Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
98     real             *vftab;
99     __m128d          dummy_mask,cutoff_mask;
100     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
101     __m128d          one     = _mm_set1_pd(1.0);
102     __m128d          two     = _mm_set1_pd(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_pd(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     krf              = _mm_set1_pd(fr->ic->k_rf);
117     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
118     crf              = _mm_set1_pd(fr->ic->c_rf);
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_vdw->data;
124     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     /* Start outer loop over neighborlists */
135     for(iidx=0; iidx<nri; iidx++)
136     {
137         /* Load shift vector for this list */
138         i_shift_offset   = DIM*shiftidx[iidx];
139
140         /* Load limits for loop over neighbors */
141         j_index_start    = jindex[iidx];
142         j_index_end      = jindex[iidx+1];
143
144         /* Get outer coordinate index */
145         inr              = iinr[iidx];
146         i_coord_offset   = DIM*inr;
147
148         /* Load i particle coords and add shift vector */
149         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
150
151         fix0             = _mm_setzero_pd();
152         fiy0             = _mm_setzero_pd();
153         fiz0             = _mm_setzero_pd();
154
155         /* Load parameters for i particles */
156         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
157         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
158
159         /* Reset potential sums */
160         velecsum         = _mm_setzero_pd();
161         vvdwsum          = _mm_setzero_pd();
162
163         /* Start inner kernel loop */
164         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
165         {
166
167             /* Get j neighbor index, and coordinate index */
168             jnrA             = jjnr[jidx];
169             jnrB             = jjnr[jidx+1];
170             j_coord_offsetA  = DIM*jnrA;
171             j_coord_offsetB  = DIM*jnrB;
172
173             /* load j atom coordinates */
174             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
175                                               &jx0,&jy0,&jz0);
176
177             /* Calculate displacement vector */
178             dx00             = _mm_sub_pd(ix0,jx0);
179             dy00             = _mm_sub_pd(iy0,jy0);
180             dz00             = _mm_sub_pd(iz0,jz0);
181
182             /* Calculate squared distance and things based on it */
183             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
184
185             rinv00           = gmx_mm_invsqrt_pd(rsq00);
186
187             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
188
189             /* Load parameters for j particles */
190             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
191             vdwjidx0A        = 2*vdwtype[jnrA+0];
192             vdwjidx0B        = 2*vdwtype[jnrB+0];
193
194             /**************************
195              * CALCULATE INTERACTIONS *
196              **************************/
197
198             r00              = _mm_mul_pd(rsq00,rinv00);
199
200             /* Compute parameters for interactions between i and j atoms */
201             qq00             = _mm_mul_pd(iq0,jq0);
202             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
203                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
204
205             /* Calculate table index by multiplying r with table scale and truncate to integer */
206             rt               = _mm_mul_pd(r00,vftabscale);
207             vfitab           = _mm_cvttpd_epi32(rt);
208 #ifdef __XOP__
209             vfeps            = _mm_frcz_pd(rt);
210 #else
211             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
212 #endif
213             twovfeps         = _mm_add_pd(vfeps,vfeps);
214             vfitab           = _mm_slli_epi32(vfitab,3);
215
216             /* REACTION-FIELD ELECTROSTATICS */
217             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
218             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
219
220             /* CUBIC SPLINE TABLE DISPERSION */
221             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
222             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
223             GMX_MM_TRANSPOSE2_PD(Y,F);
224             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
225             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
226             GMX_MM_TRANSPOSE2_PD(G,H);
227             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
228             VV               = _mm_macc_pd(vfeps,Fp,Y);
229             vvdw6            = _mm_mul_pd(c6_00,VV);
230             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
231             fvdw6            = _mm_mul_pd(c6_00,FF);
232
233             /* CUBIC SPLINE TABLE REPULSION */
234             vfitab           = _mm_add_epi32(vfitab,ifour);
235             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
236             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
237             GMX_MM_TRANSPOSE2_PD(Y,F);
238             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
239             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
240             GMX_MM_TRANSPOSE2_PD(G,H);
241             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
242             VV               = _mm_macc_pd(vfeps,Fp,Y);
243             vvdw12           = _mm_mul_pd(c12_00,VV);
244             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
245             fvdw12           = _mm_mul_pd(c12_00,FF);
246             vvdw             = _mm_add_pd(vvdw12,vvdw6);
247             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
248
249             /* Update potential sum for this i atom from the interaction with this j atom. */
250             velecsum         = _mm_add_pd(velecsum,velec);
251             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
252
253             fscal            = _mm_add_pd(felec,fvdw);
254
255             /* Update vectorial force */
256             fix0             = _mm_macc_pd(dx00,fscal,fix0);
257             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
258             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
259             
260             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
261                                                    _mm_mul_pd(dx00,fscal),
262                                                    _mm_mul_pd(dy00,fscal),
