892b949e0becb9cdcecd36efe43c3a36e6760260
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
102     real             *vftab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     krf              = _mm_set1_pd(fr->ic->k_rf);
121     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
122     crf              = _mm_set1_pd(fr->ic->c_rf);
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_vdw->data;
128     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
133     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
134     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
161                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
162
163         fix0             = _mm_setzero_pd();
164         fiy0             = _mm_setzero_pd();
165         fiz0             = _mm_setzero_pd();
166         fix1             = _mm_setzero_pd();
167         fiy1             = _mm_setzero_pd();
168         fiz1             = _mm_setzero_pd();
169         fix2             = _mm_setzero_pd();
170         fiy2             = _mm_setzero_pd();
171         fiz2             = _mm_setzero_pd();
172
173         /* Reset potential sums */
174         velecsum         = _mm_setzero_pd();
175         vvdwsum          = _mm_setzero_pd();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186
187             /* load j atom coordinates */
188             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
189                                               &jx0,&jy0,&jz0);
190
191             /* Calculate displacement vector */
192             dx00             = _mm_sub_pd(ix0,jx0);
193             dy00             = _mm_sub_pd(iy0,jy0);
194             dz00             = _mm_sub_pd(iz0,jz0);
195             dx10             = _mm_sub_pd(ix1,jx0);
196             dy10             = _mm_sub_pd(iy1,jy0);
197             dz10             = _mm_sub_pd(iz1,jz0);
198             dx20             = _mm_sub_pd(ix2,jx0);
199             dy20             = _mm_sub_pd(iy2,jy0);
200             dz20             = _mm_sub_pd(iz2,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
204             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
205             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
206
207             rinv00           = gmx_mm_invsqrt_pd(rsq00);
208             rinv10           = gmx_mm_invsqrt_pd(rsq10);
209             rinv20           = gmx_mm_invsqrt_pd(rsq20);
210
211             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
212             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
213             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
214
215             /* Load parameters for j particles */
216             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
217             vdwjidx0A        = 2*vdwtype[jnrA+0];
218             vdwjidx0B        = 2*vdwtype[jnrB+0];
219
220             fjx0             = _mm_setzero_pd();
221             fjy0             = _mm_setzero_pd();
222             fjz0             = _mm_setzero_pd();
223
224             /**************************
225              * CALCULATE INTERACTIONS *
226              **************************/
227
228             r00              = _mm_mul_pd(rsq00,rinv00);
229
230             /* Compute parameters for interactions between i and j atoms */
231             qq00             = _mm_mul_pd(iq0,jq0);
232             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
233                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
234
235             /* Calculate table index by multiplying r with table scale and truncate to integer */
236             rt               = _mm_mul_pd(r00,vftabscale);
237             vfitab           = _mm_cvttpd_epi32(rt);
238 #ifdef __XOP__
239             vfeps            = _mm_frcz_pd(rt);
240 #else
241             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
242 #endif
243             twovfeps         = _mm_add_pd(vfeps,vfeps);
244             vfitab           = _mm_slli_epi32(vfitab,3);
245
246             /* REACTION-FIELD ELECTROSTATICS */
247             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
248             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
249
250             /* CUBIC SPLINE TABLE DISPERSION */
251             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
252             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
253             GMX_MM_TRANSPOSE2_PD(Y,F);
254             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
255             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
256             GMX_MM_TRANSPOSE2_PD(G,H);
257             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
258             VV               = _mm_macc_pd(vfeps,Fp,Y);
259             vvdw6            = _mm_mul_pd(c6_00,VV);
260             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
261             fvdw6            = _mm_mul_pd(c6_00,FF);
262
263             /* CUBIC SPLINE TABLE REPULSION */
264             vfitab           = _mm_add_epi32(vfitab,ifour);
265             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
266             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
267             GMX_MM_TRANSPOSE2_PD(Y,F);
268             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
269             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
270             GMX_MM_TRANSPOSE2_PD(G,H);
271             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
272             VV               = _mm_macc_pd(vfeps,Fp,Y);
273             vvdw12           = _mm_mul_pd(c12_00,VV);
274             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
275             fvdw12           = _mm_mul_pd(c12_00,FF);
276             vvdw             = _mm_add_pd(vvdw12,vvdw6);
277             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             velecsum         = _mm_add_pd(velecsum,velec);
281             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
282
283             fscal            = _mm_add_pd(felec,fvdw);
284
285             /* Update vectorial force */
286             fix0             = _mm_macc_pd(dx00,fscal,fix0);
287             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
288             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
