Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRF_VdwCSTab_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
105     real             *vftab;
106     __m128d          dummy_mask,cutoff_mask;
107     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
108     __m128d          one     = _mm_set1_pd(1.0);
109     __m128d          two     = _mm_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     krf              = _mm_set1_pd(fr->ic->k_rf);
124     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
125     crf              = _mm_set1_pd(fr->ic->c_rf);
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
136     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
137     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
164                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
165
166         fix0             = _mm_setzero_pd();
167         fiy0             = _mm_setzero_pd();
168         fiz0             = _mm_setzero_pd();
169         fix1             = _mm_setzero_pd();
170         fiy1             = _mm_setzero_pd();
171         fiz1             = _mm_setzero_pd();
172         fix2             = _mm_setzero_pd();
173         fiy2             = _mm_setzero_pd();
174         fiz2             = _mm_setzero_pd();
175         fix3             = _mm_setzero_pd();
176         fiy3             = _mm_setzero_pd();
177         fiz3             = _mm_setzero_pd();
178
179         /* Reset potential sums */
180         velecsum         = _mm_setzero_pd();
181         vvdwsum          = _mm_setzero_pd();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192
193             /* load j atom coordinates */
194             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm_sub_pd(ix0,jx0);
199             dy00             = _mm_sub_pd(iy0,jy0);
200             dz00             = _mm_sub_pd(iz0,jz0);
201             dx10             = _mm_sub_pd(ix1,jx0);
202             dy10             = _mm_sub_pd(iy1,jy0);
203             dz10             = _mm_sub_pd(iz1,jz0);
204             dx20             = _mm_sub_pd(ix2,jx0);
205             dy20             = _mm_sub_pd(iy2,jy0);
206             dz20             = _mm_sub_pd(iz2,jz0);
207             dx30             = _mm_sub_pd(ix3,jx0);
208             dy30             = _mm_sub_pd(iy3,jy0);
209             dz30             = _mm_sub_pd(iz3,jz0);
210
211             /* Calculate squared distance and things based on it */
212             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
213             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
214             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
215             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
216
217             rinv00           = gmx_mm_invsqrt_pd(rsq00);
218             rinv10           = gmx_mm_invsqrt_pd(rsq10);
219             rinv20           = gmx_mm_invsqrt_pd(rsq20);
220             rinv30           = gmx_mm_invsqrt_pd(rsq30);
221
222             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
223             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
224             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230
231             fjx0             = _mm_setzero_pd();
232             fjy0             = _mm_setzero_pd();
233             fjz0             = _mm_setzero_pd();
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             r00              = _mm_mul_pd(rsq00,rinv00);
240
241             /* Compute parameters for interactions between i and j atoms */
242             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
243                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
244
245             /* Calculate table index by multiplying r with table scale and truncate to integer */
246             rt               = _mm_mul_pd(r00,vftabscale);
247             vfitab           = _mm_cvttpd_epi32(rt);
248 #ifdef __XOP__
249             vfeps            = _mm_frcz_pd(rt);
250 #else
251             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
252 #endif
253             twovfeps         = _mm_add_pd(vfeps,vfeps);
254             vfitab           = _mm_slli_epi32(vfitab,3);
255
256             /* CUBIC SPLINE TABLE DISPERSION */
257             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
258             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
259             GMX_MM_TRANSPOSE2_PD(Y,F);
260             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
261             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
262             GMX_MM_TRANSPOSE2_PD(G,H);
263             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
264             VV               = _mm_macc_pd(vfeps,Fp,Y);
265             vvdw6            = _mm_mul_pd(c6_00,VV);
266             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
267             fvdw6            = _mm_mul_pd(c6_00,FF);
268
269             /* CUBIC SPLINE TABLE REPULSION */
270             vfitab           = _mm_add_epi32(vfitab,ifour);
271             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
272             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
273             GMX_MM_TRANSPOSE2_PD(Y,F);
274             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
275             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
276             GMX_MM_TRANSPOSE2_PD(G,H);
277             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
278             VV               = _mm_macc_pd(vfeps,Fp,Y);
279             vvdw12           = _mm_mul_pd(c12_00,VV);
280             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
281             fvdw12           = _mm_mul_pd(c12_00,FF);
282             vvdw             = _mm_add_pd(vvdw12,vvdw6);
283             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
284
285             /* Update potential sum for this i atom from the interaction with this j atom. */
286             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
287
288             fscal            = fvdw;
289
290             /* Update vectorial force */
291             fix0             = _mm_macc_pd(dx00,fscal,fix0);
