Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRF_VdwCSTab_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
107     real             *vftab;
108     __m128d          dummy_mask,cutoff_mask;
109     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
110     __m128d          one     = _mm_set1_pd(1.0);
111     __m128d          two     = _mm_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     krf              = _mm_set1_pd(fr->ic->k_rf);
126     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
127     crf              = _mm_set1_pd(fr->ic->c_rf);
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_vdw->data;
133     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
138     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
139     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
166                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
167
168         fix0             = _mm_setzero_pd();
169         fiy0             = _mm_setzero_pd();
170         fiz0             = _mm_setzero_pd();
171         fix1             = _mm_setzero_pd();
172         fiy1             = _mm_setzero_pd();
173         fiz1             = _mm_setzero_pd();
174         fix2             = _mm_setzero_pd();
175         fiy2             = _mm_setzero_pd();
176         fiz2             = _mm_setzero_pd();
177         fix3             = _mm_setzero_pd();
178         fiy3             = _mm_setzero_pd();
179         fiz3             = _mm_setzero_pd();
180
181         /* Reset potential sums */
182         velecsum         = _mm_setzero_pd();
183         vvdwsum          = _mm_setzero_pd();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194
195             /* load j atom coordinates */
196             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm_sub_pd(ix0,jx0);
201             dy00             = _mm_sub_pd(iy0,jy0);
202             dz00             = _mm_sub_pd(iz0,jz0);
203             dx10             = _mm_sub_pd(ix1,jx0);
204             dy10             = _mm_sub_pd(iy1,jy0);
205             dz10             = _mm_sub_pd(iz1,jz0);
206             dx20             = _mm_sub_pd(ix2,jx0);
207             dy20             = _mm_sub_pd(iy2,jy0);
208             dz20             = _mm_sub_pd(iz2,jz0);
209             dx30             = _mm_sub_pd(ix3,jx0);
210             dy30             = _mm_sub_pd(iy3,jy0);
211             dz30             = _mm_sub_pd(iz3,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
215             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
216             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
217             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
218
219             rinv00           = gmx_mm_invsqrt_pd(rsq00);
220             rinv10           = gmx_mm_invsqrt_pd(rsq10);
221             rinv20           = gmx_mm_invsqrt_pd(rsq20);
222             rinv30           = gmx_mm_invsqrt_pd(rsq30);
223
224             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
225             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
226             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
227
228             /* Load parameters for j particles */
229             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
230             vdwjidx0A        = 2*vdwtype[jnrA+0];
231             vdwjidx0B        = 2*vdwtype[jnrB+0];
232
233             fjx0             = _mm_setzero_pd();
234             fjy0             = _mm_setzero_pd();
235             fjz0             = _mm_setzero_pd();
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             r00              = _mm_mul_pd(rsq00,rinv00);
242
243             /* Compute parameters for interactions between i and j atoms */
244             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
245                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
246
247             /* Calculate table index by multiplying r with table scale and truncate to integer */
248             rt               = _mm_mul_pd(r00,vftabscale);
249             vfitab           = _mm_cvttpd_epi32(rt);
250 #ifdef __XOP__
251             vfeps            = _mm_frcz_pd(rt);
252 #else
253             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
254 #endif
255             twovfeps         = _mm_add_pd(vfeps,vfeps);
256             vfitab           = _mm_slli_epi32(vfitab,3);
257
258             /* CUBIC SPLINE TABLE DISPERSION */
259             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
260             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
261             GMX_MM_TRANSPOSE2_PD(Y,F);
262             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
263             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
264             GMX_MM_TRANSPOSE2_PD(G,H);
265             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
266             VV               = _mm_macc_pd(vfeps,Fp,Y);
267             vvdw6            = _mm_mul_pd(c6_00,VV);
268             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
269             fvdw6            = _mm_mul_pd(c6_00,FF);
270
271             /* CUBIC SPLINE TABLE REPULSION */
272             vfitab           = _mm_add_epi32(vfitab,ifour);
273             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
274             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
275             GMX_MM_TRANSPOSE2_PD(Y,F);
276             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
277             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
278             GMX_MM_TRANSPOSE2_PD(G,H);
279             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
280             VV               = _mm_macc_pd(vfeps,Fp,Y);
281             vvdw12           = _mm_mul_pd(c12_00,VV);
282             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
283             fvdw12           = _mm_mul_pd(c12_00,FF);
284             vvdw             = _mm_add_pd(vvdw12,vvdw6);
285             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
286
287             /* Update potential sum for this i atom from the interaction with this j atom. */
