335af516523b81f80620bd9372656a04c6404987
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
105     real             *vftab;
106     __m128d          dummy_mask,cutoff_mask;
107     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
108     __m128d          one     = _mm_set1_pd(1.0);
109     __m128d          two     = _mm_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     krf              = _mm_set1_pd(fr->ic->k_rf);
124     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
125     crf              = _mm_set1_pd(fr->ic->c_rf);
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
136     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
137     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
141     rcutoff_scalar   = fr->rcoulomb;
142     rcutoff          = _mm_set1_pd(rcutoff_scalar);
143     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
170
171         fix0             = _mm_setzero_pd();
172         fiy0             = _mm_setzero_pd();
173         fiz0             = _mm_setzero_pd();
174         fix1             = _mm_setzero_pd();
175         fiy1             = _mm_setzero_pd();
176         fiz1             = _mm_setzero_pd();
177         fix2             = _mm_setzero_pd();
178         fiy2             = _mm_setzero_pd();
179         fiz2             = _mm_setzero_pd();
180         fix3             = _mm_setzero_pd();
181         fiy3             = _mm_setzero_pd();
182         fiz3             = _mm_setzero_pd();
183
184         /* Reset potential sums */
185         velecsum         = _mm_setzero_pd();
186         vvdwsum          = _mm_setzero_pd();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_pd(ix0,jx0);
204             dy00             = _mm_sub_pd(iy0,jy0);
205             dz00             = _mm_sub_pd(iz0,jz0);
206             dx10             = _mm_sub_pd(ix1,jx0);
207             dy10             = _mm_sub_pd(iy1,jy0);
208             dz10             = _mm_sub_pd(iz1,jz0);
209             dx20             = _mm_sub_pd(ix2,jx0);
210             dy20             = _mm_sub_pd(iy2,jy0);
211             dz20             = _mm_sub_pd(iz2,jz0);
212             dx30             = _mm_sub_pd(ix3,jx0);
213             dy30             = _mm_sub_pd(iy3,jy0);
214             dz30             = _mm_sub_pd(iz3,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
218             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
219             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
220             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
221
222             rinv00           = gmx_mm_invsqrt_pd(rsq00);
223             rinv10           = gmx_mm_invsqrt_pd(rsq10);
224             rinv20           = gmx_mm_invsqrt_pd(rsq20);
225             rinv30           = gmx_mm_invsqrt_pd(rsq30);
226
227             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
228             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
229             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
233             vdwjidx0A        = 2*vdwtype[jnrA+0];
234             vdwjidx0B        = 2*vdwtype[jnrB+0];
235
236             fjx0             = _mm_setzero_pd();
237             fjy0             = _mm_setzero_pd();
238             fjz0             = _mm_setzero_pd();
239
240             /**************************
241              * CALCULATE INTERACTIONS *
242              **************************/
243
244             r00              = _mm_mul_pd(rsq00,rinv00);
245
246             /* Compute parameters for interactions between i and j atoms */
247             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
248                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
249
250             /* Calculate table index by multiplying r with table scale and truncate to integer */
251             rt               = _mm_mul_pd(r00,vftabscale);
252             vfitab           = _mm_cvttpd_epi32(rt);
253 #ifdef __XOP__
254             vfeps            = _mm_frcz_pd(rt);
255 #else
256             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
257 #endif
258             twovfeps         = _mm_add_pd(vfeps,vfeps);
259             vfitab           = _mm_slli_epi32(vfitab,3);
260
261             /* CUBIC SPLINE TABLE DISPERSION */
262             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
263             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
264             GMX_MM_TRANSPOSE2_PD(Y,F);
265             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
266             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
267             GMX_MM_TRANSPOSE2_PD(G,H);
268             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
269             VV               = _mm_macc_pd(vfeps,Fp,Y);
270             vvdw6            = _mm_mul_pd(c6_00,VV);
271             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
272             fvdw6            = _mm_mul_pd(c6_00,FF);
273
274             /* CUBIC SPLINE TABLE REPULSION */
275             vfitab           = _mm_add_epi32(vfitab,ifour);
276             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
277             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
278             GMX_MM_TRANSPOSE2_PD(Y,F);
279             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
280             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
281             GMX_MM_TRANSPOSE2_PD(G,H);
282             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
283             VV               = _mm_macc_pd(vfeps,Fp,Y);
284             vvdw12           = _mm_mul_pd(c12_00,VV);
285             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
286             fvdw12           = _mm_mul_pd(c12_00,FF);
287             vvdw             = _mm_add_pd(vvdw12,vvdw6);
288             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
289
290             /* Update potential sum for this i atom from the interaction with this j atom. */
291             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
292
293             fscal            = fvdw;
294
295             /* Update vectorial force */
296             fix0             = _mm_macc_pd(dx00,fscal,fix0);
