Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128i          vfitab;
80     __m128i          ifour       = _mm_set1_epi32(4);
81     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
82     real             *vftab;
83     __m128d          dummy_mask,cutoff_mask;
84     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
85     __m128d          one     = _mm_set1_pd(1.0);
86     __m128d          two     = _mm_set1_pd(2.0);
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = _mm_set1_pd(fr->epsfac);
99     charge           = mdatoms->chargeA;
100     krf              = _mm_set1_pd(fr->ic->k_rf);
101     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
102     crf              = _mm_set1_pd(fr->ic->c_rf);
103     nvdwtype         = fr->ntype;
104     vdwparam         = fr->nbfp;
105     vdwtype          = mdatoms->typeA;
106
107     vftab            = kernel_data->table_vdw->data;
108     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
109
110     /* Avoid stupid compiler warnings */
111     jnrA = jnrB = 0;
112     j_coord_offsetA = 0;
113     j_coord_offsetB = 0;
114
115     outeriter        = 0;
116     inneriter        = 0;
117
118     /* Start outer loop over neighborlists */
119     for(iidx=0; iidx<nri; iidx++)
120     {
121         /* Load shift vector for this list */
122         i_shift_offset   = DIM*shiftidx[iidx];
123
124         /* Load limits for loop over neighbors */
125         j_index_start    = jindex[iidx];
126         j_index_end      = jindex[iidx+1];
127
128         /* Get outer coordinate index */
129         inr              = iinr[iidx];
130         i_coord_offset   = DIM*inr;
131
132         /* Load i particle coords and add shift vector */
133         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
134
135         fix0             = _mm_setzero_pd();
136         fiy0             = _mm_setzero_pd();
137         fiz0             = _mm_setzero_pd();
138
139         /* Load parameters for i particles */
140         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
141         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
142
143         /* Reset potential sums */
144         velecsum         = _mm_setzero_pd();
145         vvdwsum          = _mm_setzero_pd();
146
147         /* Start inner kernel loop */
148         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
149         {
150
151             /* Get j neighbor index, and coordinate index */
152             jnrA             = jjnr[jidx];
153             jnrB             = jjnr[jidx+1];
154             j_coord_offsetA  = DIM*jnrA;
155             j_coord_offsetB  = DIM*jnrB;
156
157             /* load j atom coordinates */
158             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
159                                               &jx0,&jy0,&jz0);
160
161             /* Calculate displacement vector */
162             dx00             = _mm_sub_pd(ix0,jx0);
163             dy00             = _mm_sub_pd(iy0,jy0);
164             dz00             = _mm_sub_pd(iz0,jz0);
165
166             /* Calculate squared distance and things based on it */
167             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
168
169             rinv00           = gmx_mm_invsqrt_pd(rsq00);
170
171             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
172
173             /* Load parameters for j particles */
174             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
175             vdwjidx0A        = 2*vdwtype[jnrA+0];
176             vdwjidx0B        = 2*vdwtype[jnrB+0];
177
178             /**************************
179              * CALCULATE INTERACTIONS *
180              **************************/
181
182             r00              = _mm_mul_pd(rsq00,rinv00);
183
184             /* Compute parameters for interactions between i and j atoms */
185             qq00             = _mm_mul_pd(iq0,jq0);
186             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
187                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
188
189             /* Calculate table index by multiplying r with table scale and truncate to integer */
190             rt               = _mm_mul_pd(r00,vftabscale);
191             vfitab           = _mm_cvttpd_epi32(rt);
192 #ifdef __XOP__
193             vfeps            = _mm_frcz_pd(rt);
194 #else
195             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
196 #endif
197             twovfeps         = _mm_add_pd(vfeps,vfeps);
198             vfitab           = _mm_slli_epi32(vfitab,3);
199
200             /* REACTION-FIELD ELECTROSTATICS */
201             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
202             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
203
204             /* CUBIC SPLINE TABLE DISPERSION */
205             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
206             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
207             GMX_MM_TRANSPOSE2_PD(Y,F);
208             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
209             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
210             GMX_MM_TRANSPOSE2_PD(G,H);
211             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
212             VV               = _mm_macc_pd(vfeps,Fp,Y);
213             vvdw6            = _mm_mul_pd(c6_00,VV);