288             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
289
290             fscal            = fvdw;
291
292             /* Update vectorial force */
293             fix0             = _mm_macc_pd(dx00,fscal,fix0);
294             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
295             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
296             
297             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
298             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
299             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq10             = _mm_mul_pd(iq1,jq0);
307
308             /* REACTION-FIELD ELECTROSTATICS */
309             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
310             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
311
312             /* Update potential sum for this i atom from the interaction with this j atom. */
313             velecsum         = _mm_add_pd(velecsum,velec);
314
315             fscal            = felec;
316
317             /* Update vectorial force */
318             fix1             = _mm_macc_pd(dx10,fscal,fix1);
319             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
320             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
321             
322             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
323             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
324             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             /* Compute parameters for interactions between i and j atoms */
331             qq20             = _mm_mul_pd(iq2,jq0);
332
333             /* REACTION-FIELD ELECTROSTATICS */
334             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
335             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
336
337             /* Update potential sum for this i atom from the interaction with this j atom. */
338             velecsum         = _mm_add_pd(velecsum,velec);
339
340             fscal            = felec;
341
342             /* Update vectorial force */
343             fix2             = _mm_macc_pd(dx20,fscal,fix2);
344             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
345             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
346             
347             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
348             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
349             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             /* Compute parameters for interactions between i and j atoms */
356             qq30             = _mm_mul_pd(iq3,jq0);
357
358             /* REACTION-FIELD ELECTROSTATICS */
359             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_macc_pd(krf,rsq30,rinv30),crf));
360             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
361
362             /* Update potential sum for this i atom from the interaction with this j atom. */
363             velecsum         = _mm_add_pd(velecsum,velec);
364
365             fscal            = felec;
366
367             /* Update vectorial force */
368             fix3             = _mm_macc_pd(dx30,fscal,fix3);
369             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
370             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
371             
372             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
373             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
374             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
375
376             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
377
378             /* Inner loop uses 167 flops */
379         }
380
381         if(jidx<j_index_end)
382         {
383
384             jnrA             = jjnr[jidx];
385             j_coord_offsetA  = DIM*jnrA;
386
387             /* load j atom coordinates */
388             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
389                                               &jx0,&jy0,&jz0);
390
391             /* Calculate displacement vector */
392             dx00             = _mm_sub_pd(ix0,jx0);
393             dy00             = _mm_sub_pd(iy0,jy0);
394             dz00             = _mm_sub_pd(iz0,jz0);
395             dx10             = _mm_sub_pd(ix1,jx0);
396             dy10             = _mm_sub_pd(iy1,jy0);
397             dz10             = _mm_sub_pd(iz1,jz0);
398             dx20             = _mm_sub_pd(ix2,jx0);
399             dy20             = _mm_sub_pd(iy2,jy0);
400             dz20             = _mm_sub_pd(iz2,jz0);
401             dx30             = _mm_sub_pd(ix3,jx0);
402             dy30             = _mm_sub_pd(iy3,jy0);
403             dz30             = _mm_sub_pd(iz3,jz0);
404
405             /* Calculate squared distance and things based on it */
406             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
407             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
408             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
409             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
410
411             rinv00           = gmx_mm_invsqrt_pd(rsq00);
412             rinv10           = gmx_mm_invsqrt_pd(rsq10);
413             rinv20           = gmx_mm_invsqrt_pd(rsq20);
414             rinv30           = gmx_mm_invsqrt_pd(rsq30);
415
416             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
417             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
418             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
419
420             /* Load parameters for j particles */
421             jq0              = _mm_load_sd(charge+jnrA+0);
422             vdwjidx0A        = 2*vdwtype[jnrA+0];
423
424             fjx0             = _mm_setzero_pd();
425             fjy0             = _mm_setzero_pd();
426             fjz0             = _mm_setzero_pd();
427
428             /**************************
429              * CALCULATE INTERACTIONS *
430              **************************/
431
432             r00              = _mm_mul_pd(rsq00,rinv00);
433
434             /* Compute parameters for interactions between i and j atoms */