297             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
298             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
299             
300             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
301             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
302             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             if (gmx_mm_any_lt(rsq10,rcutoff2))
309             {
310
311             /* Compute parameters for interactions between i and j atoms */
312             qq10             = _mm_mul_pd(iq1,jq0);
313
314             /* REACTION-FIELD ELECTROSTATICS */
315             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
316             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
317
318             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
319
320             /* Update potential sum for this i atom from the interaction with this j atom. */
321             velec            = _mm_and_pd(velec,cutoff_mask);
322             velecsum         = _mm_add_pd(velecsum,velec);
323
324             fscal            = felec;
325
326             fscal            = _mm_and_pd(fscal,cutoff_mask);
327
328             /* Update vectorial force */
329             fix1             = _mm_macc_pd(dx10,fscal,fix1);
330             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
331             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
332             
333             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
334             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
335             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
336
337             }
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             if (gmx_mm_any_lt(rsq20,rcutoff2))
344             {
345
346             /* Compute parameters for interactions between i and j atoms */
347             qq20             = _mm_mul_pd(iq2,jq0);
348
349             /* REACTION-FIELD ELECTROSTATICS */
350             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
351             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
352
353             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
354
355             /* Update potential sum for this i atom from the interaction with this j atom. */
356             velec            = _mm_and_pd(velec,cutoff_mask);
357             velecsum         = _mm_add_pd(velecsum,velec);
358
359             fscal            = felec;
360
361             fscal            = _mm_and_pd(fscal,cutoff_mask);
362
363             /* Update vectorial force */
364             fix2             = _mm_macc_pd(dx20,fscal,fix2);
365             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
366             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
367             
368             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
369             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
370             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
371
372             }
373
374             /**************************
375              * CALCULATE INTERACTIONS *
376              **************************/
377
378             if (gmx_mm_any_lt(rsq30,rcutoff2))
379             {
380
381             /* Compute parameters for interactions between i and j atoms */
382             qq30             = _mm_mul_pd(iq3,jq0);
383
384             /* REACTION-FIELD ELECTROSTATICS */
385             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_macc_pd(krf,rsq30,rinv30),crf));
386             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
387
388             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
389
390             /* Update potential sum for this i atom from the interaction with this j atom. */
391             velec            = _mm_and_pd(velec,cutoff_mask);
392             velecsum         = _mm_add_pd(velecsum,velec);
393
394             fscal            = felec;
395
396             fscal            = _mm_and_pd(fscal,cutoff_mask);
397
398             /* Update vectorial force */
399             fix3             = _mm_macc_pd(dx30,fscal,fix3);
400             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
401             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
402             
403             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
404             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
405             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
406
407             }
408
409             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
410
411             /* Inner loop uses 179 flops */
412         }
413
414         if(jidx<j_index_end)
415         {
416
417             jnrA             = jjnr[jidx];
418             j_coord_offsetA  = DIM*jnrA;
419
420             /* load j atom coordinates */
421             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
422                                               &jx0,&jy0,&jz0);
423
424             /* Calculate displacement vector */
425             dx00             = _mm_sub_pd(ix0,jx0);
426             dy00             = _mm_sub_pd(iy0,jy0);
427             dz00             = _mm_sub_pd(iz0,jz0);
428             dx10             = _mm_sub_pd(ix1,jx0);
429             dy10             = _mm_sub_pd(iy1,jy0);
430             dz10             = _mm_sub_pd(iz1,jz0);
431             dx20             = _mm_sub_pd(ix2,jx0);
432             dy20             = _mm_sub_pd(iy2,jy0);
433             dz20             = _mm_sub_pd(iz2,jz0);
434             dx30             = _mm_sub_pd(ix3,jx0);
435             dy30             = _mm_sub_pd(iy3,jy0);
436             dz30             = _mm_sub_pd(iz3,jz0);
437
438             /* Calculate squared distance and things based on it */
439             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
440             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
441             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
442             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
443
444             rinv00           = gmx_mm_invsqrt_pd(rsq00);