214             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
215             fvdw6            = _mm_mul_pd(c6_00,FF);
216
217             /* CUBIC SPLINE TABLE REPULSION */
218             vfitab           = _mm_add_epi32(vfitab,ifour);
219             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
220             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
221             GMX_MM_TRANSPOSE2_PD(Y,F);
222             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
223             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
224             GMX_MM_TRANSPOSE2_PD(G,H);
225             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
226             VV               = _mm_macc_pd(vfeps,Fp,Y);
227             vvdw12           = _mm_mul_pd(c12_00,VV);
228             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
229             fvdw12           = _mm_mul_pd(c12_00,FF);
230             vvdw             = _mm_add_pd(vvdw12,vvdw6);
231             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
232
233             /* Update potential sum for this i atom from the interaction with this j atom. */
234             velecsum         = _mm_add_pd(velecsum,velec);
235             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
236
237             fscal            = _mm_add_pd(felec,fvdw);
238
239             /* Update vectorial force */
240             fix0             = _mm_macc_pd(dx00,fscal,fix0);
241             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
242             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
243             
244             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
245                                                    _mm_mul_pd(dx00,fscal),
246                                                    _mm_mul_pd(dy00,fscal),
247                                                    _mm_mul_pd(dz00,fscal));
248
249             /* Inner loop uses 70 flops */
250         }
251
252         if(jidx<j_index_end)
253         {
254
255             jnrA             = jjnr[jidx];
256             j_coord_offsetA  = DIM*jnrA;
257
258             /* load j atom coordinates */
259             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
260                                               &jx0,&jy0,&jz0);
261
262             /* Calculate displacement vector */
263             dx00             = _mm_sub_pd(ix0,jx0);
264             dy00             = _mm_sub_pd(iy0,jy0);
265             dz00             = _mm_sub_pd(iz0,jz0);
266
267             /* Calculate squared distance and things based on it */
268             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
269
270             rinv00           = gmx_mm_invsqrt_pd(rsq00);
271
272             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
273
274             /* Load parameters for j particles */
275             jq0              = _mm_load_sd(charge+jnrA+0);
276             vdwjidx0A        = 2*vdwtype[jnrA+0];
277
278             /**************************
279              * CALCULATE INTERACTIONS *
280              **************************/
281
282             r00              = _mm_mul_pd(rsq00,rinv00);
283
284             /* Compute parameters for interactions between i and j atoms */
285             qq00             = _mm_mul_pd(iq0,jq0);
286             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
287
288             /* Calculate table index by multiplying r with table scale and truncate to integer */
289             rt               = _mm_mul_pd(r00,vftabscale);
290             vfitab           = _mm_cvttpd_epi32(rt);
291 #ifdef __XOP__
292             vfeps            = _mm_frcz_pd(rt);
293 #else
294             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
295 #endif
296             twovfeps         = _mm_add_pd(vfeps,vfeps);
297             vfitab           = _mm_slli_epi32(vfitab,3);
298
299             /* REACTION-FIELD ELECTROSTATICS */
300             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
301             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
302
303             /* CUBIC SPLINE TABLE DISPERSION */
304             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
305             F                = _mm_setzero_pd();
306             GMX_MM_TRANSPOSE2_PD(Y,F);
307             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
308             H                = _mm_setzero_pd();
309             GMX_MM_TRANSPOSE2_PD(G,H);
310             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
311             VV               = _mm_macc_pd(vfeps,Fp,Y);
312             vvdw6            = _mm_mul_pd(c6_00,VV);
313             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
314             fvdw6            = _mm_mul_pd(c6_00,FF);
315
316             /* CUBIC SPLINE TABLE REPULSION */
317             vfitab           = _mm_add_epi32(vfitab,ifour);
318             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
319             F                = _mm_setzero_pd();
320             GMX_MM_TRANSPOSE2_PD(Y,F);
321             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
322             H                = _mm_setzero_pd();
323             GMX_MM_TRANSPOSE2_PD(G,H);
324             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
325             VV               = _mm_macc_pd(vfeps,Fp,Y);
