Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128i          vfitab;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
96     real             *vftab;
97     __m128d          dummy_mask,cutoff_mask;
98     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
99     __m128d          one     = _mm_set1_pd(1.0);
100     __m128d          two     = _mm_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_pd(fr->epsfac);
113     charge           = mdatoms->chargeA;
114     krf              = _mm_set1_pd(fr->ic->k_rf);
115     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
116     crf              = _mm_set1_pd(fr->ic->c_rf);
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     vftab            = kernel_data->table_vdw->data;
122     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
148
149         fix0             = _mm_setzero_pd();
150         fiy0             = _mm_setzero_pd();
151         fiz0             = _mm_setzero_pd();
152
153         /* Load parameters for i particles */
154         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
155         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
156
157         /* Reset potential sums */
158         velecsum         = _mm_setzero_pd();
159         vvdwsum          = _mm_setzero_pd();
160
161         /* Start inner kernel loop */
162         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
163         {
164
165             /* Get j neighbor index, and coordinate index */
166             jnrA             = jjnr[jidx];
167             jnrB             = jjnr[jidx+1];
168             j_coord_offsetA  = DIM*jnrA;
169             j_coord_offsetB  = DIM*jnrB;
170
171             /* load j atom coordinates */
172             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
173                                               &jx0,&jy0,&jz0);
174
175             /* Calculate displacement vector */
176             dx00             = _mm_sub_pd(ix0,jx0);
177             dy00             = _mm_sub_pd(iy0,jy0);
178             dz00             = _mm_sub_pd(iz0,jz0);
179
180             /* Calculate squared distance and things based on it */
181             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
182
183             rinv00           = gmx_mm_invsqrt_pd(rsq00);
184
185             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
186
187             /* Load parameters for j particles */
188             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
189             vdwjidx0A        = 2*vdwtype[jnrA+0];
190             vdwjidx0B        = 2*vdwtype[jnrB+0];
191
192             /**************************
193              * CALCULATE INTERACTIONS *
194              **************************/
195
196             r00              = _mm_mul_pd(rsq00,rinv00);
197
198             /* Compute parameters for interactions between i and j atoms */
199             qq00             = _mm_mul_pd(iq0,jq0);
200             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
201                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
202
203             /* Calculate table index by multiplying r with table scale and truncate to integer */
204             rt               = _mm_mul_pd(r00,vftabscale);
205             vfitab           = _mm_cvttpd_epi32(rt);
206 #ifdef __XOP__
207             vfeps            = _mm_frcz_pd(rt);
208 #else
209             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
210 #endif
211             twovfeps         = _mm_add_pd(vfeps,vfeps);
212             vfitab           = _mm_slli_epi32(vfitab,3);
213
214             /* REACTION-FIELD ELECTROSTATICS */
215             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
216             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
217
218             /* CUBIC SPLINE TABLE DISPERSION */
219             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
220             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
221             GMX_MM_TRANSPOSE2_PD(Y,F);
222             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
223             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
224             GMX_MM_TRANSPOSE2_PD(G,H);
225             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
226             VV               = _mm_macc_pd(vfeps,Fp,Y);
227             vvdw6            = _mm_mul_pd(c6_00,VV);
228             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
229             fvdw6            = _mm_mul_pd(c6_00,FF);
230
231             /* CUBIC SPLINE TABLE REPULSION */
232             vfitab           = _mm_add_epi32(vfitab,ifour);
233             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
234             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
235             GMX_MM_TRANSPOSE2_PD(Y,F);
236             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
237             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
238             GMX_MM_TRANSPOSE2_PD(G,H);
239             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
240             VV               = _mm_macc_pd(vfeps,Fp,Y);
241             vvdw12           = _mm_mul_pd(c12_00,VV);
242             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
243             fvdw12           = _mm_mul_pd(c12_00,FF);
244             vvdw             = _mm_add_pd(vvdw12,vvdw6);
245             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
246
247             /* Update potential sum for this i atom from the interaction with this j atom. */
248             velecsum         = _mm_add_pd(velecsum,velec);
249             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
250
251             fscal            = _mm_add_pd(felec,fvdw);
252
253             /* Update vectorial force */
254             fix0             = _mm_macc_pd(dx00,fscal,fix0);
255             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
256             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
257             
258             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
259                                                    _mm_mul_pd(dx00,fscal),
260                                                    _mm_mul_pd(dy00,fscal),
261                                                    _mm_mul_pd(dz00,fscal));
262
263             /* Inner loop uses 70 flops */
264         }
265
266         if(jidx<j_index_end)
267         {
268
269             jnrA             = jjnr[jidx];
