Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128d          dummy_mask,cutoff_mask;
96     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97     __m128d          one     = _mm_set1_pd(1.0);
98     __m128d          two     = _mm_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_pd(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     krf              = _mm_set1_pd(fr->ic->k_rf);
113     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
114     crf              = _mm_set1_pd(fr->ic->c_rf);
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
120     rcutoff_scalar   = fr->rcoulomb;
121     rcutoff          = _mm_set1_pd(rcutoff_scalar);
122     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
123
124     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
125     rvdw             = _mm_set1_pd(fr->rvdw);
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
151
152         fix0             = _mm_setzero_pd();
153         fiy0             = _mm_setzero_pd();
154         fiz0             = _mm_setzero_pd();
155
156         /* Load parameters for i particles */
157         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
158         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
159
160         /* Reset potential sums */
161         velecsum         = _mm_setzero_pd();
162         vvdwsum          = _mm_setzero_pd();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             j_coord_offsetA  = DIM*jnrA;
172             j_coord_offsetB  = DIM*jnrB;
173
174             /* load j atom coordinates */
175             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
176                                               &jx0,&jy0,&jz0);
177
178             /* Calculate displacement vector */
179             dx00             = _mm_sub_pd(ix0,jx0);
180             dy00             = _mm_sub_pd(iy0,jy0);
181             dz00             = _mm_sub_pd(iz0,jz0);
182
183             /* Calculate squared distance and things based on it */
184             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
185
186             rinv00           = gmx_mm_invsqrt_pd(rsq00);
187
188             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
189
190             /* Load parameters for j particles */
191             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
192             vdwjidx0A        = 2*vdwtype[jnrA+0];
193             vdwjidx0B        = 2*vdwtype[jnrB+0];
194
195             /**************************
196              * CALCULATE INTERACTIONS *
197              **************************/
198
199             if (gmx_mm_any_lt(rsq00,rcutoff2))
200             {
201
202             /* Compute parameters for interactions between i and j atoms */
203             qq00             = _mm_mul_pd(iq0,jq0);
204             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
205                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
206
207             /* REACTION-FIELD ELECTROSTATICS */
208             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
209             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
210
211             /* LENNARD-JONES DISPERSION/REPULSION */
212
213             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
214             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
215             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
216             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
217                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
218             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
219
220             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
221
222             /* Update potential sum for this i atom from the interaction with this j atom. */
223             velec            = _mm_and_pd(velec,cutoff_mask);
224             velecsum         = _mm_add_pd(velecsum,velec);
225             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
226             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
227
228             fscal            = _mm_add_pd(felec,fvdw);
229
230             fscal            = _mm_and_pd(fscal,cutoff_mask);
231
232             /* Update vectorial force */
233             fix0             = _mm_macc_pd(dx00,fscal,fix0);
234             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
235             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
236             
237             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
238                                                    _mm_mul_pd(dx00,fscal),
239                                                    _mm_mul_pd(dy00,fscal),
240                                                    _mm_mul_pd(dz00,fscal));
241
242             }
243
244             /* Inner loop uses 57 flops */
245         }
246
247         if(jidx<j_index_end)
248         {
249
250             jnrA             = jjnr[jidx];
251             j_coord_offsetA  = DIM*jnrA;
252
253             /* load j atom coordinates */
254             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
255                                               &jx0,&jy0,&jz0);
256
257             /* Calculate displacement vector */
258             dx00             = _mm_sub_pd(ix0,jx0);
259             dy00             = _mm_sub_pd(iy0,jy0);
260             dz00             = _mm_sub_pd(iz0,jz0);
261
262             /* Calculate squared distance and things based on it */
263             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
264
265             rinv00           = gmx_mm_invsqrt_pd(rsq00);
266
267             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
268
269             /* Load parameters for j particles */
270             jq0              = _mm_load_sd(charge+jnrA+0);
271             vdwjidx0A        = 2*vdwtype[jnrA+0];
272
273             /**************************
274              * CALCULATE INTERACTIONS *
275              **************************/
276
277             if (gmx_mm_any_lt(rsq00,rcutoff2))
278             {
279
280             /* Compute parameters for interactions between i and j atoms */
281             qq00             = _mm_mul_pd(iq0,jq0);
282             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
283
284             /* REACTION-FIELD ELECTROSTATICS */
285             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
286             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
287
288             /* LENNARD-JONES DISPERSION/REPULSION */
289
290             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
291             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
292             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
