.0);
663     x                = xx[0];
664     f                = ff[0];
665
666     nri              = nlist->nri;
667     iinr             = nlist->iinr;
668     jindex           = nlist->jindex;
669     jjnr             = nlist->jjnr;
670     shiftidx         = nlist->shift;
671     gid              = nlist->gid;
672     shiftvec         = fr->shift_vec[0];
673     fshift           = fr->fshift[0];
674     facel            = _mm_set1_pd(fr->ic->epsfac);
675     charge           = mdatoms->chargeA;
676     krf              = _mm_set1_pd(fr->ic->k_rf);
677     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
678     crf              = _mm_set1_pd(fr->ic->c_rf);
679     nvdwtype         = fr->ntype;
680     vdwparam         = fr->nbfp;
681     vdwtype          = mdatoms->typeA;
682
683     vftab            = kernel_data->table_vdw->data;
684     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
685
686     /* Setup water-specific parameters */
687     inr              = nlist->iinr[0];
688     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
689     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
690     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
691     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
692
693     /* Avoid stupid compiler warnings */
694     jnrA = jnrB = 0;
695     j_coord_offsetA = 0;
696     j_coord_offsetB = 0;
697
698     outeriter        = 0;
699     inneriter        = 0;
700
701     /* Start outer loop over neighborlists */
702     for(iidx=0; iidx<nri; iidx++)
703     {
704         /* Load shift vector for this list */
705         i_shift_offset   = DIM*shiftidx[iidx];
706
707         /* Load limits for loop over neighbors */
708         j_index_start    = jindex[iidx];
709         j_index_end      = jindex[iidx+1];
710
711         /* Get outer coordinate index */
712         inr              = iinr[iidx];
713         i_coord_offset   = DIM*inr;
714
715         /* Load i particle coords and add shift vector */
716         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
717                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
718
719         fix0             = _mm_setzero_pd();
720         fiy0             = _mm_setzero_pd();
721         fiz0             = _mm_setzero_pd();
722         fix1             = _mm_setzero_pd();
723         fiy1             = _mm_setzero_pd();
724         fiz1             = _mm_setzero_pd();
725         fix2             = _mm_setzero_pd();
726         fiy2             = _mm_setzero_pd();
727         fiz2             = _mm_setzero_pd();
728         fix3             = _mm_setzero_pd();
729         fiy3             = _mm_setzero_pd();
730         fiz3             = _mm_setzero_pd();
731
732         /* Start inner kernel loop */
733         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
734         {
735
736             /* Get j neighbor index, and coordinate index */
737             jnrA             = jjnr[jidx];
738             jnrB             = jjnr[jidx+1];
739             j_coord_offsetA  = DIM*jnrA;
740             j_coord_offsetB  = DIM*jnrB;
741
742             /* load j atom coordinates */
743             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
744                                               &jx0,&jy0,&jz0);
745
746             /* Calculate displacement vector */
747             dx00             = _mm_sub_pd(ix0,jx0);
748             dy00             = _mm_sub_pd(iy0,jy0);
749             dz00             = _mm_sub_pd(iz0,jz0);
750             dx10             = _mm_sub_pd(ix1,jx0);
751             dy10             = _mm_sub_pd(iy1,jy0);
752             dz10             = _mm_sub_pd(iz1,jz0);
753             dx20             = _mm_sub_pd(ix2,jx0);
754             dy20             = _mm_sub_pd(iy2,jy0);
755             dz20             = _mm_sub_pd(iz2,jz0);
756             dx30             = _mm_sub_pd(ix3,jx0);
757             dy30             = _mm_sub_pd(iy3,jy0);
758             dz30             = _mm_sub_pd(iz3,jz0);
759
760             /* Calculate squared distance and things based on it */
761             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
762             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
763             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
764             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
765
766             rinv00           = avx128fma_invsqrt_d(rsq00);
767             rinv10           = avx128fma_invsqrt_d(rsq10);
768             rinv20           = avx128fma_invsqrt_d(rsq20);
769             rinv30           = avx128fma_invsqrt_d(rsq30);
770
771             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
772             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
773             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
774
775             /* Load parameters for j particles */
776             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
777             vdwjidx0A        = 2*vdwtype[jnrA+0];
778             vdwjidx0B        = 2*vdwtype[jnrB+0];
779
780             fjx0             = _mm_setzero_pd();
781             fjy0             = _mm_setzero_pd();
782             fjz0             = _mm_setzero_pd();
783
784             /**************************
785              * CALCULATE INTERACTIONS *
786              **************************/
787
788             r00              = _mm_mul_pd(rsq00,rinv00);
789
790             /* Compute parameters for interactions between i and j atoms */
791             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
792                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
793
794             /* Calculate table index by multiplying r with table scale and truncate to integer */
795             rt               = _mm_mul_pd(r00,vftabscale);
796             vfitab           = _mm_cvttpd_epi32(rt);
797 #ifdef __XOP__
798             vfeps            = _mm_frcz_pd(rt);
799 #else
800             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
801 #endif
802             twovfeps         = _mm_add_pd(vfeps,vfeps);
803             vfitab           = _mm_slli_epi32(vfitab,3);
804
805             /* CUBIC SPLINE TABLE DISPERSION */
806             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
807             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
808             GMX_MM_TRANSPOSE2_PD(Y,F);
809             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
810             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
811             GMX_MM_TRANSPOSE2_PD(G,H);