292             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
293             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
294             
295             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
296             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
297             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq10             = _mm_mul_pd(iq1,jq0);
305
306             /* REACTION-FIELD ELECTROSTATICS */
307             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
308             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
309
310             /* Update potential sum for this i atom from the interaction with this j atom. */
311             velecsum         = _mm_add_pd(velecsum,velec);
312
313             fscal            = felec;
314
315             /* Update vectorial force */
316             fix1             = _mm_macc_pd(dx10,fscal,fix1);
317             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
318             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
319             
320             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
321             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
322             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             /* Compute parameters for interactions between i and j atoms */
329             qq20             = _mm_mul_pd(iq2,jq0);
330
331             /* REACTION-FIELD ELECTROSTATICS */
332             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
333             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velecsum         = _mm_add_pd(velecsum,velec);
337
338             fscal            = felec;
339
340             /* Update vectorial force */
341             fix2             = _mm_macc_pd(dx20,fscal,fix2);
342             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
343             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
344             
345             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
346             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
347             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
348
349             /**************************
350              * CALCULATE INTERACTIONS *
351              **************************/
352
353             /* Compute parameters for interactions between i and j atoms */
354             qq30             = _mm_mul_pd(iq3,jq0);
355
356             /* REACTION-FIELD ELECTROSTATICS */
357             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_macc_pd(krf,rsq30,rinv30),crf));
358             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
359
360             /* Update potential sum for this i atom from the interaction with this j atom. */
361             velecsum         = _mm_add_pd(velecsum,velec);
362
363             fscal            = felec;
364
365             /* Update vectorial force */
366             fix3             = _mm_macc_pd(dx30,fscal,fix3);
367             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
368             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
369             
370             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
371             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
372             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
373
374             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
375
376             /* Inner loop uses 167 flops */
377         }
378
379         if(jidx<j_index_end)
380         {
381
382             jnrA             = jjnr[jidx];
383             j_coord_offsetA  = DIM*jnrA;
384
385             /* load j atom coordinates */
386             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
387                                               &jx0,&jy0,&jz0);
388
389             /* Calculate displacement vector */
390             dx00             = _mm_sub_pd(ix0,jx0);
391             dy00             = _mm_sub_pd(iy0,jy0);
392             dz00             = _mm_sub_pd(iz0,jz0);
393             dx10             = _mm_sub_pd(ix1,jx0);
394             dy10             = _mm_sub_pd(iy1,jy0);
395             dz10             = _mm_sub_pd(iz1,jz0);
396             dx20             = _mm_sub_pd(ix2,jx0);
397             dy20             = _mm_sub_pd(iy2,jy0);
398             dz20             = _mm_sub_pd(iz2,jz0);
399             dx30             = _mm_sub_pd(ix3,jx0);
400             dy30             = _mm_sub_pd(iy3,jy0);
401             dz30             = _mm_sub_pd(iz3,jz0);
402
403             /* Calculate squared distance and things based on it */
404             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
405             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
406             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
407             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
408
409             rinv00           = gmx_mm_invsqrt_pd(rsq00);
410             rinv10           = gmx_mm_invsqrt_pd(rsq10);
411             rinv20           = gmx_mm_invsqrt_pd(rsq20);
412             rinv30           = gmx_mm_invsqrt_pd(rsq30);
413
414             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
415             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
416             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
417
418             /* Load parameters for j particles */
419             jq0              = _mm_load_sd(charge+jnrA+0);
420             vdwjidx0A        = 2*vdwtype[jnrA+0];
421
422             fjx0             = _mm_setzero_pd();
423             fjy0             = _mm_setzero_pd();
424             fjz0             = _mm_setzero_pd();
425
426             /**************************
427              * CALCULATE INTERACTIONS *
428              **************************/
429
430             r00              = _mm_mul_pd(rsq00,rinv00);
431
432             /* Compute parameters for interactions between i and j atoms */
433             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
434