293             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
294                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
295             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
296
297             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velec            = _mm_and_pd(velec,cutoff_mask);
301             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
302             velecsum         = _mm_add_pd(velecsum,velec);
303             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
304             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
305             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
306
307             fscal            = _mm_add_pd(felec,fvdw);
308
309             fscal            = _mm_and_pd(fscal,cutoff_mask);
310
311             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
312
313             /* Update vectorial force */
314             fix0             = _mm_macc_pd(dx00,fscal,fix0);
315             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
316             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
317             
318             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
319                                                    _mm_mul_pd(dx00,fscal),
320                                                    _mm_mul_pd(dy00,fscal),
321                                                    _mm_mul_pd(dz00,fscal));
322
323             }
324
325             /* Inner loop uses 57 flops */
326         }
327
328         /* End of innermost loop */
329
330         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
331                                               f+i_coord_offset,fshift+i_shift_offset);
332
333         ggid                        = gid[iidx];
334         /* Update potential energies */
335         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
336         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
337
338         /* Increment number of inner iterations */
339         inneriter                  += j_index_end - j_index_start;
340
341         /* Outer loop uses 9 flops */
342     }
343
344     /* Increment number of outer iterations */
345     outeriter        += nri;
346
347     /* Update outer/inner flops */
348
349     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*57);
350 }
351 /*
352  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_128_fma_double
353  * Electrostatics interaction: ReactionField
354  * VdW interaction:            LennardJones
355  * Geometry:                   Particle-Particle
356  * Calculate force/pot:        Force
357  */
358 void
359 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_128_fma_double
360                     (t_nblist                    * gmx_restrict       nlist,
361                      rvec                        * gmx_restrict          xx,
362                      rvec                        * gmx_restrict          ff,
363                      t_forcerec                  * gmx_restrict          fr,
364                      t_mdatoms                   * gmx_restrict     mdatoms,
365                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
366                      t_nrnb                      * gmx_restrict        nrnb)
367 {
368     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
369      * just 0 for non-waters.
370      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
371      * jnr indices corresponding to data put in the four positions in the SIMD register.
372      */
373     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
374     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
375     int              jnrA,jnrB;
376     int              j_coord_offsetA,j_coord_offsetB;
377     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
378     real             rcutoff_scalar;
379     real             *shiftvec,*fshift,*x,*f;
380     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
381     int              vdwioffset0;
382     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
383     int              vdwjidx0A,vdwjidx0B;
384     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
385     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
386     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
387     real             *charge;
388     int              nvdwtype;
389     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
390     int              *vdwtype;
391     real             *vdwparam;
392     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
393     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
394     __m128d          dummy_mask,cutoff_mask;
395     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
396     __m128d          one     = _mm_set1_pd(1.0);
397     __m128d          two     = _mm_set1_pd(2.0);
398     x                = xx[0];
399     f                = ff[0];
400
401     nri              = nlist->nri;
402     iinr             = nlist->iinr;
403     jindex           = nlist->jindex;
404     jjnr             = nlist->jjnr;
405     shiftidx         = nlist->shift;
406     gid              = nlist->gid;
407     shiftvec         = fr->shift_vec[0];
408     fshift           = fr->fshift[0];
409     facel            = _mm_set1_pd(fr->epsfac);
410     charge           = mdatoms->chargeA;
411     krf              = _mm_set1_pd(fr->ic->k_rf);
412     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
413     crf              = _mm_set1_pd(fr->ic->c_rf);
414     nvdwtype         = fr->ntype;
415     vdwparam         = fr->nbfp;
416     vdwtype          = mdatoms->typeA;
417
418     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
419     rcutoff_scalar   = fr->rcoulomb;
420     rcutoff          = _mm_set1_pd(rcutoff_scalar);
421     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
422
423     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
424     rvdw             = _mm_set1_pd(fr->rvdw);
425
426     /* Avoid stupid compiler warnings */
427     jnrA = jnrB = 0;
428     j_coord_offsetA = 0;
429     j_coord_offsetB = 0;
430
431     outeriter        = 0;
432     inneriter        = 0;
433
434     /* Start outer loop over neighborlists */
435     for(iidx=0; iidx<nri; iidx++)
436     {
437         /* Load shift vector for this list */
438         i_shift_offset   = DIM*shiftidx[iidx];
439
440         /* Load limits for loop over neighbors */
441         j_index_start    = jindex[iidx];
442         j_index_end      = jindex[iidx+1];
443
444         /* Get outer coordinate index */
445         inr              = iinr[iidx];
446         i_coord_offset   = DIM*inr;
447
448         /* Load i particle coords and add shift vector */