289             
290             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
291             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
292             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             /* Compute parameters for interactions between i and j atoms */
299             qq10             = _mm_mul_pd(iq1,jq0);
300
301             /* REACTION-FIELD ELECTROSTATICS */
302             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
303             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             velecsum         = _mm_add_pd(velecsum,velec);
307
308             fscal            = felec;
309
310             /* Update vectorial force */
311             fix1             = _mm_macc_pd(dx10,fscal,fix1);
312             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
313             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
314             
315             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
316             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
317             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq20             = _mm_mul_pd(iq2,jq0);
325
326             /* REACTION-FIELD ELECTROSTATICS */
327             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
328             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
329
330             /* Update potential sum for this i atom from the interaction with this j atom. */
331             velecsum         = _mm_add_pd(velecsum,velec);
332
333             fscal            = felec;
334
335             /* Update vectorial force */
336             fix2             = _mm_macc_pd(dx20,fscal,fix2);
337             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
338             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
339             
340             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
341             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
342             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
343
344             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
345
346             /* Inner loop uses 143 flops */
347         }
348
349         if(jidx<j_index_end)
350         {
351
352             jnrA             = jjnr[jidx];
353             j_coord_offsetA  = DIM*jnrA;
354
355             /* load j atom coordinates */
356             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
357                                               &jx0,&jy0,&jz0);
358
359             /* Calculate displacement vector */
360             dx00             = _mm_sub_pd(ix0,jx0);
361             dy00             = _mm_sub_pd(iy0,jy0);
362             dz00             = _mm_sub_pd(iz0,jz0);
363             dx10             = _mm_sub_pd(ix1,jx0);
364             dy10             = _mm_sub_pd(iy1,jy0);
365             dz10             = _mm_sub_pd(iz1,jz0);
366             dx20             = _mm_sub_pd(ix2,jx0);
367             dy20             = _mm_sub_pd(iy2,jy0);
368             dz20             = _mm_sub_pd(iz2,jz0);
369
370             /* Calculate squared distance and things based on it */
371             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
372             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
373             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
374
375             rinv00           = gmx_mm_invsqrt_pd(rsq00);
376             rinv10           = gmx_mm_invsqrt_pd(rsq10);
377             rinv20           = gmx_mm_invsqrt_pd(rsq20);
378
379             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
380             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
381             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
382
383             /* Load parameters for j particles */
384             jq0              = _mm_load_sd(charge+jnrA+0);
385             vdwjidx0A        = 2*vdwtype[jnrA+0];
386
387             fjx0             = _mm_setzero_pd();
388             fjy0             = _mm_setzero_pd();
389             fjz0             = _mm_setzero_pd();
390
391             /**************************
392              * CALCULATE INTERACTIONS *
393              **************************/
394
395             r00              = _mm_mul_pd(rsq00,rinv00);
396
397             /* Compute parameters for interactions between i and j atoms */
398             qq00             = _mm_mul_pd(iq0,jq0);
399             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
400
401             /* Calculate table index by multiplying r with table scale and truncate to integer */
402             rt               = _mm_mul_pd(r00,vftabscale);
403             vfitab           = _mm_cvttpd_epi32(rt);
404 #ifdef __XOP__
405             vfeps            = _mm_frcz_pd(rt);
406 #else
407             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
408 #endif
409             twovfeps         = _mm_add_pd(vfeps,vfeps);
410             vfitab           = _mm_slli_epi32(vfitab,3);
411
412             /* REACTION-FIELD ELECTROSTATICS */
413             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
414             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
415
416             /* CUBIC SPLINE TABLE DISPERSION */
417             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
418             F                = _mm_setzero_pd();
419             GMX_MM_TRANSPOSE2_PD(Y,F);
420             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
421             H                = _mm_setzero_pd();
422             GMX_MM_TRANSPOSE2_PD(G,H);
423             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
424             VV               = _mm_macc_pd(vfeps,Fp,Y);
425             vvdw6            = _mm_mul_pd(c6_00,VV);
426             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
427             fvdw6            = _mm_mul_pd(c6_00,FF);
428
429             /* CUBIC SPLINE TABLE REPULSION */
430             vfitab           = _mm_add_epi32(vfitab,ifour);
431             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
432             F                = _mm_setzero_pd();
433             GMX_MM_TRANSPOSE2_PD(Y,F);
434             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
