Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_avx_128_fma_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
97     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
98     __m128i          vfitab;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
101     real             *vftab;
102     __m128d          dummy_mask,cutoff_mask;
103     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
104     __m128d          one     = _mm_set1_pd(1.0);
105     __m128d          two     = _mm_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_pd(fr->ic->epsfac);
118     charge           = mdatoms->chargeA;
119     krf              = _mm_set1_pd(fr->ic->k_rf);
120     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
121     crf              = _mm_set1_pd(fr->ic->c_rf);
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_vdw->data;
127     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
132     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
133     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
160                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
161
162         fix0             = _mm_setzero_pd();
163         fiy0             = _mm_setzero_pd();
164         fiz0             = _mm_setzero_pd();
165         fix1             = _mm_setzero_pd();
166         fiy1             = _mm_setzero_pd();
167         fiz1             = _mm_setzero_pd();
168         fix2             = _mm_setzero_pd();
169         fiy2             = _mm_setzero_pd();
170         fiz2             = _mm_setzero_pd();
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_pd();
174         vvdwsum          = _mm_setzero_pd();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185
186             /* load j atom coordinates */
187             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
188                                               &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm_sub_pd(ix0,jx0);
192             dy00             = _mm_sub_pd(iy0,jy0);
193             dz00             = _mm_sub_pd(iz0,jz0);
194             dx10             = _mm_sub_pd(ix1,jx0);
195             dy10             = _mm_sub_pd(iy1,jy0);
196             dz10             = _mm_sub_pd(iz1,jz0);
197             dx20             = _mm_sub_pd(ix2,jx0);
198             dy20             = _mm_sub_pd(iy2,jy0);
199             dz20             = _mm_sub_pd(iz2,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
203             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
204             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
205
206             rinv00           = avx128fma_invsqrt_d(rsq00);
207             rinv10           = avx128fma_invsqrt_d(rsq10);
208             rinv20           = avx128fma_invsqrt_d(rsq20);
209
210             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
211             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
212             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
213
214             /* Load parameters for j particles */
215             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
216             vdwjidx0A        = 2*vdwtype[jnrA+0];
217             vdwjidx0B        = 2*vdwtype[jnrB+0];
218
219             fjx0             = _mm_setzero_pd();
220             fjy0             = _mm_setzero_pd();
221             fjz0             = _mm_setzero_pd();
222
223             /**************************
224              * CALCULATE INTERACTIONS *
225              **************************/
226
227             r00              = _mm_mul_pd(rsq00,rinv00);
228
229             /* Compute parameters for interactions between i and j atoms */
230             qq00             = _mm_mul_pd(iq0,jq0);
231             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
232                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
233
234             /* Calculate table index by multiplying r with table scale and truncate to integer */
235             rt               = _mm_mul_pd(r00,vftabscale);
236             vfitab           = _mm_cvttpd_epi32(rt);
237 #ifdef __XOP__
238             vfeps            = _mm_frcz_pd(rt);
239 #else
240             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
241 #endif
242             twovfeps         = _mm_add_pd(vfeps,vfeps);
243             vfitab           = _mm_slli_epi32(vfitab,3);
244
245             /* REACTION-FIELD ELECTROSTATICS */
246             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
247             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
248
249             /* CUBIC SPLINE TABLE DISPERSION */
250             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
251             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
252             GMX_MM_TRANSPOSE2_PD(Y,F);
253             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
254             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
255             GMX_MM_TRANSPOSE2_PD(G,H);
256             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
257             VV               = _mm_macc_pd(vfeps,Fp,Y);
258             vvdw6            = _mm_mul_pd(c6_00,VV);
259             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
260             fvdw6            = _mm_mul_pd(c6_00,FF);
261
262             /* CUBIC SPLINE TABLE REPULSION */
263             vfitab           = _mm_add_epi32(vfitab,ifour);
264             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
265             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
266             GMX_MM_TRANSPOSE2_PD(Y,F);
267             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
268             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
269             GMX_MM_TRANSPOSE2_PD(G,H);
270             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
271             VV               = _mm_macc_pd(vfeps,Fp,Y);
272             vvdw12           = _mm_mul_pd(c12_00,VV);
273             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
274             fvdw12           = _mm_mul_pd(c12_00,FF);
275             vvdw             = _mm_add_pd(vvdw12,vvdw6);
276             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velecsum         = _mm_add_pd(velecsum,velec);
280             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
281
282             fscal            = _mm_add_pd(felec,fvdw);
283
284             /* Update vectorial force */