435             /* Calculate table index by multiplying r with table scale and truncate to integer */
436             rt               = _mm_mul_pd(r00,vftabscale);
437             vfitab           = _mm_cvttpd_epi32(rt);
438 #ifdef __XOP__
439             vfeps            = _mm_frcz_pd(rt);
440 #else
441             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
442 #endif
443             twovfeps         = _mm_add_pd(vfeps,vfeps);
444             vfitab           = _mm_slli_epi32(vfitab,3);
445
446             /* CUBIC SPLINE TABLE DISPERSION */
447             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
448             F                = _mm_setzero_pd();
449             GMX_MM_TRANSPOSE2_PD(Y,F);
450             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
451             H                = _mm_setzero_pd();
452             GMX_MM_TRANSPOSE2_PD(G,H);
453             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
454             VV               = _mm_macc_pd(vfeps,Fp,Y);
455             vvdw6            = _mm_mul_pd(c6_00,VV);
456             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
457             fvdw6            = _mm_mul_pd(c6_00,FF);
458
459             /* CUBIC SPLINE TABLE REPULSION */
460             vfitab           = _mm_add_epi32(vfitab,ifour);
461             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
462             F                = _mm_setzero_pd();
463             GMX_MM_TRANSPOSE2_PD(Y,F);
464             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
465             H                = _mm_setzero_pd();
466             GMX_MM_TRANSPOSE2_PD(G,H);
467             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
468             VV               = _mm_macc_pd(vfeps,Fp,Y);
469             vvdw12           = _mm_mul_pd(c12_00,VV);
470             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
471             fvdw12           = _mm_mul_pd(c12_00,FF);
472             vvdw             = _mm_add_pd(vvdw12,vvdw6);
473             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
474
475             /* Update potential sum for this i atom from the interaction with this j atom. */
476             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
477             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
478
479             fscal            = fvdw;
480
481             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
482
483             /* Update vectorial force */
484             fix0             = _mm_macc_pd(dx00,fscal,fix0);
485             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
486             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
487             
488             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
489             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
490             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
491
492             /**************************
493              * CALCULATE INTERACTIONS *
494              **************************/
495
496             /* Compute parameters for interactions between i and j atoms */
497             qq10             = _mm_mul_pd(iq1,jq0);
498
499             /* REACTION-FIELD ELECTROSTATICS */
500             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
501             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
502
503             /* Update potential sum for this i atom from the interaction with this j atom. */
504             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
505             velecsum         = _mm_add_pd(velecsum,velec);
506
507             fscal            = felec;
508
509             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
510
511             /* Update vectorial force */
512             fix1             = _mm_macc_pd(dx10,fscal,fix1);
513             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
514             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
515             
516             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
517             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
518             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
519
520             /**************************
521              * CALCULATE INTERACTIONS *
522              **************************/
523
524             /* Compute parameters for interactions between i and j atoms */
525             qq20             = _mm_mul_pd(iq2,jq0);
526
527             /* REACTION-FIELD ELECTROSTATICS */
528             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
529             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
530
531             /* Update potential sum for this i atom from the interaction with this j atom. */
532             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
533             velecsum         = _mm_add_pd(velecsum,velec);
534
535             fscal            = felec;
536
537             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
538
539             /* Update vectorial force */
540             fix2             = _mm_macc_pd(dx20,fscal,fix2);
541             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
542             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
543             
544             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
545             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
546             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
547
548             /**************************
549              * CALCULATE INTERACTIONS *
550              **************************/
551
552             /* Compute parameters for interactions between i and j atoms */
553             qq30             = _mm_mul_pd(iq3,jq0);
554
555             /* REACTION-FIELD ELECTROSTATICS */
556             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_macc_pd(krf,rsq30,rinv30),crf));
557             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
558
559             /* Update potential sum for this i atom from the interaction with this j atom. */
560             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
