a0337b54aa0c70a5c1b627e02518fefc5994dfce
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_128_fma_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128d          dummy_mask,cutoff_mask;
94     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
95     __m128d          one     = _mm_set1_pd(1.0);
96     __m128d          two     = _mm_set1_pd(2.0);
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = _mm_set1_pd(fr->epsfac);
109     charge           = mdatoms->chargeA;
110     krf              = _mm_set1_pd(fr->ic->k_rf);
111     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
112     crf              = _mm_set1_pd(fr->ic->c_rf);
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
118     rcutoff_scalar   = fr->rcoulomb;
119     rcutoff          = _mm_set1_pd(rcutoff_scalar);
120     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
121
122     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
123     rvdw             = _mm_set1_pd(fr->rvdw);
124
125     /* Avoid stupid compiler warnings */
126     jnrA = jnrB = 0;
127     j_coord_offsetA = 0;
128     j_coord_offsetB = 0;
129
130     outeriter        = 0;
131     inneriter        = 0;
132
133     /* Start outer loop over neighborlists */
134     for(iidx=0; iidx<nri; iidx++)
135     {
136         /* Load shift vector for this list */
137         i_shift_offset   = DIM*shiftidx[iidx];
138
139         /* Load limits for loop over neighbors */
140         j_index_start    = jindex[iidx];
141         j_index_end      = jindex[iidx+1];
142
143         /* Get outer coordinate index */
144         inr              = iinr[iidx];
145         i_coord_offset   = DIM*inr;
146
147         /* Load i particle coords and add shift vector */
148         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
149
150         fix0             = _mm_setzero_pd();
151         fiy0             = _mm_setzero_pd();
152         fiz0             = _mm_setzero_pd();
153
154         /* Load parameters for i particles */
155         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
156         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
157
158         /* Reset potential sums */
159         velecsum         = _mm_setzero_pd();
160         vvdwsum          = _mm_setzero_pd();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             j_coord_offsetA  = DIM*jnrA;
170             j_coord_offsetB  = DIM*jnrB;
171
172             /* load j atom coordinates */
173             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
174                                               &jx0,&jy0,&jz0);
175
176             /* Calculate displacement vector */
177             dx00             = _mm_sub_pd(ix0,jx0);
178             dy00             = _mm_sub_pd(iy0,jy0);
179             dz00             = _mm_sub_pd(iz0,jz0);
180
181             /* Calculate squared distance and things based on it */
182             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
183
184             rinv00           = gmx_mm_invsqrt_pd(rsq00);
185
186             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
187
188             /* Load parameters for j particles */
189             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
190             vdwjidx0A        = 2*vdwtype[jnrA+0];
191             vdwjidx0B        = 2*vdwtype[jnrB+0];
192
193             /**************************
194              * CALCULATE INTERACTIONS *
195              **************************/
196
197             if (gmx_mm_any_lt(rsq00,rcutoff2))
198             {
199
200             /* Compute parameters for interactions between i and j atoms */
201             qq00             = _mm_mul_pd(iq0,jq0);
202             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
203                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
204
205             /* REACTION-FIELD ELECTROSTATICS */
206             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
207             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
208
209             /* LENNARD-JONES DISPERSION/REPULSION */
210
211             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
212             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
213             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
214             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
215                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
216             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
217
218             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
219
220             /* Update potential sum for this i atom from the interaction with this j atom. */
221             velec            = _mm_and_pd(velec,cutoff_mask);
222             velecsum         = _mm_add_pd(velecsum,velec);
223             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
224             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
225
226             fscal            = _mm_add_pd(felec,fvdw);
227
228             fscal            = _mm_and_pd(fscal,cutoff_mask);
229
230             /* Update vectorial force */
231             fix0             = _mm_macc_pd(dx00,fscal,fix0);
232             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
233             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
234             
235             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
236                                                    _mm_mul_pd(dx00,fscal),
237                                                    _mm_mul_pd(dy00,fscal),
238                                                    _mm_mul_pd(dz00,fscal));
239
240             }
241
242             /* Inner loop uses 57 flops */
243         }
244
245         if(jidx<j_index_end)
246         {
247
248             jnrA             = jjnr[jidx];
249             j_coord_offsetA  = DIM*jnrA;
250
251             /* load j atom coordinates */
252             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
253                                               &jx0,&jy0,&jz0);
254
255             /* Calculate displacement vector */
256             dx00             = _mm_sub_pd(ix0,jx0);
257             dy00             = _mm_sub_pd(iy0,jy0);
258             dz00             = _mm_sub_pd(iz0,jz0);
259
260             /* Calculate squared distance and things based on it */
261             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
262
263             rinv00           = gmx_mm_invsqrt_pd(rsq00);
264
265             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
266
267             /* Load parameters for j particles */
268             jq0              = _mm_load_sd(charge+jnrA+0);
269             vdwjidx0A        = 2*vdwtype[jnrA+0];
270
271             /**************************
272              * CALCULATE INTERACTIONS *
273              **************************/
274
275             if (gmx_mm_any_lt(rsq00,rcutoff2))
276             {