445             rinv10           = gmx_mm_invsqrt_pd(rsq10);
446             rinv20           = gmx_mm_invsqrt_pd(rsq20);
447             rinv30           = gmx_mm_invsqrt_pd(rsq30);
448
449             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
450             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
451             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
452
453             /* Load parameters for j particles */
454             jq0              = _mm_load_sd(charge+jnrA+0);
455             vdwjidx0A        = 2*vdwtype[jnrA+0];
456
457             fjx0             = _mm_setzero_pd();
458             fjy0             = _mm_setzero_pd();
459             fjz0             = _mm_setzero_pd();
460
461             /**************************
462              * CALCULATE INTERACTIONS *
463              **************************/
464
465             r00              = _mm_mul_pd(rsq00,rinv00);
466
467             /* Compute parameters for interactions between i and j atoms */
468             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
469
470             /* Calculate table index by multiplying r with table scale and truncate to integer */
471             rt               = _mm_mul_pd(r00,vftabscale);
472             vfitab           = _mm_cvttpd_epi32(rt);
473 #ifdef __XOP__
474             vfeps            = _mm_frcz_pd(rt);
475 #else
476             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
477 #endif
478             twovfeps         = _mm_add_pd(vfeps,vfeps);
479             vfitab           = _mm_slli_epi32(vfitab,3);
480
481             /* CUBIC SPLINE TABLE DISPERSION */
482             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
483             F                = _mm_setzero_pd();
484             GMX_MM_TRANSPOSE2_PD(Y,F);
485             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
486             H                = _mm_setzero_pd();
487             GMX_MM_TRANSPOSE2_PD(G,H);
488             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
489             VV               = _mm_macc_pd(vfeps,Fp,Y);
490             vvdw6            = _mm_mul_pd(c6_00,VV);
491             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
492             fvdw6            = _mm_mul_pd(c6_00,FF);
493
494             /* CUBIC SPLINE TABLE REPULSION */
495             vfitab           = _mm_add_epi32(vfitab,ifour);
496             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
497             F                = _mm_setzero_pd();
498             GMX_MM_TRANSPOSE2_PD(Y,F);
499             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
500             H                = _mm_setzero_pd();
501             GMX_MM_TRANSPOSE2_PD(G,H);
502             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
503             VV               = _mm_macc_pd(vfeps,Fp,Y);
504             vvdw12           = _mm_mul_pd(c12_00,VV);
505             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
506             fvdw12           = _mm_mul_pd(c12_00,FF);
507             vvdw             = _mm_add_pd(vvdw12,vvdw6);
508             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
509
510             /* Update potential sum for this i atom from the interaction with this j atom. */
511             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
512             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
513
514             fscal            = fvdw;
515
516             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
517
518             /* Update vectorial force */
519             fix0             = _mm_macc_pd(dx00,fscal,fix0);
520             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
521             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
522             
523             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
524             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
525             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
526
527             /**************************
528              * CALCULATE INTERACTIONS *
529              **************************/
530
531             if (gmx_mm_any_lt(rsq10,rcutoff2))
532             {
533
534             /* Compute parameters for interactions between i and j atoms */
535             qq10             = _mm_mul_pd(iq1,jq0);
536
537             /* REACTION-FIELD ELECTROSTATICS */
538             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
539             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
540
541             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
542
543             /* Update potential sum for this i atom from the interaction with this j atom. */
544             velec            = _mm_and_pd(velec,cutoff_mask);
545             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
546             velecsum         = _mm_add_pd(velecsum,velec);
547
548             fscal            = felec;
549
550             fscal            = _mm_and_pd(fscal,cutoff_mask);
551
552             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
553
554             /* Update vectorial force */
555             fix1             = _mm_macc_pd(dx10,fscal,fix1);
556             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
557             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
558             
559             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
560             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
561             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
562
563             }
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             if (gmx_mm_any_lt(rsq20,rcutoff2))
570             {
571
572             /* Compute parameters for interactions between i and j atoms */
573             qq20             = _mm_mul_pd(iq2,jq0);
574
575             /* REACTION-FIELD ELECTROSTATICS */
576             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
577             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
578
579             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
580