270             j_coord_offsetA  = DIM*jnrA;
271
272             /* load j atom coordinates */
273             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
274                                               &jx0,&jy0,&jz0);
275
276             /* Calculate displacement vector */
277             dx00             = _mm_sub_pd(ix0,jx0);
278             dy00             = _mm_sub_pd(iy0,jy0);
279             dz00             = _mm_sub_pd(iz0,jz0);
280
281             /* Calculate squared distance and things based on it */
282             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
283
284             rinv00           = gmx_mm_invsqrt_pd(rsq00);
285
286             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
287
288             /* Load parameters for j particles */
289             jq0              = _mm_load_sd(charge+jnrA+0);
290             vdwjidx0A        = 2*vdwtype[jnrA+0];
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             r00              = _mm_mul_pd(rsq00,rinv00);
297
298             /* Compute parameters for interactions between i and j atoms */
299             qq00             = _mm_mul_pd(iq0,jq0);
300             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
301
302             /* Calculate table index by multiplying r with table scale and truncate to integer */
303             rt               = _mm_mul_pd(r00,vftabscale);
304             vfitab           = _mm_cvttpd_epi32(rt);
305 #ifdef __XOP__
306             vfeps            = _mm_frcz_pd(rt);
307 #else
308             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
309 #endif
310             twovfeps         = _mm_add_pd(vfeps,vfeps);
311             vfitab           = _mm_slli_epi32(vfitab,3);
312
313             /* REACTION-FIELD ELECTROSTATICS */
314             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
315             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
316
317             /* CUBIC SPLINE TABLE DISPERSION */
318             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
319             F                = _mm_setzero_pd();
320             GMX_MM_TRANSPOSE2_PD(Y,F);
321             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
322             H                = _mm_setzero_pd();
323             GMX_MM_TRANSPOSE2_PD(G,H);
324             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
325             VV               = _mm_macc_pd(vfeps,Fp,Y);
326             vvdw6            = _mm_mul_pd(c6_00,VV);
327             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
328             fvdw6            = _mm_mul_pd(c6_00,FF);
329
330             /* CUBIC SPLINE TABLE REPULSION */
331             vfitab           = _mm_add_epi32(vfitab,ifour);
332             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
333             F                = _mm_setzero_pd();
334             GMX_MM_TRANSPOSE2_PD(Y,F);
335             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
336             H                = _mm_setzero_pd();
337             GMX_MM_TRANSPOSE2_PD(G,H);
338             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
339             VV               = _mm_macc_pd(vfeps,Fp,Y);
340             vvdw12           = _mm_mul_pd(c12_00,VV);
341             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
342             fvdw12           = _mm_mul_pd(c12_00,FF);
343             vvdw             = _mm_add_pd(vvdw12,vvdw6);
344             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
348             velecsum         = _mm_add_pd(velecsum,velec);
349             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
350             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
351
352             fscal            = _mm_add_pd(felec,fvdw);
353
354             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
355
356             /* Update vectorial force */
357             fix0             = _mm_macc_pd(dx00,fscal,fix0);
358             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
359             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
360             
361             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
362                                                    _mm_mul_pd(dx00,fscal),
363                                                    _mm_mul_pd(dy00,fscal),
364                                                    _mm_mul_pd(dz00,fscal));
365
366             /* Inner loop uses 70 flops */
367         }
368
369         /* End of innermost loop */
370
371         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
372                                               f+i_coord_offset,fshift+i_shift_offset);
373
374         ggid                        = gid[iidx];
375         /* Update potential energies */
376         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
377         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
378
379         /* Increment number of inner iterations */
380         inneriter                  += j_index_end - j_index_start;
381
382         /* Outer loop uses 9 flops */
383     }
384
385     /* Increment number of outer iterations */
386     outeriter        += nri;
387
388     /* Update outer/inner flops */
389
390     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*70);
391 }
392 /*
393  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_128_fma_double
394  * Electrostatics interaction: ReactionField
395  * VdW interaction:            CubicSplineTable
396  * Geometry:                   Particle-Particle
397  * Calculate force/pot:        Force
398  */
399 void
400 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_128_fma_double
401                     (t_nblist                    * gmx_restrict       nlist,
402                      rvec                        * gmx_restrict          xx,
403                      rvec                        * gmx_restrict          ff,
404                      t_forcerec                  * gmx_restrict          fr,
405                      t_mdatoms                   * gmx_restrict     mdatoms,
406                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
407                      t_nrnb                      * gmx_restrict        nrnb)
408 {
409     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
410      * just 0 for non-waters.
411      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
412      * jnr indices corresponding to data put in the four positions in the SIMD register.