263                                                    _mm_mul_pd(dz00,fscal));
264
265             /* Inner loop uses 70 flops */
266         }
267
268         if(jidx<j_index_end)
269         {
270
271             jnrA             = jjnr[jidx];
272             j_coord_offsetA  = DIM*jnrA;
273
274             /* load j atom coordinates */
275             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
276                                               &jx0,&jy0,&jz0);
277
278             /* Calculate displacement vector */
279             dx00             = _mm_sub_pd(ix0,jx0);
280             dy00             = _mm_sub_pd(iy0,jy0);
281             dz00             = _mm_sub_pd(iz0,jz0);
282
283             /* Calculate squared distance and things based on it */
284             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
285
286             rinv00           = gmx_mm_invsqrt_pd(rsq00);
287
288             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
289
290             /* Load parameters for j particles */
291             jq0              = _mm_load_sd(charge+jnrA+0);
292             vdwjidx0A        = 2*vdwtype[jnrA+0];
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             r00              = _mm_mul_pd(rsq00,rinv00);
299
300             /* Compute parameters for interactions between i and j atoms */
301             qq00             = _mm_mul_pd(iq0,jq0);
302             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
303
304             /* Calculate table index by multiplying r with table scale and truncate to integer */
305             rt               = _mm_mul_pd(r00,vftabscale);
306             vfitab           = _mm_cvttpd_epi32(rt);
307 #ifdef __XOP__
308             vfeps            = _mm_frcz_pd(rt);
309 #else
310             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
311 #endif
312             twovfeps         = _mm_add_pd(vfeps,vfeps);
313             vfitab           = _mm_slli_epi32(vfitab,3);
314
315             /* REACTION-FIELD ELECTROSTATICS */
316             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
317             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
318
319             /* CUBIC SPLINE TABLE DISPERSION */
320             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
321             F                = _mm_setzero_pd();
322             GMX_MM_TRANSPOSE2_PD(Y,F);
323             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
324             H                = _mm_setzero_pd();
325             GMX_MM_TRANSPOSE2_PD(G,H);
326             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
327             VV               = _mm_macc_pd(vfeps,Fp,Y);
328             vvdw6            = _mm_mul_pd(c6_00,VV);
329             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
330             fvdw6            = _mm_mul_pd(c6_00,FF);
331
332             /* CUBIC SPLINE TABLE REPULSION */
333             vfitab           = _mm_add_epi32(vfitab,ifour);
334             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
335             F                = _mm_setzero_pd();
336             GMX_MM_TRANSPOSE2_PD(Y,F);
337             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
338             H                = _mm_setzero_pd();
339             GMX_MM_TRANSPOSE2_PD(G,H);
340             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
341             VV               = _mm_macc_pd(vfeps,Fp,Y);
342             vvdw12           = _mm_mul_pd(c12_00,VV);
343             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
344             fvdw12           = _mm_mul_pd(c12_00,FF);
345             vvdw             = _mm_add_pd(vvdw12,vvdw6);
346             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
347
348             /* Update potential sum for this i atom from the interaction with this j atom. */
349             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
350             velecsum         = _mm_add_pd(velecsum,velec);
351             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
352             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
353
354             fscal            = _mm_add_pd(felec,fvdw);
355
356             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
357
358             /* Update vectorial force */
359             fix0             = _mm_macc_pd(dx00,fscal,fix0);
360             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
361             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
362             
363             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
364                                                    _mm_mul_pd(dx00,fscal),
365                                                    _mm_mul_pd(dy00,fscal),
366                                                    _mm_mul_pd(dz00,fscal));
367
368             /* Inner loop uses 70 flops */
369         }
370
371         /* End of innermost loop */
372
373         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
374                                               f+i_coord_offset,fshift+i_shift_offset);
375
376         ggid                        = gid[iidx];
377         /* Update potential energies */
378         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
379         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
380
381         /* Increment number of inner iterations */
382         inneriter                  += j_index_end - j_index_start;
383
384         /* Outer loop uses 9 flops */
385     }
386
387     /* Increment number of outer iterations */
388     outeriter        += nri;
389
390     /* Update outer/inner flops */
391
392     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*70);
393 }
394 /*
395  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_128_fma_double
396  * Electrostatics interaction: ReactionField
397  * VdW interaction:            CubicSplineTable
398  * Geometry:                   Particle-Particle
399  * Calculate force/pot:        Force
400  */
401 void
402 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_128_fma_double
403                     (t_nblist                    * gmx_restrict       nlist,
404                      rvec                        * gmx_restrict          xx,
405                      rvec                        * gmx_restrict          ff,
406                      t_forcerec                  * gmx_restrict          fr,
407                      t_mdatoms                   * gmx_restrict     mdatoms,
408                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
409                      t_nrnb                      * gmx_restrict        nrnb)
410 {
411     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
412      * just 0 for non-waters.