285             fix0             = _mm_macc_pd(dx00,fscal,fix0);
286             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
287             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
288             
289             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
290             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
291             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             /* Compute parameters for interactions between i and j atoms */
298             qq10             = _mm_mul_pd(iq1,jq0);
299
300             /* REACTION-FIELD ELECTROSTATICS */
301             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
302             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
303
304             /* Update potential sum for this i atom from the interaction with this j atom. */
305             velecsum         = _mm_add_pd(velecsum,velec);
306
307             fscal            = felec;
308
309             /* Update vectorial force */
310             fix1             = _mm_macc_pd(dx10,fscal,fix1);
311             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
312             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
313             
314             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
315             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
316             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq20             = _mm_mul_pd(iq2,jq0);
324
325             /* REACTION-FIELD ELECTROSTATICS */
326             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
327             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
328
329             /* Update potential sum for this i atom from the interaction with this j atom. */
330             velecsum         = _mm_add_pd(velecsum,velec);
331
332             fscal            = felec;
333
334             /* Update vectorial force */
335             fix2             = _mm_macc_pd(dx20,fscal,fix2);
336             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
337             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
338             
339             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
340             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
341             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
342
343             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
344
345             /* Inner loop uses 143 flops */
346         }
347
348         if(jidx<j_index_end)
349         {
350
351             jnrA             = jjnr[jidx];
352             j_coord_offsetA  = DIM*jnrA;
353
354             /* load j atom coordinates */
355             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
356                                               &jx0,&jy0,&jz0);
357
358             /* Calculate displacement vector */
359             dx00             = _mm_sub_pd(ix0,jx0);
360             dy00             = _mm_sub_pd(iy0,jy0);
361             dz00             = _mm_sub_pd(iz0,jz0);
362             dx10             = _mm_sub_pd(ix1,jx0);
363             dy10             = _mm_sub_pd(iy1,jy0);
364             dz10             = _mm_sub_pd(iz1,jz0);
365             dx20             = _mm_sub_pd(ix2,jx0);
366             dy20             = _mm_sub_pd(iy2,jy0);
367             dz20             = _mm_sub_pd(iz2,jz0);
368
369             /* Calculate squared distance and things based on it */
370             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
371             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
372             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
373
374             rinv00           = avx128fma_invsqrt_d(rsq00);
375             rinv10           = avx128fma_invsqrt_d(rsq10);
376             rinv20           = avx128fma_invsqrt_d(rsq20);
377
378             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
379             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
380             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
381
382             /* Load parameters for j particles */
383             jq0              = _mm_load_sd(charge+jnrA+0);
384             vdwjidx0A        = 2*vdwtype[jnrA+0];
385
386             fjx0             = _mm_setzero_pd();
387             fjy0             = _mm_setzero_pd();
388             fjz0             = _mm_setzero_pd();
389
390             /**************************
391              * CALCULATE INTERACTIONS *
392              **************************/
393
394             r00              = _mm_mul_pd(rsq00,rinv00);
395
396             /* Compute parameters for interactions between i and j atoms */
397             qq00             = _mm_mul_pd(iq0,jq0);
398             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
399
400             /* Calculate table index by multiplying r with table scale and truncate to integer */
401             rt               = _mm_mul_pd(r00,vftabscale);
402             vfitab           = _mm_cvttpd_epi32(rt);
403 #ifdef __XOP__
404             vfeps            = _mm_frcz_pd(rt);
405 #else
406             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
407 #endif
408             twovfeps         = _mm_add_pd(vfeps,vfeps);
409             vfitab           = _mm_slli_epi32(vfitab,3);
410
411             /* REACTION-FIELD ELECTROSTATICS */
412             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
413             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
414
415             /* CUBIC SPLINE TABLE DISPERSION */
416             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
417             F                = _mm_setzero_pd();
418             GMX_MM_TRANSPOSE2_PD(Y,F);
419             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
420             H                = _mm_setzero_pd();
421             GMX_MM_TRANSPOSE2_PD(G,H);
422             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
423             VV               = _mm_macc_pd(vfeps,Fp,Y);
424             vvdw6            = _mm_mul_pd(c6_00,VV);
425             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
426             fvdw6            = _mm_mul_pd(c6_00,FF);
427
428             /* CUBIC SPLINE TABLE REPULSION */
429             vfitab           = _mm_add_epi32(vfitab,ifour);
430             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