561             velecsum         = _mm_add_pd(velecsum,velec);
562
563             fscal            = felec;
564
565             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
566
567             /* Update vectorial force */
568             fix3             = _mm_macc_pd(dx30,fscal,fix3);
569             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
570             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
571             
572             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
573             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
574             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
575
576             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
577
578             /* Inner loop uses 167 flops */
579         }
580
581         /* End of innermost loop */
582
583         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
584                                               f+i_coord_offset,fshift+i_shift_offset);
585
586         ggid                        = gid[iidx];
587         /* Update potential energies */
588         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
589         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
590
591         /* Increment number of inner iterations */
592         inneriter                  += j_index_end - j_index_start;
593
594         /* Outer loop uses 26 flops */
595     }
596
597     /* Increment number of outer iterations */
598     outeriter        += nri;
599
600     /* Update outer/inner flops */
601
602     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*167);
603 }
604 /*
605  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_128_fma_double
606  * Electrostatics interaction: ReactionField
607  * VdW interaction:            CubicSplineTable
608  * Geometry:                   Water4-Particle
609  * Calculate force/pot:        Force
610  */
611 void
612 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_128_fma_double
613                     (t_nblist                    * gmx_restrict       nlist,
614                      rvec                        * gmx_restrict          xx,
615                      rvec                        * gmx_restrict          ff,
616                      t_forcerec                  * gmx_restrict          fr,
617                      t_mdatoms                   * gmx_restrict     mdatoms,
618                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
619                      t_nrnb                      * gmx_restrict        nrnb)
620 {
621     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
622      * just 0 for non-waters.
623      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
624      * jnr indices corresponding to data put in the four positions in the SIMD register.
625      */
626     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
627     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
628     int              jnrA,jnrB;
629     int              j_coord_offsetA,j_coord_offsetB;
630     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
631     real             rcutoff_scalar;
632     real             *shiftvec,*fshift,*x,*f;
633     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
634     int              vdwioffset0;
635     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
636     int              vdwioffset1;
637     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
638     int              vdwioffset2;
639     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
640     int              vdwioffset3;
641     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
642     int              vdwjidx0A,vdwjidx0B;
643     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
644     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
645     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
646     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
647     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
648     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
649     real             *charge;
650     int              nvdwtype;
651     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
652     int              *vdwtype;
653     real             *vdwparam;
654     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
655     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
656     __m128i          vfitab;
657     __m128i          ifour       = _mm_set1_epi32(4);
658     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
659     real             *vftab;
660     __m128d          dummy_mask,cutoff_mask;
661     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
662     __m128d          one     = _mm_set1_pd(1.0);
663     __m128d          two     = _mm_set1_pd(2.0);
664     x                = xx[0];
665     f                = ff[0];
666
667     nri              = nlist->nri;
668     iinr             = nlist->iinr;
669     jindex           = nlist->jindex;
670     jjnr             = nlist->jjnr;
671     shiftidx         = nlist->shift;
672     gid              = nlist->gid;
673     shiftvec         = fr->shift_vec[0];
674     fshift           = fr->fshift[0];
675     facel            = _mm_set1_pd(fr->epsfac);
676     charge           = mdatoms->chargeA;
677     krf              = _mm_set1_pd(fr->ic->k_rf);
678     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
679     crf              = _mm_set1_pd(fr->ic->c_rf);
680     nvdwtype         = fr->ntype;
681     vdwparam         = fr->nbfp;
682     vdwtype          = mdatoms->typeA;
683
684     vftab            = kernel_data->table_vdw->data;
685     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
686
687     /* Setup water-specific parameters */
688     inr              = nlist->iinr[0];
689     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
690     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
691     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
692     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
693
694     /* Avoid stupid compiler warnings */
695     jnrA = jnrB = 0;