435             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
436
437             /* Calculate table index by multiplying r with table scale and truncate to integer */
438             rt               = _mm_mul_pd(r00,vftabscale);
439             vfitab           = _mm_cvttpd_epi32(rt);
440 #ifdef __XOP__
441             vfeps            = _mm_frcz_pd(rt);
442 #else
443             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
444 #endif
445             twovfeps         = _mm_add_pd(vfeps,vfeps);
446             vfitab           = _mm_slli_epi32(vfitab,3);
447
448             /* CUBIC SPLINE TABLE DISPERSION */
449             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
450             F                = _mm_setzero_pd();
451             GMX_MM_TRANSPOSE2_PD(Y,F);
452             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
453             H                = _mm_setzero_pd();
454             GMX_MM_TRANSPOSE2_PD(G,H);
455             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
456             VV               = _mm_macc_pd(vfeps,Fp,Y);
457             vvdw6            = _mm_mul_pd(c6_00,VV);
458             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
459             fvdw6            = _mm_mul_pd(c6_00,FF);
460
461             /* CUBIC SPLINE TABLE REPULSION */
462             vfitab           = _mm_add_epi32(vfitab,ifour);
463             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
464             F                = _mm_setzero_pd();
465             GMX_MM_TRANSPOSE2_PD(Y,F);
466             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
467             H                = _mm_setzero_pd();
468             GMX_MM_TRANSPOSE2_PD(G,H);
469             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
470             VV               = _mm_macc_pd(vfeps,Fp,Y);
471             vvdw12           = _mm_mul_pd(c12_00,VV);
472             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
473             fvdw12           = _mm_mul_pd(c12_00,FF);
474             vvdw             = _mm_add_pd(vvdw12,vvdw6);
475             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
476
477             /* Update potential sum for this i atom from the interaction with this j atom. */
478             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
479             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
480
481             fscal            = fvdw;
482
483             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
484
485             /* Update vectorial force */
486             fix0             = _mm_macc_pd(dx00,fscal,fix0);
487             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
488             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
489             
490             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
491             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
492             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
493
494             /**************************
495              * CALCULATE INTERACTIONS *
496              **************************/
497
498             /* Compute parameters for interactions between i and j atoms */
499             qq10             = _mm_mul_pd(iq1,jq0);
500
501             /* REACTION-FIELD ELECTROSTATICS */
502             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
503             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
504
505             /* Update potential sum for this i atom from the interaction with this j atom. */
506             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
507             velecsum         = _mm_add_pd(velecsum,velec);
508
509             fscal            = felec;
510
511             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
512
513             /* Update vectorial force */
514             fix1             = _mm_macc_pd(dx10,fscal,fix1);
515             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
516             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
517             
518             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
519             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
520             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
521
522             /**************************
523              * CALCULATE INTERACTIONS *
524              **************************/
525
526             /* Compute parameters for interactions between i and j atoms */
527             qq20             = _mm_mul_pd(iq2,jq0);
528
529             /* REACTION-FIELD ELECTROSTATICS */
530             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
531             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
532
533             /* Update potential sum for this i atom from the interaction with this j atom. */
534             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
535             velecsum         = _mm_add_pd(velecsum,velec);
536
537             fscal            = felec;
538
539             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
540
541             /* Update vectorial force */
542             fix2             = _mm_macc_pd(dx20,fscal,fix2);
543             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
544             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
545             
546             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
547             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
548             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
549
550             /**************************
551              * CALCULATE INTERACTIONS *
552              **************************/
553
554             /* Compute parameters for interactions between i and j atoms */
555             qq30             = _mm_mul_pd(iq3,jq0);
556
557             /* REACTION-FIELD ELECTROSTATICS */
558             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_macc_pd(krf,rsq30,rinv30),crf));
559             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
560