431             F                = _mm_setzero_pd();
432             GMX_MM_TRANSPOSE2_PD(Y,F);
433             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
434             H                = _mm_setzero_pd();
435             GMX_MM_TRANSPOSE2_PD(G,H);
436             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
437             VV               = _mm_macc_pd(vfeps,Fp,Y);
438             vvdw12           = _mm_mul_pd(c12_00,VV);
439             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
440             fvdw12           = _mm_mul_pd(c12_00,FF);
441             vvdw             = _mm_add_pd(vvdw12,vvdw6);
442             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
443
444             /* Update potential sum for this i atom from the interaction with this j atom. */
445             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
446             velecsum         = _mm_add_pd(velecsum,velec);
447             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
448             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
449
450             fscal            = _mm_add_pd(felec,fvdw);
451
452             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
453
454             /* Update vectorial force */
455             fix0             = _mm_macc_pd(dx00,fscal,fix0);
456             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
457             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
458             
459             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
460             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
461             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
462
463             /**************************
464              * CALCULATE INTERACTIONS *
465              **************************/
466
467             /* Compute parameters for interactions between i and j atoms */
468             qq10             = _mm_mul_pd(iq1,jq0);
469
470             /* REACTION-FIELD ELECTROSTATICS */
471             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
472             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
473
474             /* Update potential sum for this i atom from the interaction with this j atom. */
475             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
476             velecsum         = _mm_add_pd(velecsum,velec);
477
478             fscal            = felec;
479
480             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
481
482             /* Update vectorial force */
483             fix1             = _mm_macc_pd(dx10,fscal,fix1);
484             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
485             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
486             
487             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
488             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
489             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
490
491             /**************************
492              * CALCULATE INTERACTIONS *
493              **************************/
494
495             /* Compute parameters for interactions between i and j atoms */
496             qq20             = _mm_mul_pd(iq2,jq0);
497
498             /* REACTION-FIELD ELECTROSTATICS */
499             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
500             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
501
502             /* Update potential sum for this i atom from the interaction with this j atom. */
503             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
504             velecsum         = _mm_add_pd(velecsum,velec);
505
506             fscal            = felec;
507
508             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
509
510             /* Update vectorial force */
511             fix2             = _mm_macc_pd(dx20,fscal,fix2);
512             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
513             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
514             
515             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
516             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
517             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
518
519             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
520
521             /* Inner loop uses 143 flops */
522         }
523
524         /* End of innermost loop */
525
526         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
527                                               f+i_coord_offset,fshift+i_shift_offset);
528
529         ggid                        = gid[iidx];
530         /* Update potential energies */
531         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
532         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
533
534         /* Increment number of inner iterations */
535         inneriter                  += j_index_end - j_index_start;
536
537         /* Outer loop uses 20 flops */
538     }
539
540     /* Increment number of outer iterations */
541     outeriter        += nri;
542
543     /* Update outer/inner flops */
544
545     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*143);
546 }
547 /*
548  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_128_fma_double
549  * Electrostatics interaction: ReactionField
550  * VdW interaction:            CubicSplineTable
551  * Geometry:                   Water3-Particle
552  * Calculate force/pot:        Force
553  */
554 void
555 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_128_fma_double
556                     (t_nblist                    * gmx_restrict       nlist,
557                      rvec                        * gmx_restrict          xx,
558                      rvec                        * gmx_restrict          ff,
559                      struct t_forcerec           * gmx_restrict          fr,
560                      t_mdatoms                   * gmx_restrict     mdatoms,
561                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
562                      t_nrnb                      * gmx_restrict        nrnb)
563 {
564     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
565      * just 0 for non-waters.
566      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
567      * jnr indices corresponding to data put in the four positions in the SIMD register.