435             H                = _mm_setzero_pd();
436             GMX_MM_TRANSPOSE2_PD(G,H);
437             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
438             VV               = _mm_macc_pd(vfeps,Fp,Y);
439             vvdw12           = _mm_mul_pd(c12_00,VV);
440             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
441             fvdw12           = _mm_mul_pd(c12_00,FF);
442             vvdw             = _mm_add_pd(vvdw12,vvdw6);
443             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
444
445             /* Update potential sum for this i atom from the interaction with this j atom. */
446             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
447             velecsum         = _mm_add_pd(velecsum,velec);
448             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
449             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
450
451             fscal            = _mm_add_pd(felec,fvdw);
452
453             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
454
455             /* Update vectorial force */
456             fix0             = _mm_macc_pd(dx00,fscal,fix0);
457             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
458             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
459             
460             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
461             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
462             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
463
464             /**************************
465              * CALCULATE INTERACTIONS *
466              **************************/
467
468             /* Compute parameters for interactions between i and j atoms */
469             qq10             = _mm_mul_pd(iq1,jq0);
470
471             /* REACTION-FIELD ELECTROSTATICS */
472             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
473             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
474
475             /* Update potential sum for this i atom from the interaction with this j atom. */
476             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
477             velecsum         = _mm_add_pd(velecsum,velec);
478
479             fscal            = felec;
480
481             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
482
483             /* Update vectorial force */
484             fix1             = _mm_macc_pd(dx10,fscal,fix1);
485             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
486             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
487             
488             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
489             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
490             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
491
492             /**************************
493              * CALCULATE INTERACTIONS *
494              **************************/
495
496             /* Compute parameters for interactions between i and j atoms */
497             qq20             = _mm_mul_pd(iq2,jq0);
498
499             /* REACTION-FIELD ELECTROSTATICS */
500             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
501             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
502
503             /* Update potential sum for this i atom from the interaction with this j atom. */
504             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
505             velecsum         = _mm_add_pd(velecsum,velec);
506
507             fscal            = felec;
508
509             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
510
511             /* Update vectorial force */
512             fix2             = _mm_macc_pd(dx20,fscal,fix2);
513             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
514             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
515             
516             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
517             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
518             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
519
520             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
521
522             /* Inner loop uses 143 flops */
523         }
524
525         /* End of innermost loop */
526
527         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
528                                               f+i_coord_offset,fshift+i_shift_offset);
529
530         ggid                        = gid[iidx];
531         /* Update potential energies */
532         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
533         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
534
535         /* Increment number of inner iterations */
536         inneriter                  += j_index_end - j_index_start;
537
538         /* Outer loop uses 20 flops */
539     }
540
541     /* Increment number of outer iterations */
542     outeriter        += nri;
543
544     /* Update outer/inner flops */
545
546     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*143);
547 }
548 /*
549  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_128_fma_double
550  * Electrostatics interaction: ReactionField
551  * VdW interaction:            CubicSplineTable
552  * Geometry:                   Water3-Particle
553  * Calculate force/pot:        Force
554  */
555 void
556 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_128_fma_double
557                     (t_nblist                    * gmx_restrict       nlist,
558                      rvec                        * gmx_restrict          xx,
559                      rvec                        * gmx_restrict          ff,
560                      t_forcerec                  * gmx_restrict          fr,
561                      t_mdatoms                   * gmx_restrict     mdatoms,
562                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
563                      t_nrnb                      * gmx_restrict        nrnb)
564 {
565     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
566      * just 0 for non-waters.
567      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
568      * jnr indices corresponding to data put in the four positions in the SIMD register.