812             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
813             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
814             fvdw6            = _mm_mul_pd(c6_00,FF);
815
816             /* CUBIC SPLINE TABLE REPULSION */
817             vfitab           = _mm_add_epi32(vfitab,ifour);
818             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
819             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
820             GMX_MM_TRANSPOSE2_PD(Y,F);
821             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
822             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
823             GMX_MM_TRANSPOSE2_PD(G,H);
824             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
825             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
826             fvdw12           = _mm_mul_pd(c12_00,FF);
827             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
828
829             fscal            = fvdw;
830
831             /* Update vectorial force */
832             fix0             = _mm_macc_pd(dx00,fscal,fix0);
833             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
834             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
835             
836             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
837             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
838             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
839
840             /**************************
841              * CALCULATE INTERACTIONS *
842              **************************/
843
844             /* Compute parameters for interactions between i and j atoms */
845             qq10             = _mm_mul_pd(iq1,jq0);
846
847             /* REACTION-FIELD ELECTROSTATICS */
848             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
849
850             fscal            = felec;
851
852             /* Update vectorial force */
853             fix1             = _mm_macc_pd(dx10,fscal,fix1);
854             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
855             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
856             
857             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
858             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
859             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
860
861             /**************************
862              * CALCULATE INTERACTIONS *
863              **************************/
864
865             /* Compute parameters for interactions between i and j atoms */
866             qq20             = _mm_mul_pd(iq2,jq0);
867
868             /* REACTION-FIELD ELECTROSTATICS */
869             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
870
871             fscal            = felec;
872
873             /* Update vectorial force */
874             fix2             = _mm_macc_pd(dx20,fscal,fix2);
875             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
876             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
877             
878             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
879             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
880             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
881
882             /**************************
883              * CALCULATE INTERACTIONS *
884              **************************/
885
886             /* Compute parameters for interactions between i and j atoms */
887             qq30             = _mm_mul_pd(iq3,jq0);
888
889             /* REACTION-FIELD ELECTROSTATICS */
890             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
891
892             fscal            = felec;
893
894             /* Update vectorial force */
895             fix3             = _mm_macc_pd(dx30,fscal,fix3);
896             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
897             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
898             
899             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
900             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
901             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
902
903             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
904
905             /* Inner loop uses 144 flops */
906         }
907
908         if(jidx<j_index_end)
909         {
910
911             jnrA             = jjnr[jidx];
912             j_coord_offsetA  = DIM*jnrA;
913
914             /* load j atom coordinates */
915             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
916                                               &jx0,&jy0,&jz0);
917
918             /* Calculate displacement vector */
919             dx00             = _mm_sub_pd(ix0,jx0);
920             dy00             = _mm_sub_pd(iy0,jy0);
921             dz00             = _mm_sub_pd(iz0,jz0);
922             dx10             = _mm_sub_pd(ix1,jx0);
923             dy10             = _mm_sub_pd(iy1,jy0);
924             dz10             = _mm_sub_pd(iz1,jz0);
925             dx20             = _mm_sub_pd(ix2,jx0);
926             dy20             = _mm_sub_pd(iy2,jy0);
927             dz20             = _mm_sub_pd(iz2,jz0);
928             dx30             = _mm_sub_pd(ix3,jx0);
929             dy30             = _mm_sub_pd(iy3,jy0);
930             dz30             = _mm_sub_pd(iz3,jz0);
931
932             /* Calculate squared distance and things based on it */
933             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
934             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
935             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
936             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
937
938             rinv00           = avx128fma_invsqrt_d(rsq00);
939             rinv10           = avx128fma_invsqrt_d(rsq10);
940             rinv20           = avx128fma_invsqrt_d(rsq20);
941             rinv30           = avx128fma_invsqrt_d(rsq30);
942
943             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
944             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
945             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
946
947             /* Load parameters for j particles */
948             jq0              = _mm_load_sd(charge+jnrA+0);
949             vdwjidx0A        = 2*vdwtype[jnrA+0];
950
951             fjx0             = _mm_setzero_pd();
952             fjy0             = _mm_setzero_pd();
953             fjz0             = _mm_setzero_pd();