581             /* Update potential sum for this i atom from the interaction with this j atom. */
582             velec            = _mm_and_pd(velec,cutoff_mask);
583             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
584             velecsum         = _mm_add_pd(velecsum,velec);
585
586             fscal            = felec;
587
588             fscal            = _mm_and_pd(fscal,cutoff_mask);
589
590             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
591
592             /* Update vectorial force */
593             fix2             = _mm_macc_pd(dx20,fscal,fix2);
594             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
595             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
596             
597             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
598             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
599             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
600
601             }
602
603             /**************************
604              * CALCULATE INTERACTIONS *
605              **************************/
606
607             if (gmx_mm_any_lt(rsq30,rcutoff2))
608             {
609
610             /* Compute parameters for interactions between i and j atoms */
611             qq30             = _mm_mul_pd(iq3,jq0);
612
613             /* REACTION-FIELD ELECTROSTATICS */
614             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_macc_pd(krf,rsq30,rinv30),crf));
615             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
616
617             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
618
619             /* Update potential sum for this i atom from the interaction with this j atom. */
620             velec            = _mm_and_pd(velec,cutoff_mask);
621             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
622             velecsum         = _mm_add_pd(velecsum,velec);
623
624             fscal            = felec;
625
626             fscal            = _mm_and_pd(fscal,cutoff_mask);
627
628             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
629
630             /* Update vectorial force */
631             fix3             = _mm_macc_pd(dx30,fscal,fix3);
632             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
633             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
634             
635             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
636             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
637             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
638
639             }
640
641             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
642
643             /* Inner loop uses 179 flops */
644         }
645
646         /* End of innermost loop */
647
648         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
649                                               f+i_coord_offset,fshift+i_shift_offset);
650
651         ggid                        = gid[iidx];
652         /* Update potential energies */
653         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
654         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
655
656         /* Increment number of inner iterations */
657         inneriter                  += j_index_end - j_index_start;
658
659         /* Outer loop uses 26 flops */
660     }
661
662     /* Increment number of outer iterations */
663     outeriter        += nri;
664
665     /* Update outer/inner flops */
666
667     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*179);
668 }
669 /*
670  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_avx_128_fma_double
671  * Electrostatics interaction: ReactionField
672  * VdW interaction:            CubicSplineTable
673  * Geometry:                   Water4-Particle
674  * Calculate force/pot:        Force
675  */
676 void
677 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_avx_128_fma_double
678                     (t_nblist                    * gmx_restrict       nlist,
679                      rvec                        * gmx_restrict          xx,
680                      rvec                        * gmx_restrict          ff,
681                      t_forcerec                  * gmx_restrict          fr,
682                      t_mdatoms                   * gmx_restrict     mdatoms,
683                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
684                      t_nrnb                      * gmx_restrict        nrnb)
685 {
686     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
687      * just 0 for non-waters.
688      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
689      * jnr indices corresponding to data put in the four positions in the SIMD register.
690      */
691     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
692     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
693     int              jnrA,jnrB;
694     int              j_coord_offsetA,j_coord_offsetB;
695     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
696     real             rcutoff_scalar;
697     real             *shiftvec,*fshift,*x,*f;
698     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
699     int              vdwioffset0;
700     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
701     int              vdwioffset1;
702     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
703     int              vdwioffset2;
704     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
705     int              vdwioffset3;
706     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
707     int              vdwjidx0A,vdwjidx0B;
708     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
709     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
710     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
711     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
712     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
713     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
714     real             *charge;
715     int              nvdwtype;
716     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
717     int              *vdwtype;