413      */
414     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
415     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
416     int              jnrA,jnrB;
417     int              j_coord_offsetA,j_coord_offsetB;
418     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
419     real             rcutoff_scalar;
420     real             *shiftvec,*fshift,*x,*f;
421     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
422     int              vdwioffset0;
423     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
424     int              vdwjidx0A,vdwjidx0B;
425     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
426     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
427     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
428     real             *charge;
429     int              nvdwtype;
430     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
431     int              *vdwtype;
432     real             *vdwparam;
433     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
434     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
435     __m128i          vfitab;
436     __m128i          ifour       = _mm_set1_epi32(4);
437     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
438     real             *vftab;
439     __m128d          dummy_mask,cutoff_mask;
440     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
441     __m128d          one     = _mm_set1_pd(1.0);
442     __m128d          two     = _mm_set1_pd(2.0);
443     x                = xx[0];
444     f                = ff[0];
445
446     nri              = nlist->nri;
447     iinr             = nlist->iinr;
448     jindex           = nlist->jindex;
449     jjnr             = nlist->jjnr;
450     shiftidx         = nlist->shift;
451     gid              = nlist->gid;
452     shiftvec         = fr->shift_vec[0];
453     fshift           = fr->fshift[0];
454     facel            = _mm_set1_pd(fr->epsfac);
455     charge           = mdatoms->chargeA;
456     krf              = _mm_set1_pd(fr->ic->k_rf);
457     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
458     crf              = _mm_set1_pd(fr->ic->c_rf);
459     nvdwtype         = fr->ntype;
460     vdwparam         = fr->nbfp;
461     vdwtype          = mdatoms->typeA;
462
463     vftab            = kernel_data->table_vdw->data;
464     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
465
466     /* Avoid stupid compiler warnings */
467     jnrA = jnrB = 0;
468     j_coord_offsetA = 0;
469     j_coord_offsetB = 0;
470
471     outeriter        = 0;
472     inneriter        = 0;
473
474     /* Start outer loop over neighborlists */
475     for(iidx=0; iidx<nri; iidx++)
476     {
477         /* Load shift vector for this list */
478         i_shift_offset   = DIM*shiftidx[iidx];
479
480         /* Load limits for loop over neighbors */
481         j_index_start    = jindex[iidx];
482         j_index_end      = jindex[iidx+1];
483
484         /* Get outer coordinate index */
485         inr              = iinr[iidx];
486         i_coord_offset   = DIM*inr;
487
488         /* Load i particle coords and add shift vector */
489         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
490
491         fix0             = _mm_setzero_pd();
492         fiy0             = _mm_setzero_pd();
493         fiz0             = _mm_setzero_pd();
494
495         /* Load parameters for i particles */
496         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
497         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
498
499         /* Start inner kernel loop */
500         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
501         {
502
503             /* Get j neighbor index, and coordinate index */
504             jnrA             = jjnr[jidx];
505             jnrB             = jjnr[jidx+1];
506             j_coord_offsetA  = DIM*jnrA;
507             j_coord_offsetB  = DIM*jnrB;
508
509             /* load j atom coordinates */
510             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
511                                               &jx0,&jy0,&jz0);
512
513             /* Calculate displacement vector */
514             dx00             = _mm_sub_pd(ix0,jx0);
515             dy00             = _mm_sub_pd(iy0,jy0);
516             dz00             = _mm_sub_pd(iz0,jz0);
517
518             /* Calculate squared distance and things based on it */
519             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
520
521             rinv00           = gmx_mm_invsqrt_pd(rsq00);
522
523             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
524
525             /* Load parameters for j particles */
526             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
527             vdwjidx0A        = 2*vdwtype[jnrA+0];
528             vdwjidx0B        = 2*vdwtype[jnrB+0];
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             r00              = _mm_mul_pd(rsq00,rinv00);
535
536             /* Compute parameters for interactions between i and j atoms */
537             qq00             = _mm_mul_pd(iq0,jq0);
538             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
539                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
540
541             /* Calculate table index by multiplying r with table scale and truncate to integer */
542             rt               = _mm_mul_pd(r00,vftabscale);
543             vfitab           = _mm_cvttpd_epi32(rt);
544 #ifdef __XOP__
545             vfeps            = _mm_frcz_pd(rt);
546 #else
547             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
548 #endif
549             twovfeps         = _mm_add_pd(vfeps,vfeps);
550             vfitab           = _mm_slli_epi32(vfitab,3);
551
552             /* REACTION-FIELD ELECTROSTATICS */
553             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
554
555             /* CUBIC SPLINE TABLE DISPERSION */
556             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
557             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
558             GMX_MM_TRANSPOSE2_PD(Y,F);
559             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
560             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
561             GMX_MM_TRANSPOSE2_PD(G,H);
562             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