277
278             /* Compute parameters for interactions between i and j atoms */
279             qq00             = _mm_mul_pd(iq0,jq0);
280             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
281
282             /* REACTION-FIELD ELECTROSTATICS */
283             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
284             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
285
286             /* LENNARD-JONES DISPERSION/REPULSION */
287
288             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
289             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
290             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
291             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
292                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
293             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
294
295             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velec            = _mm_and_pd(velec,cutoff_mask);
299             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
300             velecsum         = _mm_add_pd(velecsum,velec);
301             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
302             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
303             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
304
305             fscal            = _mm_add_pd(felec,fvdw);
306
307             fscal            = _mm_and_pd(fscal,cutoff_mask);
308
309             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
310
311             /* Update vectorial force */
312             fix0             = _mm_macc_pd(dx00,fscal,fix0);
313             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
314             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
315             
316             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
317                                                    _mm_mul_pd(dx00,fscal),
318                                                    _mm_mul_pd(dy00,fscal),
319                                                    _mm_mul_pd(dz00,fscal));
320
321             }
322
323             /* Inner loop uses 57 flops */
324         }
325
326         /* End of innermost loop */
327
328         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
329                                               f+i_coord_offset,fshift+i_shift_offset);
330
331         ggid                        = gid[iidx];
332         /* Update potential energies */
333         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
334         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
335
336         /* Increment number of inner iterations */
337         inneriter                  += j_index_end - j_index_start;
338
339         /* Outer loop uses 9 flops */
340     }
341
342     /* Increment number of outer iterations */
343     outeriter        += nri;
344
345     /* Update outer/inner flops */
346
347     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*57);
348 }
349 /*
350  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_128_fma_double
351  * Electrostatics interaction: ReactionField
352  * VdW interaction:            LennardJones
353  * Geometry:                   Particle-Particle
354  * Calculate force/pot:        Force
355  */
356 void
357 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_128_fma_double
358                     (t_nblist                    * gmx_restrict       nlist,
359                      rvec                        * gmx_restrict          xx,
360                      rvec                        * gmx_restrict          ff,
361                      t_forcerec                  * gmx_restrict          fr,
362                      t_mdatoms                   * gmx_restrict     mdatoms,
363                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
364                      t_nrnb                      * gmx_restrict        nrnb)
365 {
366     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
367      * just 0 for non-waters.
368      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
369      * jnr indices corresponding to data put in the four positions in the SIMD register.
370      */
371     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
372     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
373     int              jnrA,jnrB;
374     int              j_coord_offsetA,j_coord_offsetB;
375     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
376     real             rcutoff_scalar;
377     real             *shiftvec,*fshift,*x,*f;
378     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
379     int              vdwioffset0;
380     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
381     int              vdwjidx0A,vdwjidx0B;
382     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
383     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
384     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
385     real             *charge;
386     int              nvdwtype;
387     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
388     int              *vdwtype;
389     real             *vdwparam;
390     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
391     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
392     __m128d          dummy_mask,cutoff_mask;
393     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
394     __m128d          one     = _mm_set1_pd(1.0);
395     __m128d          two     = _mm_set1_pd(2.0);
396     x                = xx[0];
397     f                = ff[0];
398
399     nri              = nlist->nri;
400     iinr             = nlist->iinr;
401     jindex           = nlist->jindex;
402     jjnr             = nlist->jjnr;
403     shiftidx         = nlist->shift;
404     gid              = nlist->gid;
405     shiftvec         = fr->shift_vec[0];
406     fshift           = fr->fshift[0];
407     facel            = _mm_set1_pd(fr->epsfac);
408     charge           = mdatoms->chargeA;
409     krf              = _mm_set1_pd(fr->ic->k_rf);
410     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
411     crf              = _mm_set1_pd(fr->ic->c_rf);
412     nvdwtype         = fr->ntype;
413     vdwparam         = fr->nbfp;
414     vdwtype          = mdatoms->typeA;
415
416     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
417     rcutoff_scalar   = fr->rcoulomb;
418     rcutoff          = _mm_set1_pd(rcutoff_scalar);
419     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
420
421     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
422     rvdw             = _mm_set1_pd(fr->rvdw);
423
424     /* Avoid stupid compiler warnings */
425     jnrA = jnrB = 0;
426     j_coord_offsetA = 0;
427     j_coord_offsetB = 0;
428
429     outeriter        = 0;
430     inneriter        = 0;
431
432     /* Start outer loop over neighborlists */
433     for(iidx=0; iidx<nri; iidx++)
434     {