326             vvdw12           = _mm_mul_pd(c12_00,VV);
327             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
328             fvdw12           = _mm_mul_pd(c12_00,FF);
329             vvdw             = _mm_add_pd(vvdw12,vvdw6);
330             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
331
332             /* Update potential sum for this i atom from the interaction with this j atom. */
333             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
334             velecsum         = _mm_add_pd(velecsum,velec);
335             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
336             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
337
338             fscal            = _mm_add_pd(felec,fvdw);
339
340             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
341
342             /* Update vectorial force */
343             fix0             = _mm_macc_pd(dx00,fscal,fix0);
344             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
345             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
346             
347             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
348                                                    _mm_mul_pd(dx00,fscal),
349                                                    _mm_mul_pd(dy00,fscal),
350                                                    _mm_mul_pd(dz00,fscal));
351
352             /* Inner loop uses 70 flops */
353         }
354
355         /* End of innermost loop */
356
357         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
358                                               f+i_coord_offset,fshift+i_shift_offset);
359
360         ggid                        = gid[iidx];
361         /* Update potential energies */
362         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
363         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
364
365         /* Increment number of inner iterations */
366         inneriter                  += j_index_end - j_index_start;
367
368         /* Outer loop uses 9 flops */
369     }
370
371     /* Increment number of outer iterations */
372     outeriter        += nri;
373
374     /* Update outer/inner flops */
375
376     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*70);
377 }
378 /*
379  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_128_fma_double
380  * Electrostatics interaction: ReactionField
381  * VdW interaction:            CubicSplineTable
382  * Geometry:                   Particle-Particle
383  * Calculate force/pot:        Force
384  */
385 void
386 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_128_fma_double
387                     (t_nblist * gmx_restrict                nlist,
388                      rvec * gmx_restrict                    xx,
389                      rvec * gmx_restrict                    ff,
390                      t_forcerec * gmx_restrict              fr,
391                      t_mdatoms * gmx_restrict               mdatoms,
392                      nb_kernel_data_t * gmx_restrict        kernel_data,
393                      t_nrnb * gmx_restrict                  nrnb)
394 {
395     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
396      * just 0 for non-waters.
397      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
398      * jnr indices corresponding to data put in the four positions in the SIMD register.
399      */
400     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
401     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
402     int              jnrA,jnrB;
403     int              j_coord_offsetA,j_coord_offsetB;
404     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
405     real             rcutoff_scalar;
406     real             *shiftvec,*fshift,*x,*f;
407     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
408     int              vdwioffset0;
409     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
410     int              vdwjidx0A,vdwjidx0B;
411     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
412     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
413     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
414     real             *charge;
415     int              nvdwtype;
416     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
417     int              *vdwtype;
418     real             *vdwparam;
419     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
420     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
421     __m128i          vfitab;
422     __m128i          ifour       = _mm_set1_epi32(4);
423     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
424     real             *vftab;
425     __m128d          dummy_mask,cutoff_mask;
426     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
427     __m128d          one     = _mm_set1_pd(1.0);
428     __m128d          two     = _mm_set1_pd(2.0);
429     x                = xx[0];
430     f                = ff[0];
431
432     nri              = nlist->nri;
433     iinr             = nlist->iinr;
434     jindex           = nlist->jindex;
435     jjnr             = nlist->jjnr;
436     shiftidx         = nlist->shift;
437     gid              = nlist->gid;
438     shiftvec         = fr->shift_vec[0];
439     fshift           = fr->fshift[0];
440     facel            = _mm_set1_pd(fr->epsfac);
441     charge           = mdatoms->chargeA;