568      */
569     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
570     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
571     int              jnrA,jnrB;
572     int              j_coord_offsetA,j_coord_offsetB;
573     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
574     real             rcutoff_scalar;
575     real             *shiftvec,*fshift,*x,*f;
576     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
577     int              vdwioffset0;
578     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
579     int              vdwioffset1;
580     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
581     int              vdwioffset2;
582     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
583     int              vdwjidx0A,vdwjidx0B;
584     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
585     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
586     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
587     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
588     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
589     real             *charge;
590     int              nvdwtype;
591     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
592     int              *vdwtype;
593     real             *vdwparam;
594     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
595     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
596     __m128i          vfitab;
597     __m128i          ifour       = _mm_set1_epi32(4);
598     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
599     real             *vftab;
600     __m128d          dummy_mask,cutoff_mask;
601     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
602     __m128d          one     = _mm_set1_pd(1.0);
603     __m128d          two     = _mm_set1_pd(2.0);
604     x                = xx[0];
605     f                = ff[0];
606
607     nri              = nlist->nri;
608     iinr             = nlist->iinr;
609     jindex           = nlist->jindex;
610     jjnr             = nlist->jjnr;
611     shiftidx         = nlist->shift;
612     gid              = nlist->gid;
613     shiftvec         = fr->shift_vec[0];
614     fshift           = fr->fshift[0];
615     facel            = _mm_set1_pd(fr->ic->epsfac);
616     charge           = mdatoms->chargeA;
617     krf              = _mm_set1_pd(fr->ic->k_rf);
618     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
619     crf              = _mm_set1_pd(fr->ic->c_rf);
620     nvdwtype         = fr->ntype;
621     vdwparam         = fr->nbfp;
622     vdwtype          = mdatoms->typeA;
623
624     vftab            = kernel_data->table_vdw->data;
625     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
626
627     /* Setup water-specific parameters */
628     inr              = nlist->iinr[0];
629     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
630     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
631     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
632     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
633
634     /* Avoid stupid compiler warnings */
635     jnrA = jnrB = 0;
636     j_coord_offsetA = 0;
637     j_coord_offsetB = 0;
638
639     outeriter        = 0;
640     inneriter        = 0;
641
642     /* Start outer loop over neighborlists */
643     for(iidx=0; iidx<nri; iidx++)
644     {
645         /* Load shift vector for this list */
646         i_shift_offset   = DIM*shiftidx[iidx];
647
648         /* Load limits for loop over neighbors */
649         j_index_start    = jindex[iidx];
650         j_index_end      = jindex[iidx+1];
651
652         /* Get outer coordinate index */
653         inr              = iinr[iidx];
654         i_coord_offset   = DIM*inr;
655
656         /* Load i particle coords and add shift vector */
657         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
658                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
659
660         fix0             = _mm_setzero_pd();
661         fiy0             = _mm_setzero_pd();
662         fiz0             = _mm_setzero_pd();
663         fix1             = _mm_setzero_pd();
664         fiy1             = _mm_setzero_pd();
665         fiz1             = _mm_setzero_pd();
666         fix2             = _mm_setzero_pd();
667         fiy2             = _mm_setzero_pd();
668         fiz2             = _mm_setzero_pd();
669
670         /* Start inner kernel loop */
671         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
672         {
673
674             /* Get j neighbor index, and coordinate index */
675             jnrA             = jjnr[jidx];
676             jnrB             = jjnr[jidx+1];
677             j_coord_offsetA  = DIM*jnrA;
678             j_coord_offsetB  = DIM*jnrB;
679
680             /* load j atom coordinates */
681             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
682                                               &jx0,&jy0,&jz0);
683
684             /* Calculate displacement vector */
685             dx00             = _mm_sub_pd(ix0,jx0);
686             dy00             = _mm_sub_pd(iy0,jy0);
687             dz00             = _mm_sub_pd(iz0,jz0);
688             dx10             = _mm_sub_pd(ix1,jx0);
689             dy10             = _mm_sub_pd(iy1,jy0);
690             dz10             = _mm_sub_pd(iz1,jz0);
691             dx20             = _mm_sub_pd(ix2,jx0);
692             dy20             = _mm_sub_pd(iy2,jy0);
693             dz20             = _mm_sub_pd(iz2,jz0);
694
695             /* Calculate squared distance and things based on it */
696             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
697             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
698             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
699
700             rinv00           = avx128fma_invsqrt_d(rsq00);
701             rinv10           = avx128fma_invsqrt_d(rsq10);
702             rinv20           = avx128fma_invsqrt_d(rsq20);
703
704             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
705             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
706             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
707
708             /* Load parameters for j particles */
709             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
710             vdwjidx0A        = 2*vdwtype[jnrA+0];