561             /* Update potential sum for this i atom from the interaction with this j atom. */
562             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
563             velecsum         = _mm_add_pd(velecsum,velec);
564
565             fscal            = felec;
566
567             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
568
569             /* Update vectorial force */
570             fix3             = _mm_macc_pd(dx30,fscal,fix3);
571             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
572             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
573             
574             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
575             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
576             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
577
578             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
579
580             /* Inner loop uses 167 flops */
581         }
582
583         /* End of innermost loop */
584
585         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
586                                               f+i_coord_offset,fshift+i_shift_offset);
587
588         ggid                        = gid[iidx];
589         /* Update potential energies */
590         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
591         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
592
593         /* Increment number of inner iterations */
594         inneriter                  += j_index_end - j_index_start;
595
596         /* Outer loop uses 26 flops */
597     }
598
599     /* Increment number of outer iterations */
600     outeriter        += nri;
601
602     /* Update outer/inner flops */
603
604     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*167);
605 }
606 /*
607  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_128_fma_double
608  * Electrostatics interaction: ReactionField
609  * VdW interaction:            CubicSplineTable
610  * Geometry:                   Water4-Particle
611  * Calculate force/pot:        Force
612  */
613 void
614 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_128_fma_double
615                     (t_nblist                    * gmx_restrict       nlist,
616                      rvec                        * gmx_restrict          xx,
617                      rvec                        * gmx_restrict          ff,
618                      t_forcerec                  * gmx_restrict          fr,
619                      t_mdatoms                   * gmx_restrict     mdatoms,
620                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
621                      t_nrnb                      * gmx_restrict        nrnb)
622 {
623     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
624      * just 0 for non-waters.
625      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
626      * jnr indices corresponding to data put in the four positions in the SIMD register.
627      */
628     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
629     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
630     int              jnrA,jnrB;
631     int              j_coord_offsetA,j_coord_offsetB;
632     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
633     real             rcutoff_scalar;
634     real             *shiftvec,*fshift,*x,*f;
635     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
636     int              vdwioffset0;
637     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
638     int              vdwioffset1;
639     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
640     int              vdwioffset2;
641     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
642     int              vdwioffset3;
643     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
644     int              vdwjidx0A,vdwjidx0B;
645     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
646     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
647     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
648     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
649     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
650     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
651     real             *charge;
652     int              nvdwtype;
653     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
654     int              *vdwtype;
655     real             *vdwparam;
656     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
657     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
658     __m128i          vfitab;
659     __m128i          ifour       = _mm_set1_epi32(4);
660     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
661     real             *vftab;
662     __m128d          dummy_mask,cutoff_mask;
663     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
664     __m128d          one     = _mm_set1_pd(1.0);
665     __m128d          two     = _mm_set1_pd(2.0);
666     x                = xx[0];
667     f                = ff[0];
668
669     nri              = nlist->nri;
670     iinr             = nlist->iinr;
671     jindex           = nlist->jindex;
672     jjnr             = nlist->jjnr;
673     shiftidx         = nlist->shift;
674     gid              = nlist->gid;
675     shiftvec         = fr->shift_vec[0];
676     fshift           = fr->fshift[0];
677     facel            = _mm_set1_pd(fr->epsfac);
678     charge           = mdatoms->chargeA;
679     krf              = _mm_set1_pd(fr->ic->k_rf);
680     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
681     crf              = _mm_set1_pd(fr->ic->c_rf);
682     nvdwtype         = fr->ntype;
683     vdwparam         = fr->nbfp;
684     vdwtype          = mdatoms->typeA;
685
686     vftab            = kernel_data->table_vdw->data;
687     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
688
689     /* Setup water-specific parameters */
690     inr              = nlist->iinr[0];
691     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
692     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
693     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
694     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