442     krf              = _mm_set1_pd(fr->ic->k_rf);
443     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
444     crf              = _mm_set1_pd(fr->ic->c_rf);
445     nvdwtype         = fr->ntype;
446     vdwparam         = fr->nbfp;
447     vdwtype          = mdatoms->typeA;
448
449     vftab            = kernel_data->table_vdw->data;
450     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
451
452     /* Avoid stupid compiler warnings */
453     jnrA = jnrB = 0;
454     j_coord_offsetA = 0;
455     j_coord_offsetB = 0;
456
457     outeriter        = 0;
458     inneriter        = 0;
459
460     /* Start outer loop over neighborlists */
461     for(iidx=0; iidx<nri; iidx++)
462     {
463         /* Load shift vector for this list */
464         i_shift_offset   = DIM*shiftidx[iidx];
465
466         /* Load limits for loop over neighbors */
467         j_index_start    = jindex[iidx];
468         j_index_end      = jindex[iidx+1];
469
470         /* Get outer coordinate index */
471         inr              = iinr[iidx];
472         i_coord_offset   = DIM*inr;
473
474         /* Load i particle coords and add shift vector */
475         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
476
477         fix0             = _mm_setzero_pd();
478         fiy0             = _mm_setzero_pd();
479         fiz0             = _mm_setzero_pd();
480
481         /* Load parameters for i particles */
482         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
483         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
484
485         /* Start inner kernel loop */
486         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
487         {
488
489             /* Get j neighbor index, and coordinate index */
490             jnrA             = jjnr[jidx];
491             jnrB             = jjnr[jidx+1];
492             j_coord_offsetA  = DIM*jnrA;
493             j_coord_offsetB  = DIM*jnrB;
494
495             /* load j atom coordinates */
496             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
497                                               &jx0,&jy0,&jz0);
498
499             /* Calculate displacement vector */
500             dx00             = _mm_sub_pd(ix0,jx0);
501             dy00             = _mm_sub_pd(iy0,jy0);
502             dz00             = _mm_sub_pd(iz0,jz0);
503
504             /* Calculate squared distance and things based on it */
505             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
506
507             rinv00           = gmx_mm_invsqrt_pd(rsq00);
508
509             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
510
511             /* Load parameters for j particles */
512             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
513             vdwjidx0A        = 2*vdwtype[jnrA+0];
514             vdwjidx0B        = 2*vdwtype[jnrB+0];
515
516             /**************************
517              * CALCULATE INTERACTIONS *
518              **************************/
519
520             r00              = _mm_mul_pd(rsq00,rinv00);
521
522             /* Compute parameters for interactions between i and j atoms */
523             qq00             = _mm_mul_pd(iq0,jq0);
524             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
525                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
526
527             /* Calculate table index by multiplying r with table scale and truncate to integer */
528             rt               = _mm_mul_pd(r00,vftabscale);
529             vfitab           = _mm_cvttpd_epi32(rt);
530 #ifdef __XOP__
531             vfeps            = _mm_frcz_pd(rt);
532 #else
533             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
534 #endif
535             twovfeps         = _mm_add_pd(vfeps,vfeps);
536             vfitab           = _mm_slli_epi32(vfitab,3);
537
538             /* REACTION-FIELD ELECTROSTATICS */
539             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
540
541             /* CUBIC SPLINE TABLE DISPERSION */
542             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
543             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
544             GMX_MM_TRANSPOSE2_PD(Y,F);
545             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
546             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
547             GMX_MM_TRANSPOSE2_PD(G,H);
548             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
549             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
550             fvdw6            = _mm_mul_pd(c6_00,FF);
551
552             /* CUBIC SPLINE TABLE REPULSION */
553             vfitab           = _mm_add_epi32(vfitab,ifour);
554             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
555             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
556             GMX_MM_TRANSPOSE2_PD(Y,F);
557             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
558             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
559             GMX_MM_TRANSPOSE2_PD(G,H);
560             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
561             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
562             fvdw12           = _mm_mul_pd(c12_00,FF);
563             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
564
565             fscal            = _mm_add_pd(felec,fvdw);