711             vdwjidx0B        = 2*vdwtype[jnrB+0];
712
713             fjx0             = _mm_setzero_pd();
714             fjy0             = _mm_setzero_pd();
715             fjz0             = _mm_setzero_pd();
716
717             /**************************
718              * CALCULATE INTERACTIONS *
719              **************************/
720
721             r00              = _mm_mul_pd(rsq00,rinv00);
722
723             /* Compute parameters for interactions between i and j atoms */
724             qq00             = _mm_mul_pd(iq0,jq0);
725             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
726                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
727
728             /* Calculate table index by multiplying r with table scale and truncate to integer */
729             rt               = _mm_mul_pd(r00,vftabscale);
730             vfitab           = _mm_cvttpd_epi32(rt);
731 #ifdef __XOP__
732             vfeps            = _mm_frcz_pd(rt);
733 #else
734             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
735 #endif
736             twovfeps         = _mm_add_pd(vfeps,vfeps);
737             vfitab           = _mm_slli_epi32(vfitab,3);
738
739             /* REACTION-FIELD ELECTROSTATICS */
740             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
741
742             /* CUBIC SPLINE TABLE DISPERSION */
743             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
744             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
745             GMX_MM_TRANSPOSE2_PD(Y,F);
746             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
747             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
748             GMX_MM_TRANSPOSE2_PD(G,H);
749             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
750             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
751             fvdw6            = _mm_mul_pd(c6_00,FF);
752
753             /* CUBIC SPLINE TABLE REPULSION */
754             vfitab           = _mm_add_epi32(vfitab,ifour);
755             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
756             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
757             GMX_MM_TRANSPOSE2_PD(Y,F);
758             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
759             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
760             GMX_MM_TRANSPOSE2_PD(G,H);
761             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
762             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
763             fvdw12           = _mm_mul_pd(c12_00,FF);
764             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
765
766             fscal            = _mm_add_pd(felec,fvdw);
767
768             /* Update vectorial force */
769             fix0             = _mm_macc_pd(dx00,fscal,fix0);
770             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
771             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
772             
773             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
774             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
775             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
776
777             /**************************
778              * CALCULATE INTERACTIONS *
779              **************************/
780
781             /* Compute parameters for interactions between i and j atoms */
782             qq10             = _mm_mul_pd(iq1,jq0);
783
784             /* REACTION-FIELD ELECTROSTATICS */
785             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
786
787             fscal            = felec;
788
789             /* Update vectorial force */
790             fix1             = _mm_macc_pd(dx10,fscal,fix1);
791             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
792             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
793             
794             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
795             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
796             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
797
798             /**************************
799              * CALCULATE INTERACTIONS *
800              **************************/
801
802             /* Compute parameters for interactions between i and j atoms */
803             qq20             = _mm_mul_pd(iq2,jq0);
804
805             /* REACTION-FIELD ELECTROSTATICS */
806             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
807
808             fscal            = felec;
809
810             /* Update vectorial force */
811             fix2             = _mm_macc_pd(dx20,fscal,fix2);
812             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
813             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
814             
815             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
816             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
817             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
818
819             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
820
821             /* Inner loop uses 120 flops */
822         }
823
824         if(jidx<j_index_end)
825         {
826
827             jnrA             = jjnr[jidx];
828             j_coord_offsetA  = DIM*jnrA;
829
830             /* load j atom coordinates */
831             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
832                                               &jx0,&jy0,&jz0);
833
834             /* Calculate displacement vector */
835             dx00             = _mm_sub_pd(ix0,jx0);
836             dy00             = _mm_sub_pd(iy0,jy0);
837             dz00             = _mm_sub_pd(iz0,jz0);
838             dx10             = _mm_sub_pd(ix1,jx0);
839             dy10             = _mm_sub_pd(iy1,jy0);
840             dz10             = _mm_sub_pd(iz1,jz0);
841             dx20             = _mm_sub_pd(ix2,jx0);
842             dy20             = _mm_sub_pd(iy2,jy0);
843             dz20             = _mm_sub_pd(iz2,jz0);
844
845             /* Calculate squared distance and things based on it */
846             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
847             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
848             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
849