696     j_coord_offsetA = 0;
697     j_coord_offsetB = 0;
698
699     outeriter        = 0;
700     inneriter        = 0;
701
702     /* Start outer loop over neighborlists */
703     for(iidx=0; iidx<nri; iidx++)
704     {
705         /* Load shift vector for this list */
706         i_shift_offset   = DIM*shiftidx[iidx];
707
708         /* Load limits for loop over neighbors */
709         j_index_start    = jindex[iidx];
710         j_index_end      = jindex[iidx+1];
711
712         /* Get outer coordinate index */
713         inr              = iinr[iidx];
714         i_coord_offset   = DIM*inr;
715
716         /* Load i particle coords and add shift vector */
717         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
718                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
719
720         fix0             = _mm_setzero_pd();
721         fiy0             = _mm_setzero_pd();
722         fiz0             = _mm_setzero_pd();
723         fix1             = _mm_setzero_pd();
724         fiy1             = _mm_setzero_pd();
725         fiz1             = _mm_setzero_pd();
726         fix2             = _mm_setzero_pd();
727         fiy2             = _mm_setzero_pd();
728         fiz2             = _mm_setzero_pd();
729         fix3             = _mm_setzero_pd();
730         fiy3             = _mm_setzero_pd();
731         fiz3             = _mm_setzero_pd();
732
733         /* Start inner kernel loop */
734         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
735         {
736
737             /* Get j neighbor index, and coordinate index */
738             jnrA             = jjnr[jidx];
739             jnrB             = jjnr[jidx+1];
740             j_coord_offsetA  = DIM*jnrA;
741             j_coord_offsetB  = DIM*jnrB;
742
743             /* load j atom coordinates */
744             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
745                                               &jx0,&jy0,&jz0);
746
747             /* Calculate displacement vector */
748             dx00             = _mm_sub_pd(ix0,jx0);
749             dy00             = _mm_sub_pd(iy0,jy0);
750             dz00             = _mm_sub_pd(iz0,jz0);
751             dx10             = _mm_sub_pd(ix1,jx0);
752             dy10             = _mm_sub_pd(iy1,jy0);
753             dz10             = _mm_sub_pd(iz1,jz0);
754             dx20             = _mm_sub_pd(ix2,jx0);
755             dy20             = _mm_sub_pd(iy2,jy0);
756             dz20             = _mm_sub_pd(iz2,jz0);
757             dx30             = _mm_sub_pd(ix3,jx0);
758             dy30             = _mm_sub_pd(iy3,jy0);
759             dz30             = _mm_sub_pd(iz3,jz0);
760
761             /* Calculate squared distance and things based on it */
762             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
763             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
764             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
765             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
766
767             rinv00           = gmx_mm_invsqrt_pd(rsq00);
768             rinv10           = gmx_mm_invsqrt_pd(rsq10);
769             rinv20           = gmx_mm_invsqrt_pd(rsq20);
770             rinv30           = gmx_mm_invsqrt_pd(rsq30);
771
772             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
773             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
774             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
775
776             /* Load parameters for j particles */
777             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
778             vdwjidx0A        = 2*vdwtype[jnrA+0];
779             vdwjidx0B        = 2*vdwtype[jnrB+0];
780
781             fjx0             = _mm_setzero_pd();
782             fjy0             = _mm_setzero_pd();
783             fjz0             = _mm_setzero_pd();
784
785             /**************************
786              * CALCULATE INTERACTIONS *
787              **************************/
788
789             r00              = _mm_mul_pd(rsq00,rinv00);
790
791             /* Compute parameters for interactions between i and j atoms */
792             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
793                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
794
795             /* Calculate table index by multiplying r with table scale and truncate to integer */
796             rt               = _mm_mul_pd(r00,vftabscale);
797             vfitab           = _mm_cvttpd_epi32(rt);
798 #ifdef __XOP__
799             vfeps            = _mm_frcz_pd(rt);
800 #else
801             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
802 #endif
803             twovfeps         = _mm_add_pd(vfeps,vfeps);
804             vfitab           = _mm_slli_epi32(vfitab,3);
805
806             /* CUBIC SPLINE TABLE DISPERSION */
807             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
808             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
809             GMX_MM_TRANSPOSE2_PD(Y,F);
810             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
811             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
812             GMX_MM_TRANSPOSE2_PD(G,H);
813             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
814             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
815             fvdw6            = _mm_mul_pd(c6_00,FF);
816
817             /* CUBIC SPLINE TABLE REPULSION */
818             vfitab           = _mm_add_epi32(vfitab,ifour);
819             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
820             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
821             GMX_MM_TRANSPOSE2_PD(Y,F);
822             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
823             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
824             GMX_MM_TRANSPOSE2_PD(G,H);
825             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
826             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
827             fvdw12           = _mm_mul_pd(c12_00,FF);