413      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
414      * jnr indices corresponding to data put in the four positions in the SIMD register.
415      */
416     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
417     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
418     int              jnrA,jnrB;
419     int              j_coord_offsetA,j_coord_offsetB;
420     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
421     real             rcutoff_scalar;
422     real             *shiftvec,*fshift,*x,*f;
423     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
424     int              vdwioffset0;
425     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
426     int              vdwjidx0A,vdwjidx0B;
427     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
428     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
429     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
430     real             *charge;
431     int              nvdwtype;
432     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
433     int              *vdwtype;
434     real             *vdwparam;
435     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
436     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
437     __m128i          vfitab;
438     __m128i          ifour       = _mm_set1_epi32(4);
439     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
440     real             *vftab;
441     __m128d          dummy_mask,cutoff_mask;
442     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
443     __m128d          one     = _mm_set1_pd(1.0);
444     __m128d          two     = _mm_set1_pd(2.0);
445     x                = xx[0];
446     f                = ff[0];
447
448     nri              = nlist->nri;
449     iinr             = nlist->iinr;
450     jindex           = nlist->jindex;
451     jjnr             = nlist->jjnr;
452     shiftidx         = nlist->shift;
453     gid              = nlist->gid;
454     shiftvec         = fr->shift_vec[0];
455     fshift           = fr->fshift[0];
456     facel            = _mm_set1_pd(fr->epsfac);
457     charge           = mdatoms->chargeA;
458     krf              = _mm_set1_pd(fr->ic->k_rf);
459     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
460     crf              = _mm_set1_pd(fr->ic->c_rf);
461     nvdwtype         = fr->ntype;
462     vdwparam         = fr->nbfp;
463     vdwtype          = mdatoms->typeA;
464
465     vftab            = kernel_data->table_vdw->data;
466     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
467
468     /* Avoid stupid compiler warnings */
469     jnrA = jnrB = 0;
470     j_coord_offsetA = 0;
471     j_coord_offsetB = 0;
472
473     outeriter        = 0;
474     inneriter        = 0;
475
476     /* Start outer loop over neighborlists */
477     for(iidx=0; iidx<nri; iidx++)
478     {
479         /* Load shift vector for this list */
480         i_shift_offset   = DIM*shiftidx[iidx];
481
482         /* Load limits for loop over neighbors */
483         j_index_start    = jindex[iidx];
484         j_index_end      = jindex[iidx+1];
485
486         /* Get outer coordinate index */
487         inr              = iinr[iidx];
488         i_coord_offset   = DIM*inr;
489
490         /* Load i particle coords and add shift vector */
491         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
492
493         fix0             = _mm_setzero_pd();
494         fiy0             = _mm_setzero_pd();
495         fiz0             = _mm_setzero_pd();
496
497         /* Load parameters for i particles */
498         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
499         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
500
501         /* Start inner kernel loop */
502         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
503         {
504
505             /* Get j neighbor index, and coordinate index */
506             jnrA             = jjnr[jidx];
507             jnrB             = jjnr[jidx+1];
508             j_coord_offsetA  = DIM*jnrA;
509             j_coord_offsetB  = DIM*jnrB;
510
511             /* load j atom coordinates */
512             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
513                                               &jx0,&jy0,&jz0);
514
515             /* Calculate displacement vector */
516             dx00             = _mm_sub_pd(ix0,jx0);
517             dy00             = _mm_sub_pd(iy0,jy0);
518             dz00             = _mm_sub_pd(iz0,jz0);
519
520             /* Calculate squared distance and things based on it */
521             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
522
523             rinv00           = gmx_mm_invsqrt_pd(rsq00);
524
525             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
526
527             /* Load parameters for j particles */
528             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
529             vdwjidx0A        = 2*vdwtype[jnrA+0];
530             vdwjidx0B        = 2*vdwtype[jnrB+0];
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             r00              = _mm_mul_pd(rsq00,rinv00);
537
538             /* Compute parameters for interactions between i and j atoms */
539             qq00             = _mm_mul_pd(iq0,jq0);
540             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
541                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
542
543             /* Calculate table index by multiplying r with table scale and truncate to integer */
544             rt               = _mm_mul_pd(r00,vftabscale);
545             vfitab           = _mm_cvttpd_epi32(rt);
546 #ifdef __XOP__
547             vfeps            = _mm_frcz_pd(rt);
548 #else
549             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
550 #endif
551             twovfeps         = _mm_add_pd(vfeps,vfeps);
552             vfitab           = _mm_slli_epi32(vfitab,3);
553
554             /* REACTION-FIELD ELECTROSTATICS */
555             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
556
557             /* CUBIC SPLINE TABLE DISPERSION */
558             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
559             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
560             GMX_MM_TRANSPOSE2_PD(Y,F);
561             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
562             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