695
696     /* Avoid stupid compiler warnings */
697     jnrA = jnrB = 0;
698     j_coord_offsetA = 0;
699     j_coord_offsetB = 0;
700
701     outeriter        = 0;
702     inneriter        = 0;
703
704     /* Start outer loop over neighborlists */
705     for(iidx=0; iidx<nri; iidx++)
706     {
707         /* Load shift vector for this list */
708         i_shift_offset   = DIM*shiftidx[iidx];
709
710         /* Load limits for loop over neighbors */
711         j_index_start    = jindex[iidx];
712         j_index_end      = jindex[iidx+1];
713
714         /* Get outer coordinate index */
715         inr              = iinr[iidx];
716         i_coord_offset   = DIM*inr;
717
718         /* Load i particle coords and add shift vector */
719         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
720                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
721
722         fix0             = _mm_setzero_pd();
723         fiy0             = _mm_setzero_pd();
724         fiz0             = _mm_setzero_pd();
725         fix1             = _mm_setzero_pd();
726         fiy1             = _mm_setzero_pd();
727         fiz1             = _mm_setzero_pd();
728         fix2             = _mm_setzero_pd();
729         fiy2             = _mm_setzero_pd();
730         fiz2             = _mm_setzero_pd();
731         fix3             = _mm_setzero_pd();
732         fiy3             = _mm_setzero_pd();
733         fiz3             = _mm_setzero_pd();
734
735         /* Start inner kernel loop */
736         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
737         {
738
739             /* Get j neighbor index, and coordinate index */
740             jnrA             = jjnr[jidx];
741             jnrB             = jjnr[jidx+1];
742             j_coord_offsetA  = DIM*jnrA;
743             j_coord_offsetB  = DIM*jnrB;
744
745             /* load j atom coordinates */
746             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
747                                               &jx0,&jy0,&jz0);
748
749             /* Calculate displacement vector */
750             dx00             = _mm_sub_pd(ix0,jx0);
751             dy00             = _mm_sub_pd(iy0,jy0);
752             dz00             = _mm_sub_pd(iz0,jz0);
753             dx10             = _mm_sub_pd(ix1,jx0);
754             dy10             = _mm_sub_pd(iy1,jy0);
755             dz10             = _mm_sub_pd(iz1,jz0);
756             dx20             = _mm_sub_pd(ix2,jx0);
757             dy20             = _mm_sub_pd(iy2,jy0);
758             dz20             = _mm_sub_pd(iz2,jz0);
759             dx30             = _mm_sub_pd(ix3,jx0);
760             dy30             = _mm_sub_pd(iy3,jy0);
761             dz30             = _mm_sub_pd(iz3,jz0);
762
763             /* Calculate squared distance and things based on it */
764             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
765             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
766             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
767             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
768
769             rinv00           = gmx_mm_invsqrt_pd(rsq00);
770             rinv10           = gmx_mm_invsqrt_pd(rsq10);
771             rinv20           = gmx_mm_invsqrt_pd(rsq20);
772             rinv30           = gmx_mm_invsqrt_pd(rsq30);
773
774             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
775             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
776             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
777
778             /* Load parameters for j particles */
779             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
780             vdwjidx0A        = 2*vdwtype[jnrA+0];
781             vdwjidx0B        = 2*vdwtype[jnrB+0];
782
783             fjx0             = _mm_setzero_pd();
784             fjy0             = _mm_setzero_pd();
785             fjz0             = _mm_setzero_pd();
786
787             /**************************
788              * CALCULATE INTERACTIONS *
789              **************************/
790
791             r00              = _mm_mul_pd(rsq00,rinv00);
792
793             /* Compute parameters for interactions between i and j atoms */
794             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
795                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
796
797             /* Calculate table index by multiplying r with table scale and truncate to integer */
798             rt               = _mm_mul_pd(r00,vftabscale);
799             vfitab           = _mm_cvttpd_epi32(rt);
800 #ifdef __XOP__
801             vfeps            = _mm_frcz_pd(rt);
802 #else
803             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
804 #endif
805             twovfeps         = _mm_add_pd(vfeps,vfeps);
806             vfitab           = _mm_slli_epi32(vfitab,3);
807
808             /* CUBIC SPLINE TABLE DISPERSION */
809             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
810             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
811             GMX_MM_TRANSPOSE2_PD(Y,F);
812             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
813             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
814             GMX_MM_TRANSPOSE2_PD(G,H);
815             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
816             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
817             fvdw6            = _mm_mul_pd(c6_00,FF);
818
819             /* CUBIC SPLINE TABLE REPULSION */
820             vfitab           = _mm_add_epi32(vfitab,ifour);
821             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
822             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
823             GMX_MM_TRANSPOSE2_PD(Y,F);
824             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
825             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
826             GMX_MM_TRANSPOSE2_PD(G,H);
827             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
828             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