828             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
829
830             fscal            = fvdw;
831
832             /* Update vectorial force */
833             fix0             = _mm_macc_pd(dx00,fscal,fix0);
834             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
835             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
836             
837             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
838             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
839             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
840
841             /**************************
842              * CALCULATE INTERACTIONS *
843              **************************/
844
845             /* Compute parameters for interactions between i and j atoms */
846             qq10             = _mm_mul_pd(iq1,jq0);
847
848             /* REACTION-FIELD ELECTROSTATICS */
849             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
850
851             fscal            = felec;
852
853             /* Update vectorial force */
854             fix1             = _mm_macc_pd(dx10,fscal,fix1);
855             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
856             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
857             
858             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
859             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
860             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
861
862             /**************************
863              * CALCULATE INTERACTIONS *
864              **************************/
865
866             /* Compute parameters for interactions between i and j atoms */
867             qq20             = _mm_mul_pd(iq2,jq0);
868
869             /* REACTION-FIELD ELECTROSTATICS */
870             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
871
872             fscal            = felec;
873
874             /* Update vectorial force */
875             fix2             = _mm_macc_pd(dx20,fscal,fix2);
876             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
877             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
878             
879             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
880             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
881             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
882
883             /**************************
884              * CALCULATE INTERACTIONS *
885              **************************/
886
887             /* Compute parameters for interactions between i and j atoms */
888             qq30             = _mm_mul_pd(iq3,jq0);
889
890             /* REACTION-FIELD ELECTROSTATICS */
891             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
892
893             fscal            = felec;
894
895             /* Update vectorial force */
896             fix3             = _mm_macc_pd(dx30,fscal,fix3);
897             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
898             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
899             
900             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
901             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
902             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
903
904             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
905
906             /* Inner loop uses 144 flops */
907         }
908
909         if(jidx<j_index_end)
910         {
911
912             jnrA             = jjnr[jidx];
913             j_coord_offsetA  = DIM*jnrA;
914
915             /* load j atom coordinates */
916             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
917                                               &jx0,&jy0,&jz0);
918
919             /* Calculate displacement vector */
920             dx00             = _mm_sub_pd(ix0,jx0);
921             dy00             = _mm_sub_pd(iy0,jy0);
922             dz00             = _mm_sub_pd(iz0,jz0);
923             dx10             = _mm_sub_pd(ix1,jx0);
924             dy10             = _mm_sub_pd(iy1,jy0);
925             dz10             = _mm_sub_pd(iz1,jz0);
926             dx20             = _mm_sub_pd(ix2,jx0);
927             dy20             = _mm_sub_pd(iy2,jy0);
928             dz20             = _mm_sub_pd(iz2,jz0);
929             dx30             = _mm_sub_pd(ix3,jx0);
930             dy30             = _mm_sub_pd(iy3,jy0);
931             dz30             = _mm_sub_pd(iz3,jz0);
932
933             /* Calculate squared distance and things based on it */
934             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
935             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
936             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
937             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
938
939             rinv00           = gmx_mm_invsqrt_pd(rsq00);
940             rinv10           = gmx_mm_invsqrt_pd(rsq10);
941             rinv20           = gmx_mm_invsqrt_pd(rsq20);
942             rinv30           = gmx_mm_invsqrt_pd(rsq30);
943
944             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
945             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
946             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
947
948             /* Load parameters for j particles */
949             jq0              = _mm_load_sd(charge+jnrA+0);
950             vdwjidx0A        = 2*vdwtype[jnrA+0];
951
952             fjx0             = _mm_setzero_pd();
953             fjy0             = _mm_setzero_pd();
954             fjz0             = _mm_setzero_pd();
955
956             /**************************
957              * CALCULATE INTERACTIONS *
958              **************************/
959
960             r00              = _mm_mul_pd(rsq00,rinv00);
961
962             /* Compute parameters for interactions between i and j atoms */
963             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
964
965             /* Calculate table index by multiplying r with table scale and truncate to integer */