569      */
570     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
571     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
572     int              jnrA,jnrB;
573     int              j_coord_offsetA,j_coord_offsetB;
574     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
575     real             rcutoff_scalar;
576     real             *shiftvec,*fshift,*x,*f;
577     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
578     int              vdwioffset0;
579     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
580     int              vdwioffset1;
581     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
582     int              vdwioffset2;
583     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
584     int              vdwjidx0A,vdwjidx0B;
585     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
586     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
587     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
588     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
589     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
590     real             *charge;
591     int              nvdwtype;
592     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
593     int              *vdwtype;
594     real             *vdwparam;
595     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
596     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
597     __m128i          vfitab;
598     __m128i          ifour       = _mm_set1_epi32(4);
599     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
600     real             *vftab;
601     __m128d          dummy_mask,cutoff_mask;
602     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
603     __m128d          one     = _mm_set1_pd(1.0);
604     __m128d          two     = _mm_set1_pd(2.0);
605     x                = xx[0];
606     f                = ff[0];
607
608     nri              = nlist->nri;
609     iinr             = nlist->iinr;
610     jindex           = nlist->jindex;
611     jjnr             = nlist->jjnr;
612     shiftidx         = nlist->shift;
613     gid              = nlist->gid;
614     shiftvec         = fr->shift_vec[0];
615     fshift           = fr->fshift[0];
616     facel            = _mm_set1_pd(fr->epsfac);
617     charge           = mdatoms->chargeA;
618     krf              = _mm_set1_pd(fr->ic->k_rf);
619     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
620     crf              = _mm_set1_pd(fr->ic->c_rf);
621     nvdwtype         = fr->ntype;
622     vdwparam         = fr->nbfp;
623     vdwtype          = mdatoms->typeA;
624
625     vftab            = kernel_data->table_vdw->data;
626     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
627
628     /* Setup water-specific parameters */
629     inr              = nlist->iinr[0];
630     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
631     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
632     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
633     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
634
635     /* Avoid stupid compiler warnings */
636     jnrA = jnrB = 0;
637     j_coord_offsetA = 0;
638     j_coord_offsetB = 0;
639
640     outeriter        = 0;
641     inneriter        = 0;
642
643     /* Start outer loop over neighborlists */
644     for(iidx=0; iidx<nri; iidx++)
645     {
646         /* Load shift vector for this list */
647         i_shift_offset   = DIM*shiftidx[iidx];
648
649         /* Load limits for loop over neighbors */
650         j_index_start    = jindex[iidx];
651         j_index_end      = jindex[iidx+1];
652
653         /* Get outer coordinate index */
654         inr              = iinr[iidx];
655         i_coord_offset   = DIM*inr;
656
657         /* Load i particle coords and add shift vector */
658         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
659                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
660
661         fix0             = _mm_setzero_pd();
662         fiy0             = _mm_setzero_pd();
663         fiz0             = _mm_setzero_pd();
664         fix1             = _mm_setzero_pd();
665         fiy1             = _mm_setzero_pd();
666         fiz1             = _mm_setzero_pd();
667         fix2             = _mm_setzero_pd();
668         fiy2             = _mm_setzero_pd();
669         fiz2             = _mm_setzero_pd();
670
671         /* Start inner kernel loop */
672         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
673         {
674
675             /* Get j neighbor index, and coordinate index */
676             jnrA             = jjnr[jidx];
677             jnrB             = jjnr[jidx+1];
678             j_coord_offsetA  = DIM*jnrA;
679             j_coord_offsetB  = DIM*jnrB;
680
681             /* load j atom coordinates */
682             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
683                                               &jx0,&jy0,&jz0);
684
685             /* Calculate displacement vector */
686             dx00             = _mm_sub_pd(ix0,jx0);
687             dy00             = _mm_sub_pd(iy0,jy0);
688             dz00             = _mm_sub_pd(iz0,jz0);
689             dx10             = _mm_sub_pd(ix1,jx0);
690             dy10             = _mm_sub_pd(iy1,jy0);
691             dz10             = _mm_sub_pd(iz1,jz0);
692             dx20             = _mm_sub_pd(ix2,jx0);
693             dy20             = _mm_sub_pd(iy2,jy0);
694             dz20             = _mm_sub_pd(iz2,jz0);
695
696             /* Calculate squared distance and things based on it */
697             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
698             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
699             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
700
701             rinv00           = gmx_mm_invsqrt_pd(rsq00);
702             rinv10           = gmx_mm_invsqrt_pd(rsq10);
703             rinv20           = gmx_mm_invsqrt_pd(rsq20);
704
705             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
706             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
707             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
708
709             /* Load parameters for j particles */
710             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
711             vdwjidx0A        = 2*vdwtype[jnrA+0];