954
955             /**************************
956              * CALCULATE INTERACTIONS *
957              **************************/
958
959             r00              = _mm_mul_pd(rsq00,rinv00);
960
961             /* Compute parameters for interactions between i and j atoms */
962             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
963
964             /* Calculate table index by multiplying r with table scale and truncate to integer */
965             rt               = _mm_mul_pd(r00,vftabscale);
966             vfitab           = _mm_cvttpd_epi32(rt);
967 #ifdef __XOP__
968             vfeps            = _mm_frcz_pd(rt);
969 #else
970             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
971 #endif
972             twovfeps         = _mm_add_pd(vfeps,vfeps);
973             vfitab           = _mm_slli_epi32(vfitab,3);
974
975             /* CUBIC SPLINE TABLE DISPERSION */
976             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
977             F                = _mm_setzero_pd();
978             GMX_MM_TRANSPOSE2_PD(Y,F);
979             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
980             H                = _mm_setzero_pd();
981             GMX_MM_TRANSPOSE2_PD(G,H);
982             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
983             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
984             fvdw6            = _mm_mul_pd(c6_00,FF);
985
986             /* CUBIC SPLINE TABLE REPULSION */
987             vfitab           = _mm_add_epi32(vfitab,ifour);
988             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
989             F                = _mm_setzero_pd();
990             GMX_MM_TRANSPOSE2_PD(Y,F);
991             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
992             H                = _mm_setzero_pd();
993             GMX_MM_TRANSPOSE2_PD(G,H);
994             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
995             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
996             fvdw12           = _mm_mul_pd(c12_00,FF);
997             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
998
999             fscal            = fvdw;
1000
1001             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1002
1003             /* Update vectorial force */
1004             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1005             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1006             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1007             
1008             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1009             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1010             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1011
1012             /**************************
1013              * CALCULATE INTERACTIONS *
1014              **************************/
1015
1016             /* Compute parameters for interactions between i and j atoms */
1017             qq10             = _mm_mul_pd(iq1,jq0);
1018
1019             /* REACTION-FIELD ELECTROSTATICS */
1020             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
1021
1022             fscal            = felec;
1023
1024             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1025
1026             /* Update vectorial force */
1027             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1028             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1029             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1030             
1031             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1032             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1033             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1034
1035             /**************************
1036              * CALCULATE INTERACTIONS *
1037              **************************/
1038
1039             /* Compute parameters for interactions between i and j atoms */
1040             qq20             = _mm_mul_pd(iq2,jq0);
1041
1042             /* REACTION-FIELD ELECTROSTATICS */
1043             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
1044
1045             fscal            = felec;
1046
1047             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1048
1049             /* Update vectorial force */
1050             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1051             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1052             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1053             
1054             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1055             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1056             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1057
1058             /**************************
1059              * CALCULATE INTERACTIONS *
1060              **************************/
1061
1062             /* Compute parameters for interactions between i and j atoms */
1063             qq30             = _mm_mul_pd(iq3,jq0);
1064
1065             /* REACTION-FIELD ELECTROSTATICS */
1066             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
1067
1068             fscal            = felec;
1069
1070             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1071
1072             /* Update vectorial force */
1073             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1074             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1075             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1076             
1077             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1078             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1079             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1080
1081             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1082
1083             /* Inner loop uses 144 flops */
1084         }
1085
1086         /* End of innermost loop */
1087
1088         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1089                                               f+i_coord_offset,fshift+i_shift_offset);
1090
1091         /* Increment number of inner iterations */
1092         inneriter                  += j_index_end - j_index_start;
1093
1094         /* Outer loop uses 24 flops */
1095     }
1096
1097     /* Increment number of outer iterations */
1098     outeriter        += nri;
1099
1100     /* Update outer/inner flops */
1101
1102     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*144);
1103 }