566
567             /* Update vectorial force */
568             fix0             = _mm_macc_pd(dx00,fscal,fix0);
569             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
570             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
571             
572             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
573                                                    _mm_mul_pd(dx00,fscal),
574                                                    _mm_mul_pd(dy00,fscal),
575                                                    _mm_mul_pd(dz00,fscal));
576
577             /* Inner loop uses 57 flops */
578         }
579
580         if(jidx<j_index_end)
581         {
582
583             jnrA             = jjnr[jidx];
584             j_coord_offsetA  = DIM*jnrA;
585
586             /* load j atom coordinates */
587             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
588                                               &jx0,&jy0,&jz0);
589
590             /* Calculate displacement vector */
591             dx00             = _mm_sub_pd(ix0,jx0);
592             dy00             = _mm_sub_pd(iy0,jy0);
593             dz00             = _mm_sub_pd(iz0,jz0);
594
595             /* Calculate squared distance and things based on it */
596             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
597
598             rinv00           = gmx_mm_invsqrt_pd(rsq00);
599
600             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
601
602             /* Load parameters for j particles */
603             jq0              = _mm_load_sd(charge+jnrA+0);
604             vdwjidx0A        = 2*vdwtype[jnrA+0];
605
606             /**************************
607              * CALCULATE INTERACTIONS *
608              **************************/
609
610             r00              = _mm_mul_pd(rsq00,rinv00);
611
612             /* Compute parameters for interactions between i and j atoms */
613             qq00             = _mm_mul_pd(iq0,jq0);
614             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
615
616             /* Calculate table index by multiplying r with table scale and truncate to integer */
617             rt               = _mm_mul_pd(r00,vftabscale);
618             vfitab           = _mm_cvttpd_epi32(rt);
619 #ifdef __XOP__
620             vfeps            = _mm_frcz_pd(rt);
621 #else
622             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
623 #endif
624             twovfeps         = _mm_add_pd(vfeps,vfeps);
625             vfitab           = _mm_slli_epi32(vfitab,3);
626
627             /* REACTION-FIELD ELECTROSTATICS */
628             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
629
630             /* CUBIC SPLINE TABLE DISPERSION */
631             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
632             F                = _mm_setzero_pd();
633             GMX_MM_TRANSPOSE2_PD(Y,F);
634             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
635             H                = _mm_setzero_pd();
636             GMX_MM_TRANSPOSE2_PD(G,H);
637             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
638             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
639             fvdw6            = _mm_mul_pd(c6_00,FF);
640
641             /* CUBIC SPLINE TABLE REPULSION */
642             vfitab           = _mm_add_epi32(vfitab,ifour);
643             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
644             F                = _mm_setzero_pd();
645             GMX_MM_TRANSPOSE2_PD(Y,F);
646             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
647             H                = _mm_setzero_pd();
648             GMX_MM_TRANSPOSE2_PD(G,H);
649             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
650             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
651             fvdw12           = _mm_mul_pd(c12_00,FF);
652             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
653
654             fscal            = _mm_add_pd(felec,fvdw);
655
656             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
657
658             /* Update vectorial force */
659             fix0             = _mm_macc_pd(dx00,fscal,fix0);
660             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
661             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
662             
663             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
664                                                    _mm_mul_pd(dx00,fscal),
665                                                    _mm_mul_pd(dy00,fscal),
666                                                    _mm_mul_pd(dz00,fscal));
667
668             /* Inner loop uses 57 flops */
669         }
670
671         /* End of innermost loop */
672
673         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
674                                               f+i_coord_offset,fshift+i_shift_offset);
675
676         /* Increment number of inner iterations */
677         inneriter                  += j_index_end - j_index_start;
678
679         /* Outer loop uses 7 flops */
680     }
681
682     /* Increment number of outer iterations */
683     outeriter        += nri;
684
685     /* Update outer/inner flops */
686
687     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*57);
688 }