712             vdwjidx0B        = 2*vdwtype[jnrB+0];
713
714             fjx0             = _mm_setzero_pd();
715             fjy0             = _mm_setzero_pd();
716             fjz0             = _mm_setzero_pd();
717
718             /**************************
719              * CALCULATE INTERACTIONS *
720              **************************/
721
722             r00              = _mm_mul_pd(rsq00,rinv00);
723
724             /* Compute parameters for interactions between i and j atoms */
725             qq00             = _mm_mul_pd(iq0,jq0);
726             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
727                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
728
729             /* Calculate table index by multiplying r with table scale and truncate to integer */
730             rt               = _mm_mul_pd(r00,vftabscale);
731             vfitab           = _mm_cvttpd_epi32(rt);
732 #ifdef __XOP__
733             vfeps            = _mm_frcz_pd(rt);
734 #else
735             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
736 #endif
737             twovfeps         = _mm_add_pd(vfeps,vfeps);
738             vfitab           = _mm_slli_epi32(vfitab,3);
739
740             /* REACTION-FIELD ELECTROSTATICS */
741             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
742
743             /* CUBIC SPLINE TABLE DISPERSION */
744             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
745             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
746             GMX_MM_TRANSPOSE2_PD(Y,F);
747             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
748             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
749             GMX_MM_TRANSPOSE2_PD(G,H);
750             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
751             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
752             fvdw6            = _mm_mul_pd(c6_00,FF);
753
754             /* CUBIC SPLINE TABLE REPULSION */
755             vfitab           = _mm_add_epi32(vfitab,ifour);
756             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
757             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
758             GMX_MM_TRANSPOSE2_PD(Y,F);
759             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
760             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
761             GMX_MM_TRANSPOSE2_PD(G,H);
762             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
763             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
764             fvdw12           = _mm_mul_pd(c12_00,FF);
765             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
766
767             fscal            = _mm_add_pd(felec,fvdw);
768
769             /* Update vectorial force */
770             fix0             = _mm_macc_pd(dx00,fscal,fix0);
771             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
772             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
773             
774             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
775             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
776             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
777
778             /**************************
779              * CALCULATE INTERACTIONS *
780              **************************/
781
782             /* Compute parameters for interactions between i and j atoms */
783             qq10             = _mm_mul_pd(iq1,jq0);
784
785             /* REACTION-FIELD ELECTROSTATICS */
786             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
787
788             fscal            = felec;
789
790             /* Update vectorial force */
791             fix1             = _mm_macc_pd(dx10,fscal,fix1);
792             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
793             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
794             
795             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
796             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
797             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
798
799             /**************************
800              * CALCULATE INTERACTIONS *
801              **************************/
802
803             /* Compute parameters for interactions between i and j atoms */
804             qq20             = _mm_mul_pd(iq2,jq0);
805
806             /* REACTION-FIELD ELECTROSTATICS */
807             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
808
809             fscal            = felec;
810
811             /* Update vectorial force */
812             fix2             = _mm_macc_pd(dx20,fscal,fix2);
813             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
814             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
815             
816             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
817             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
818             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
819
820             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
821
822             /* Inner loop uses 120 flops */
823         }
824
825         if(jidx<j_index_end)
826         {
827
828             jnrA             = jjnr[jidx];
829             j_coord_offsetA  = DIM*jnrA;
830
831             /* load j atom coordinates */
832             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
833                                               &jx0,&jy0,&jz0);
834
835             /* Calculate displacement vector */
836             dx00             = _mm_sub_pd(ix0,jx0);
837             dy00             = _mm_sub_pd(iy0,jy0);
838             dz00             = _mm_sub_pd(iz0,jz0);
839             dx10             = _mm_sub_pd(ix1,jx0);
840             dy10             = _mm_sub_pd(iy1,jy0);
841             dz10             = _mm_sub_pd(iz1,jz0);
842             dx20             = _mm_sub_pd(ix2,jx0);
843             dy20             = _mm_sub_pd(iy2,jy0);
844             dz20             = _mm_sub_pd(iz2,jz0);
845
846             /* Calculate squared distance and things based on it */
847             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
848             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
849             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
850