966             rt               = _mm_mul_pd(r00,vftabscale);
967             vfitab           = _mm_cvttpd_epi32(rt);
968 #ifdef __XOP__
969             vfeps            = _mm_frcz_pd(rt);
970 #else
971             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
972 #endif
973             twovfeps         = _mm_add_pd(vfeps,vfeps);
974             vfitab           = _mm_slli_epi32(vfitab,3);
975
976             /* CUBIC SPLINE TABLE DISPERSION */
977             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
978             F                = _mm_setzero_pd();
979             GMX_MM_TRANSPOSE2_PD(Y,F);
980             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
981             H                = _mm_setzero_pd();
982             GMX_MM_TRANSPOSE2_PD(G,H);
983             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
984             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
985             fvdw6            = _mm_mul_pd(c6_00,FF);
986
987             /* CUBIC SPLINE TABLE REPULSION */
988             vfitab           = _mm_add_epi32(vfitab,ifour);
989             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
990             F                = _mm_setzero_pd();
991             GMX_MM_TRANSPOSE2_PD(Y,F);
992             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
993             H                = _mm_setzero_pd();
994             GMX_MM_TRANSPOSE2_PD(G,H);
995             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
996             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
997             fvdw12           = _mm_mul_pd(c12_00,FF);
998             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
999
1000             fscal            = fvdw;
1001
1002             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1003
1004             /* Update vectorial force */
1005             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1006             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1007             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1008             
1009             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1010             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1011             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1012
1013             /**************************
1014              * CALCULATE INTERACTIONS *
1015              **************************/
1016
1017             /* Compute parameters for interactions between i and j atoms */
1018             qq10             = _mm_mul_pd(iq1,jq0);
1019
1020             /* REACTION-FIELD ELECTROSTATICS */
1021             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
1022
1023             fscal            = felec;
1024
1025             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1026
1027             /* Update vectorial force */
1028             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1029             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1030             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1031             
1032             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1033             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1034             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1035
1036             /**************************
1037              * CALCULATE INTERACTIONS *
1038              **************************/
1039
1040             /* Compute parameters for interactions between i and j atoms */
1041             qq20             = _mm_mul_pd(iq2,jq0);
1042
1043             /* REACTION-FIELD ELECTROSTATICS */
1044             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
1045
1046             fscal            = felec;
1047
1048             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1049
1050             /* Update vectorial force */
1051             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1052             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1053             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1054             
1055             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1056             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1057             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1058
1059             /**************************
1060              * CALCULATE INTERACTIONS *
1061              **************************/
1062
1063             /* Compute parameters for interactions between i and j atoms */
1064             qq30             = _mm_mul_pd(iq3,jq0);
1065
1066             /* REACTION-FIELD ELECTROSTATICS */
1067             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
1068
1069             fscal            = felec;
1070
1071             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1072
1073             /* Update vectorial force */
1074             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1075             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1076             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1077             
1078             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1079             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1080             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1081
1082             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1083
1084             /* Inner loop uses 144 flops */
1085         }
1086
1087         /* End of innermost loop */
1088
1089         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1090                                               f+i_coord_offset,fshift+i_shift_offset);
1091
1092         /* Increment number of inner iterations */
1093         inneriter                  += j_index_end - j_index_start;
1094
1095         /* Outer loop uses 24 flops */
1096     }
1097
1098     /* Increment number of outer iterations */
1099     outeriter        += nri;
1100
1101     /* Update outer/inner flops */
1102
1103     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*144);
1104 }