829             fvdw12           = _mm_mul_pd(c12_00,FF);
830             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
831
832             fscal            = fvdw;
833
834             /* Update vectorial force */
835             fix0             = _mm_macc_pd(dx00,fscal,fix0);
836             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
837             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
838             
839             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
840             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
841             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
842
843             /**************************
844              * CALCULATE INTERACTIONS *
845              **************************/
846
847             /* Compute parameters for interactions between i and j atoms */
848             qq10             = _mm_mul_pd(iq1,jq0);
849
850             /* REACTION-FIELD ELECTROSTATICS */
851             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
852
853             fscal            = felec;
854
855             /* Update vectorial force */
856             fix1             = _mm_macc_pd(dx10,fscal,fix1);
857             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
858             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
859             
860             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
861             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
862             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
863
864             /**************************
865              * CALCULATE INTERACTIONS *
866              **************************/
867
868             /* Compute parameters for interactions between i and j atoms */
869             qq20             = _mm_mul_pd(iq2,jq0);
870
871             /* REACTION-FIELD ELECTROSTATICS */
872             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
873
874             fscal            = felec;
875
876             /* Update vectorial force */
877             fix2             = _mm_macc_pd(dx20,fscal,fix2);
878             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
879             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
880             
881             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
882             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
883             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
884
885             /**************************
886              * CALCULATE INTERACTIONS *
887              **************************/
888
889             /* Compute parameters for interactions between i and j atoms */
890             qq30             = _mm_mul_pd(iq3,jq0);
891
892             /* REACTION-FIELD ELECTROSTATICS */
893             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
894
895             fscal            = felec;
896
897             /* Update vectorial force */
898             fix3             = _mm_macc_pd(dx30,fscal,fix3);
899             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
900             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
901             
902             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
903             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
904             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
905
906             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
907
908             /* Inner loop uses 144 flops */
909         }
910
911         if(jidx<j_index_end)
912         {
913
914             jnrA             = jjnr[jidx];
915             j_coord_offsetA  = DIM*jnrA;
916
917             /* load j atom coordinates */
918             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
919                                               &jx0,&jy0,&jz0);
920
921             /* Calculate displacement vector */
922             dx00             = _mm_sub_pd(ix0,jx0);
923             dy00             = _mm_sub_pd(iy0,jy0);
924             dz00             = _mm_sub_pd(iz0,jz0);
925             dx10             = _mm_sub_pd(ix1,jx0);
926             dy10             = _mm_sub_pd(iy1,jy0);
927             dz10             = _mm_sub_pd(iz1,jz0);
928             dx20             = _mm_sub_pd(ix2,jx0);
929             dy20             = _mm_sub_pd(iy2,jy0);
930             dz20             = _mm_sub_pd(iz2,jz0);
931             dx30             = _mm_sub_pd(ix3,jx0);
932             dy30             = _mm_sub_pd(iy3,jy0);
933             dz30             = _mm_sub_pd(iz3,jz0);
934
935             /* Calculate squared distance and things based on it */
936             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
937             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
938             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
939             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
940
941             rinv00           = gmx_mm_invsqrt_pd(rsq00);
942             rinv10           = gmx_mm_invsqrt_pd(rsq10);
943             rinv20           = gmx_mm_invsqrt_pd(rsq20);
944             rinv30           = gmx_mm_invsqrt_pd(rsq30);
945
946             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
947             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
948             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
949
950             /* Load parameters for j particles */
951             jq0              = _mm_load_sd(charge+jnrA+0);
952             vdwjidx0A        = 2*vdwtype[jnrA+0];
953
954             fjx0             = _mm_setzero_pd();
955             fjy0             = _mm_setzero_pd();
956             fjz0             = _mm_setzero_pd();
957
958             /**************************
959              * CALCULATE INTERACTIONS *
960              **************************/
961
962             r00              = _mm_mul_pd(rsq00,rinv00);
963
964             /* Compute parameters for interactions between i and j atoms */
965             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
966
967             /* Calculate table index by multiplying r with table scale and truncate to integer */