851             rinv00           = gmx_mm_invsqrt_pd(rsq00);
852             rinv10           = gmx_mm_invsqrt_pd(rsq10);
853             rinv20           = gmx_mm_invsqrt_pd(rsq20);
854
855             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
856             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
857             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
858
859             /* Load parameters for j particles */
860             jq0              = _mm_load_sd(charge+jnrA+0);
861             vdwjidx0A        = 2*vdwtype[jnrA+0];
862
863             fjx0             = _mm_setzero_pd();
864             fjy0             = _mm_setzero_pd();
865             fjz0             = _mm_setzero_pd();
866
867             /**************************
868              * CALCULATE INTERACTIONS *
869              **************************/
870
871             r00              = _mm_mul_pd(rsq00,rinv00);
872
873             /* Compute parameters for interactions between i and j atoms */
874             qq00             = _mm_mul_pd(iq0,jq0);
875             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
876
877             /* Calculate table index by multiplying r with table scale and truncate to integer */
878             rt               = _mm_mul_pd(r00,vftabscale);
879             vfitab           = _mm_cvttpd_epi32(rt);
880 #ifdef __XOP__
881             vfeps            = _mm_frcz_pd(rt);
882 #else
883             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
884 #endif
885             twovfeps         = _mm_add_pd(vfeps,vfeps);
886             vfitab           = _mm_slli_epi32(vfitab,3);
887
888             /* REACTION-FIELD ELECTROSTATICS */
889             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
890
891             /* CUBIC SPLINE TABLE DISPERSION */
892             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
893             F                = _mm_setzero_pd();
894             GMX_MM_TRANSPOSE2_PD(Y,F);
895             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
896             H                = _mm_setzero_pd();
897             GMX_MM_TRANSPOSE2_PD(G,H);
898             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
899             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
900             fvdw6            = _mm_mul_pd(c6_00,FF);
901
902             /* CUBIC SPLINE TABLE REPULSION */
903             vfitab           = _mm_add_epi32(vfitab,ifour);
904             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
905             F                = _mm_setzero_pd();
906             GMX_MM_TRANSPOSE2_PD(Y,F);
907             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
908             H                = _mm_setzero_pd();
909             GMX_MM_TRANSPOSE2_PD(G,H);
910             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
911             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
912             fvdw12           = _mm_mul_pd(c12_00,FF);
913             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
914
915             fscal            = _mm_add_pd(felec,fvdw);
916
917             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
918
919             /* Update vectorial force */
920             fix0             = _mm_macc_pd(dx00,fscal,fix0);
921             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
922             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
923             
924             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
925             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
926             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
927
928             /**************************
929              * CALCULATE INTERACTIONS *
930              **************************/
931
932             /* Compute parameters for interactions between i and j atoms */
933             qq10             = _mm_mul_pd(iq1,jq0);
934
935             /* REACTION-FIELD ELECTROSTATICS */
936             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
937
938             fscal            = felec;
939
940             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
941
942             /* Update vectorial force */
943             fix1             = _mm_macc_pd(dx10,fscal,fix1);
944             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
945             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
946             
947             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
948             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
949             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
950
951             /**************************
952              * CALCULATE INTERACTIONS *
953              **************************/
954
955             /* Compute parameters for interactions between i and j atoms */
956             qq20             = _mm_mul_pd(iq2,jq0);
957
958             /* REACTION-FIELD ELECTROSTATICS */
959             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
960
961             fscal            = felec;
962
963             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
964
965             /* Update vectorial force */
966             fix2             = _mm_macc_pd(dx20,fscal,fix2);
967             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
968             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
969             
970             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
971             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
972             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
973
974             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
975
976             /* Inner loop uses 120 flops */
977         }
978
979         /* End of innermost loop */
980
981         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
982                                               f+i_coord_offset,fshift+i_shift_offset);
983
984         /* Increment number of inner iterations */
985         inneriter                  += j_index_end - j_index_start;
986
987         /* Outer loop uses 18 flops */
988     }
989
990     /* Increment number of outer iterations */
991     outeriter        += nri;
992
993     /* Update outer/inner flops */
994
995     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*120);
996 }