563             GMX_MM_TRANSPOSE2_PD(G,H);
564             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
565             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
566             fvdw6            = _mm_mul_pd(c6_00,FF);
567
568             /* CUBIC SPLINE TABLE REPULSION */
569             vfitab           = _mm_add_epi32(vfitab,ifour);
570             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
571             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
572             GMX_MM_TRANSPOSE2_PD(Y,F);
573             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
574             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
575             GMX_MM_TRANSPOSE2_PD(G,H);
576             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
577             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
578             fvdw12           = _mm_mul_pd(c12_00,FF);
579             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
580
581             fscal            = _mm_add_pd(felec,fvdw);
582
583             /* Update vectorial force */
584             fix0             = _mm_macc_pd(dx00,fscal,fix0);
585             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
586             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
587             
588             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
589                                                    _mm_mul_pd(dx00,fscal),
590                                                    _mm_mul_pd(dy00,fscal),
591                                                    _mm_mul_pd(dz00,fscal));
592
593             /* Inner loop uses 57 flops */
594         }
595
596         if(jidx<j_index_end)
597         {
598
599             jnrA             = jjnr[jidx];
600             j_coord_offsetA  = DIM*jnrA;
601
602             /* load j atom coordinates */
603             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
604                                               &jx0,&jy0,&jz0);
605
606             /* Calculate displacement vector */
607             dx00             = _mm_sub_pd(ix0,jx0);
608             dy00             = _mm_sub_pd(iy0,jy0);
609             dz00             = _mm_sub_pd(iz0,jz0);
610
611             /* Calculate squared distance and things based on it */
612             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
613
614             rinv00           = gmx_mm_invsqrt_pd(rsq00);
615
616             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
617
618             /* Load parameters for j particles */
619             jq0              = _mm_load_sd(charge+jnrA+0);
620             vdwjidx0A        = 2*vdwtype[jnrA+0];
621
622             /**************************
623              * CALCULATE INTERACTIONS *
624              **************************/
625
626             r00              = _mm_mul_pd(rsq00,rinv00);
627
628             /* Compute parameters for interactions between i and j atoms */
629             qq00             = _mm_mul_pd(iq0,jq0);
630             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
631
632             /* Calculate table index by multiplying r with table scale and truncate to integer */
633             rt               = _mm_mul_pd(r00,vftabscale);
634             vfitab           = _mm_cvttpd_epi32(rt);
635 #ifdef __XOP__
636             vfeps            = _mm_frcz_pd(rt);
637 #else
638             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
639 #endif
640             twovfeps         = _mm_add_pd(vfeps,vfeps);
641             vfitab           = _mm_slli_epi32(vfitab,3);
642
643             /* REACTION-FIELD ELECTROSTATICS */
644             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
645
646             /* CUBIC SPLINE TABLE DISPERSION */
647             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
648             F                = _mm_setzero_pd();
649             GMX_MM_TRANSPOSE2_PD(Y,F);
650             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
651             H                = _mm_setzero_pd();
652             GMX_MM_TRANSPOSE2_PD(G,H);
653             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
654             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
655             fvdw6            = _mm_mul_pd(c6_00,FF);
656
657             /* CUBIC SPLINE TABLE REPULSION */
658             vfitab           = _mm_add_epi32(vfitab,ifour);
659             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
660             F                = _mm_setzero_pd();
661             GMX_MM_TRANSPOSE2_PD(Y,F);
662             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
663             H                = _mm_setzero_pd();
664             GMX_MM_TRANSPOSE2_PD(G,H);
665             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
666             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
667             fvdw12           = _mm_mul_pd(c12_00,FF);
668             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
669
670             fscal            = _mm_add_pd(felec,fvdw);
671
672             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
673
674             /* Update vectorial force */
675             fix0             = _mm_macc_pd(dx00,fscal,fix0);
676             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
677             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
678             
679             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
680                                                    _mm_mul_pd(dx00,fscal),
681                                                    _mm_mul_pd(dy00,fscal),
682                                                    _mm_mul_pd(dz00,fscal));
683
684             /* Inner loop uses 57 flops */
685         }
686
687         /* End of innermost loop */
688
689         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
690                                               f+i_coord_offset,fshift+i_shift_offset);
691
692         /* Increment number of inner iterations */
693         inneriter                  += j_index_end - j_index_start;
694
695         /* Outer loop uses 7 flops */
696     }
697
698     /* Increment number of outer iterations */
699     outeriter        += nri;
700
701     /* Update outer/inner flops */
702
703     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*57);
704 }