435         /* Load shift vector for this list */
436         i_shift_offset   = DIM*shiftidx[iidx];
437
438         /* Load limits for loop over neighbors */
439         j_index_start    = jindex[iidx];
440         j_index_end      = jindex[iidx+1];
441
442         /* Get outer coordinate index */
443         inr              = iinr[iidx];
444         i_coord_offset   = DIM*inr;
445
446         /* Load i particle coords and add shift vector */
447         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
448
449         fix0             = _mm_setzero_pd();
450         fiy0             = _mm_setzero_pd();
451         fiz0             = _mm_setzero_pd();
452
453         /* Load parameters for i particles */
454         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
455         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
456
457         /* Start inner kernel loop */
458         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
459         {
460
461             /* Get j neighbor index, and coordinate index */
462             jnrA             = jjnr[jidx];
463             jnrB             = jjnr[jidx+1];
464             j_coord_offsetA  = DIM*jnrA;
465             j_coord_offsetB  = DIM*jnrB;
466
467             /* load j atom coordinates */
468             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
469                                               &jx0,&jy0,&jz0);
470
471             /* Calculate displacement vector */
472             dx00             = _mm_sub_pd(ix0,jx0);
473             dy00             = _mm_sub_pd(iy0,jy0);
474             dz00             = _mm_sub_pd(iz0,jz0);
475
476             /* Calculate squared distance and things based on it */
477             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
478
479             rinv00           = gmx_mm_invsqrt_pd(rsq00);
480
481             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
482
483             /* Load parameters for j particles */
484             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
485             vdwjidx0A        = 2*vdwtype[jnrA+0];
486             vdwjidx0B        = 2*vdwtype[jnrB+0];
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             if (gmx_mm_any_lt(rsq00,rcutoff2))
493             {
494
495             /* Compute parameters for interactions between i and j atoms */
496             qq00             = _mm_mul_pd(iq0,jq0);
497             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
498                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
499
500             /* REACTION-FIELD ELECTROSTATICS */
501             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
502
503             /* LENNARD-JONES DISPERSION/REPULSION */
504
505             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
506             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
507
508             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
509
510             fscal            = _mm_add_pd(felec,fvdw);
511
512             fscal            = _mm_and_pd(fscal,cutoff_mask);
513
514             /* Update vectorial force */
515             fix0             = _mm_macc_pd(dx00,fscal,fix0);
516             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
517             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
518             
519             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
520                                                    _mm_mul_pd(dx00,fscal),
521                                                    _mm_mul_pd(dy00,fscal),
522                                                    _mm_mul_pd(dz00,fscal));
523
524             }
525
526             /* Inner loop uses 40 flops */
527         }
528
529         if(jidx<j_index_end)
530         {
531
532             jnrA             = jjnr[jidx];
533             j_coord_offsetA  = DIM*jnrA;
534
535             /* load j atom coordinates */
536             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
537                                               &jx0,&jy0,&jz0);
538
539             /* Calculate displacement vector */
540             dx00             = _mm_sub_pd(ix0,jx0);
541             dy00             = _mm_sub_pd(iy0,jy0);
542             dz00             = _mm_sub_pd(iz0,jz0);
543
544             /* Calculate squared distance and things based on it */
545             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
546
547             rinv00           = gmx_mm_invsqrt_pd(rsq00);
548
549             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
550
551             /* Load parameters for j particles */
552             jq0              = _mm_load_sd(charge+jnrA+0);
553             vdwjidx0A        = 2*vdwtype[jnrA+0];
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             if (gmx_mm_any_lt(rsq00,rcutoff2))
560             {
561
562             /* Compute parameters for interactions between i and j atoms */
563             qq00             = _mm_mul_pd(iq0,jq0);
564             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
565
566             /* REACTION-FIELD ELECTROSTATICS */
567             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
568
569             /* LENNARD-JONES DISPERSION/REPULSION */
570
571             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
572             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
573
574             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
575
576             fscal            = _mm_add_pd(felec,fvdw);
577
578             fscal            = _mm_and_pd(fscal,cutoff_mask);
579
580             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
581
582             /* Update vectorial force */
583             fix0             = _mm_macc_pd(dx00,fscal,fix0);
584             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
585             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
586             
587             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
588                                                    _mm_mul_pd(dx00,fscal),
589                                                    _mm_mul_pd(dy00,fscal),
590                                                    _mm_mul_pd(dz00,fscal));
591
592             }
593
594             /* Inner loop uses 40 flops */
595         }
596
597         /* End of innermost loop */
598
599         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
600                                               f+i_coord_offset,fshift+i_shift_offset);
601
602         /* Increment number of inner iterations */
603         inneriter                  += j_index_end - j_index_start;
604
605         /* Outer loop uses 7 flops */
606     }
607
608     /* Increment number of outer iterations */
609     outeriter        += nri;
610
611     /* Update outer/inner flops */
612
613     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*40);
614 }