563             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
564             fvdw6            = _mm_mul_pd(c6_00,FF);
565
566             /* CUBIC SPLINE TABLE REPULSION */
567             vfitab           = _mm_add_epi32(vfitab,ifour);
568             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
569             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
570             GMX_MM_TRANSPOSE2_PD(Y,F);
571             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
572             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
573             GMX_MM_TRANSPOSE2_PD(G,H);
574             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
575             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
576             fvdw12           = _mm_mul_pd(c12_00,FF);
577             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
578
579             fscal            = _mm_add_pd(felec,fvdw);
580
581             /* Update vectorial force */
582             fix0             = _mm_macc_pd(dx00,fscal,fix0);
583             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
584             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
585             
586             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
587                                                    _mm_mul_pd(dx00,fscal),
588                                                    _mm_mul_pd(dy00,fscal),
589                                                    _mm_mul_pd(dz00,fscal));
590
591             /* Inner loop uses 57 flops */
592         }
593
594         if(jidx<j_index_end)
595         {
596
597             jnrA             = jjnr[jidx];
598             j_coord_offsetA  = DIM*jnrA;
599
600             /* load j atom coordinates */
601             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
602                                               &jx0,&jy0,&jz0);
603
604             /* Calculate displacement vector */
605             dx00             = _mm_sub_pd(ix0,jx0);
606             dy00             = _mm_sub_pd(iy0,jy0);
607             dz00             = _mm_sub_pd(iz0,jz0);
608
609             /* Calculate squared distance and things based on it */
610             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
611
612             rinv00           = gmx_mm_invsqrt_pd(rsq00);
613
614             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
615
616             /* Load parameters for j particles */
617             jq0              = _mm_load_sd(charge+jnrA+0);
618             vdwjidx0A        = 2*vdwtype[jnrA+0];
619
620             /**************************
621              * CALCULATE INTERACTIONS *
622              **************************/
623
624             r00              = _mm_mul_pd(rsq00,rinv00);
625
626             /* Compute parameters for interactions between i and j atoms */
627             qq00             = _mm_mul_pd(iq0,jq0);
628             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
629
630             /* Calculate table index by multiplying r with table scale and truncate to integer */
631             rt               = _mm_mul_pd(r00,vftabscale);
632             vfitab           = _mm_cvttpd_epi32(rt);
633 #ifdef __XOP__
634             vfeps            = _mm_frcz_pd(rt);
635 #else
636             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
637 #endif
638             twovfeps         = _mm_add_pd(vfeps,vfeps);
639             vfitab           = _mm_slli_epi32(vfitab,3);
640
641             /* REACTION-FIELD ELECTROSTATICS */
642             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
643
644             /* CUBIC SPLINE TABLE DISPERSION */
645             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
646             F                = _mm_setzero_pd();
647             GMX_MM_TRANSPOSE2_PD(Y,F);
648             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
649             H                = _mm_setzero_pd();
650             GMX_MM_TRANSPOSE2_PD(G,H);
651             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
652             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
653             fvdw6            = _mm_mul_pd(c6_00,FF);
654
655             /* CUBIC SPLINE TABLE REPULSION */
656             vfitab           = _mm_add_epi32(vfitab,ifour);
657             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
658             F                = _mm_setzero_pd();
659             GMX_MM_TRANSPOSE2_PD(Y,F);
660             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
661             H                = _mm_setzero_pd();
662             GMX_MM_TRANSPOSE2_PD(G,H);
663             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
664             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
665             fvdw12           = _mm_mul_pd(c12_00,FF);
666             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
667
668             fscal            = _mm_add_pd(felec,fvdw);
669
670             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
671
672             /* Update vectorial force */
673             fix0             = _mm_macc_pd(dx00,fscal,fix0);
674             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
675             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
676             
677             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
678                                                    _mm_mul_pd(dx00,fscal),
679                                                    _mm_mul_pd(dy00,fscal),
680                                                    _mm_mul_pd(dz00,fscal));
681
682             /* Inner loop uses 57 flops */
683         }
684
685         /* End of innermost loop */
686
687         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
688                                               f+i_coord_offset,fshift+i_shift_offset);
689
690         /* Increment number of inner iterations */
691         inneriter                  += j_index_end - j_index_start;
692
693         /* Outer loop uses 7 flops */
694     }
695
696     /* Increment number of outer iterations */
697     outeriter        += nri;
698
699     /* Update outer/inner flops */
700
701     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*57);
702 }