968             rt               = _mm_mul_pd(r00,vftabscale);
969             vfitab           = _mm_cvttpd_epi32(rt);
970 #ifdef __XOP__
971             vfeps            = _mm_frcz_pd(rt);
972 #else
973             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
974 #endif
975             twovfeps         = _mm_add_pd(vfeps,vfeps);
976             vfitab           = _mm_slli_epi32(vfitab,3);
977
978             /* CUBIC SPLINE TABLE DISPERSION */
979             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
980             F                = _mm_setzero_pd();
981             GMX_MM_TRANSPOSE2_PD(Y,F);
982             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
983             H                = _mm_setzero_pd();
984             GMX_MM_TRANSPOSE2_PD(G,H);
985             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
986             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
987             fvdw6            = _mm_mul_pd(c6_00,FF);
988
989             /* CUBIC SPLINE TABLE REPULSION */
990             vfitab           = _mm_add_epi32(vfitab,ifour);
991             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
992             F                = _mm_setzero_pd();
993             GMX_MM_TRANSPOSE2_PD(Y,F);
994             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
995             H                = _mm_setzero_pd();
996             GMX_MM_TRANSPOSE2_PD(G,H);
997             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
998             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
999             fvdw12           = _mm_mul_pd(c12_00,FF);
1000             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1001
1002             fscal            = fvdw;
1003
1004             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1005
1006             /* Update vectorial force */
1007             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1008             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1009             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1010             
1011             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1012             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1013             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1014
1015             /**************************
1016              * CALCULATE INTERACTIONS *
1017              **************************/
1018
1019             /* Compute parameters for interactions between i and j atoms */
1020             qq10             = _mm_mul_pd(iq1,jq0);
1021
1022             /* REACTION-FIELD ELECTROSTATICS */
1023             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
1024
1025             fscal            = felec;
1026
1027             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1028
1029             /* Update vectorial force */
1030             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1031             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1032             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1033             
1034             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1035             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1036             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1037
1038             /**************************
1039              * CALCULATE INTERACTIONS *
1040              **************************/
1041
1042             /* Compute parameters for interactions between i and j atoms */
1043             qq20             = _mm_mul_pd(iq2,jq0);
1044
1045             /* REACTION-FIELD ELECTROSTATICS */
1046             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
1047
1048             fscal            = felec;
1049
1050             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1051
1052             /* Update vectorial force */
1053             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1054             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1055             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1056             
1057             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1058             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1059             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1060
1061             /**************************
1062              * CALCULATE INTERACTIONS *
1063              **************************/
1064
1065             /* Compute parameters for interactions between i and j atoms */
1066             qq30             = _mm_mul_pd(iq3,jq0);
1067
1068             /* REACTION-FIELD ELECTROSTATICS */
1069             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
1070
1071             fscal            = felec;
1072
1073             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1074
1075             /* Update vectorial force */
1076             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1077             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1078             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1079             
1080             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1081             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1082             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1083
1084             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1085
1086             /* Inner loop uses 144 flops */
1087         }
1088
1089         /* End of innermost loop */
1090
1091         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1092                                               f+i_coord_offset,fshift+i_shift_offset);
1093
1094         /* Increment number of inner iterations */
1095         inneriter                  += j_index_end - j_index_start;
1096
1097         /* Outer loop uses 24 flops */
1098     }
1099
1100     /* Increment number of outer iterations */
1101     outeriter        += nri;
1102
1103     /* Update outer/inner flops */
1104
1105     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*144);
1106 }