449         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
450
451         fix0             = _mm_setzero_pd();
452         fiy0             = _mm_setzero_pd();
453         fiz0             = _mm_setzero_pd();
454
455         /* Load parameters for i particles */
456         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
457         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
458
459         /* Start inner kernel loop */
460         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
461         {
462
463             /* Get j neighbor index, and coordinate index */
464             jnrA             = jjnr[jidx];
465             jnrB             = jjnr[jidx+1];
466             j_coord_offsetA  = DIM*jnrA;
467             j_coord_offsetB  = DIM*jnrB;
468
469             /* load j atom coordinates */
470             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
471                                               &jx0,&jy0,&jz0);
472
473             /* Calculate displacement vector */
474             dx00             = _mm_sub_pd(ix0,jx0);
475             dy00             = _mm_sub_pd(iy0,jy0);
476             dz00             = _mm_sub_pd(iz0,jz0);
477
478             /* Calculate squared distance and things based on it */
479             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
480
481             rinv00           = gmx_mm_invsqrt_pd(rsq00);
482
483             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
484
485             /* Load parameters for j particles */
486             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
487             vdwjidx0A        = 2*vdwtype[jnrA+0];
488             vdwjidx0B        = 2*vdwtype[jnrB+0];
489
490             /**************************
491              * CALCULATE INTERACTIONS *
492              **************************/
493
494             if (gmx_mm_any_lt(rsq00,rcutoff2))
495             {
496
497             /* Compute parameters for interactions between i and j atoms */
498             qq00             = _mm_mul_pd(iq0,jq0);
499             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
500                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
501
502             /* REACTION-FIELD ELECTROSTATICS */
503             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
504
505             /* LENNARD-JONES DISPERSION/REPULSION */
506
507             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
508             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
509
510             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
511
512             fscal            = _mm_add_pd(felec,fvdw);
513
514             fscal            = _mm_and_pd(fscal,cutoff_mask);
515
516             /* Update vectorial force */
517             fix0             = _mm_macc_pd(dx00,fscal,fix0);
518             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
519             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
520             
521             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
522                                                    _mm_mul_pd(dx00,fscal),
523                                                    _mm_mul_pd(dy00,fscal),
524                                                    _mm_mul_pd(dz00,fscal));
525
526             }
527
528             /* Inner loop uses 40 flops */
529         }
530
531         if(jidx<j_index_end)
532         {
533
534             jnrA             = jjnr[jidx];
535             j_coord_offsetA  = DIM*jnrA;
536
537             /* load j atom coordinates */
538             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
539                                               &jx0,&jy0,&jz0);
540
541             /* Calculate displacement vector */
542             dx00             = _mm_sub_pd(ix0,jx0);
543             dy00             = _mm_sub_pd(iy0,jy0);
544             dz00             = _mm_sub_pd(iz0,jz0);
545
546             /* Calculate squared distance and things based on it */
547             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
548
549             rinv00           = gmx_mm_invsqrt_pd(rsq00);
550
551             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
552
553             /* Load parameters for j particles */
554             jq0              = _mm_load_sd(charge+jnrA+0);
555             vdwjidx0A        = 2*vdwtype[jnrA+0];
556
557             /**************************
558              * CALCULATE INTERACTIONS *
559              **************************/
560
561             if (gmx_mm_any_lt(rsq00,rcutoff2))
562             {
563
564             /* Compute parameters for interactions between i and j atoms */
565             qq00             = _mm_mul_pd(iq0,jq0);
566             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
567
568             /* REACTION-FIELD ELECTROSTATICS */
569             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
570
571             /* LENNARD-JONES DISPERSION/REPULSION */
572
573             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
574             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
575
576             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
577
578             fscal            = _mm_add_pd(felec,fvdw);
579
580             fscal            = _mm_and_pd(fscal,cutoff_mask);
581
582             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
583
584             /* Update vectorial force */
585             fix0             = _mm_macc_pd(dx00,fscal,fix0);
586             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
587             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
588             
589             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
590                                                    _mm_mul_pd(dx00,fscal),
591                                                    _mm_mul_pd(dy00,fscal),
592                                                    _mm_mul_pd(dz00,fscal));
593
594             }
595
596             /* Inner loop uses 40 flops */
597         }
598
599         /* End of innermost loop */
600
601         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
602                                               f+i_coord_offset,fshift+i_shift_offset);
603
604         /* Increment number of inner iterations */
605         inneriter                  += j_index_end - j_index_start;
606
607         /* Outer loop uses 7 flops */
608     }
609
610     /* Increment number of outer iterations */
611     outeriter        += nri;
612
613     /* Update outer/inner flops */
614
615     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*40);
616 }