850             rinv00           = avx128fma_invsqrt_d(rsq00);
851             rinv10           = avx128fma_invsqrt_d(rsq10);
852             rinv20           = avx128fma_invsqrt_d(rsq20);
853
854             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
855             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
856             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
857
858             /* Load parameters for j particles */
859             jq0              = _mm_load_sd(charge+jnrA+0);
860             vdwjidx0A        = 2*vdwtype[jnrA+0];
861
862             fjx0             = _mm_setzero_pd();
863             fjy0             = _mm_setzero_pd();
864             fjz0             = _mm_setzero_pd();
865
866             /**************************
867              * CALCULATE INTERACTIONS *
868              **************************/
869
870             r00              = _mm_mul_pd(rsq00,rinv00);
871
872             /* Compute parameters for interactions between i and j atoms */
873             qq00             = _mm_mul_pd(iq0,jq0);
874             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
875
876             /* Calculate table index by multiplying r with table scale and truncate to integer */
877             rt               = _mm_mul_pd(r00,vftabscale);
878             vfitab           = _mm_cvttpd_epi32(rt);
879 #ifdef __XOP__
880             vfeps            = _mm_frcz_pd(rt);
881 #else
882             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
883 #endif
884             twovfeps         = _mm_add_pd(vfeps,vfeps);
885             vfitab           = _mm_slli_epi32(vfitab,3);
886
887             /* REACTION-FIELD ELECTROSTATICS */
888             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
889
890             /* CUBIC SPLINE TABLE DISPERSION */
891             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
892             F                = _mm_setzero_pd();
893             GMX_MM_TRANSPOSE2_PD(Y,F);
894             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
895             H                = _mm_setzero_pd();
896             GMX_MM_TRANSPOSE2_PD(G,H);
897             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
898             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
899             fvdw6            = _mm_mul_pd(c6_00,FF);
900
901             /* CUBIC SPLINE TABLE REPULSION */
902             vfitab           = _mm_add_epi32(vfitab,ifour);
903             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
904             F                = _mm_setzero_pd();
905             GMX_MM_TRANSPOSE2_PD(Y,F);
906             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
907             H                = _mm_setzero_pd();
908             GMX_MM_TRANSPOSE2_PD(G,H);
909             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
910             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
911             fvdw12           = _mm_mul_pd(c12_00,FF);
912             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
913
914             fscal            = _mm_add_pd(felec,fvdw);
915
916             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
917
918             /* Update vectorial force */
919             fix0             = _mm_macc_pd(dx00,fscal,fix0);
920             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
921             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
922             
923             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
924             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
925             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
926
927             /**************************
928              * CALCULATE INTERACTIONS *
929              **************************/
930
931             /* Compute parameters for interactions between i and j atoms */
932             qq10             = _mm_mul_pd(iq1,jq0);
933
934             /* REACTION-FIELD ELECTROSTATICS */
935             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
936
937             fscal            = felec;
938
939             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
940
941             /* Update vectorial force */
942             fix1             = _mm_macc_pd(dx10,fscal,fix1);
943             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
944             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
945             
946             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
947             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
948             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
949
950             /**************************
951              * CALCULATE INTERACTIONS *
952              **************************/
953
954             /* Compute parameters for interactions between i and j atoms */
955             qq20             = _mm_mul_pd(iq2,jq0);
956
957             /* REACTION-FIELD ELECTROSTATICS */
958             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
959
960             fscal            = felec;
961
962             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
963
964             /* Update vectorial force */
965             fix2             = _mm_macc_pd(dx20,fscal,fix2);
966             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
967             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
968             
969             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
970             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
971             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
972
973             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
974
975             /* Inner loop uses 120 flops */
976         }
977
978         /* End of innermost loop */
979
980         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
981                                               f+i_coord_offset,fshift+i_shift_offset);
982
983         /* Increment number of inner iterations */
984         inneriter                  += j_index_end - j_index_start;
985
986         /* Outer loop uses 18 flops */
987     }
988
989     /* Increment number of outer iterations */
990     outeriter        += nri;
991
992     /* Update outer/inner flops */
993
994     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*120);
995 }