718     real             *vdwparam;
719     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
720     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
721     __m128i          vfitab;
722     __m128i          ifour       = _mm_set1_epi32(4);
723     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
724     real             *vftab;
725     __m128d          dummy_mask,cutoff_mask;
726     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
727     __m128d          one     = _mm_set1_pd(1.0);
728     __m128d          two     = _mm_set1_pd(2.0);
729     x                = xx[0];
730     f                = ff[0];
731
732     nri              = nlist->nri;
733     iinr             = nlist->iinr;
734     jindex           = nlist->jindex;
735     jjnr             = nlist->jjnr;
736     shiftidx         = nlist->shift;
737     gid              = nlist->gid;
738     shiftvec         = fr->shift_vec[0];
739     fshift           = fr->fshift[0];
740     facel            = _mm_set1_pd(fr->epsfac);
741     charge           = mdatoms->chargeA;
742     krf              = _mm_set1_pd(fr->ic->k_rf);
743     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
744     crf              = _mm_set1_pd(fr->ic->c_rf);
745     nvdwtype         = fr->ntype;
746     vdwparam         = fr->nbfp;
747     vdwtype          = mdatoms->typeA;
748
749     vftab            = kernel_data->table_vdw->data;
750     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
751
752     /* Setup water-specific parameters */
753     inr              = nlist->iinr[0];
754     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
755     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
756     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
757     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
758
759     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
760     rcutoff_scalar   = fr->rcoulomb;
761     rcutoff          = _mm_set1_pd(rcutoff_scalar);
762     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
763
764     /* Avoid stupid compiler warnings */
765     jnrA = jnrB = 0;
766     j_coord_offsetA = 0;
767     j_coord_offsetB = 0;
768
769     outeriter        = 0;
770     inneriter        = 0;
771
772     /* Start outer loop over neighborlists */
773     for(iidx=0; iidx<nri; iidx++)
774     {
775         /* Load shift vector for this list */
776         i_shift_offset   = DIM*shiftidx[iidx];
777
778         /* Load limits for loop over neighbors */
779         j_index_start    = jindex[iidx];
780         j_index_end      = jindex[iidx+1];
781
782         /* Get outer coordinate index */
783         inr              = iinr[iidx];
784         i_coord_offset   = DIM*inr;
785
786         /* Load i particle coords and add shift vector */
787         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
788                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
789
790         fix0             = _mm_setzero_pd();
791         fiy0             = _mm_setzero_pd();
792         fiz0             = _mm_setzero_pd();
793         fix1             = _mm_setzero_pd();
794         fiy1             = _mm_setzero_pd();
795         fiz1             = _mm_setzero_pd();
796         fix2             = _mm_setzero_pd();
797         fiy2             = _mm_setzero_pd();
798         fiz2             = _mm_setzero_pd();
799         fix3             = _mm_setzero_pd();
800         fiy3             = _mm_setzero_pd();
801         fiz3             = _mm_setzero_pd();
802
803         /* Start inner kernel loop */
804         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
805         {
806
807             /* Get j neighbor index, and coordinate index */
808             jnrA             = jjnr[jidx];
809             jnrB             = jjnr[jidx+1];
810             j_coord_offsetA  = DIM*jnrA;
811             j_coord_offsetB  = DIM*jnrB;
812
813             /* load j atom coordinates */
814             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
815                                               &jx0,&jy0,&jz0);
816
817             /* Calculate displacement vector */
818             dx00             = _mm_sub_pd(ix0,jx0);
819             dy00             = _mm_sub_pd(iy0,jy0);
820             dz00             = _mm_sub_pd(iz0,jz0);
821             dx10             = _mm_sub_pd(ix1,jx0);
822             dy10             = _mm_sub_pd(iy1,jy0);
823             dz10             = _mm_sub_pd(iz1,jz0);
824             dx20             = _mm_sub_pd(ix2,jx0);
825             dy20             = _mm_sub_pd(iy2,jy0);
826             dz20             = _mm_sub_pd(iz2,jz0);
827             dx30             = _mm_sub_pd(ix3,jx0);
828             dy30             = _mm_sub_pd(iy3,jy0);
829             dz30             = _mm_sub_pd(iz3,jz0);
830
831             /* Calculate squared distance and things based on it */
832             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
833             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
834             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
835             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
836
837             rinv00           = gmx_mm_invsqrt_pd(rsq00);
838             rinv10           = gmx_mm_invsqrt_pd(rsq10);
839             rinv20           = gmx_mm_invsqrt_pd(rsq20);
840             rinv30           = gmx_mm_invsqrt_pd(rsq30);
841
842             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
843             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
844             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
845
846             /* Load parameters for j particles */
847             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
848             vdwjidx0A        = 2*vdwtype[jnrA+0];
849             vdwjidx0B        = 2*vdwtype[jnrB+0];
850
851             fjx0             = _mm_setzero_pd();
852             fjy0             = _mm_setzero_pd();
853             fjz0             = _mm_setzero_pd();
854
855             /**************************
856              * CALCULATE INTERACTIONS *
857              **************************/
858
859             r00              = _mm_mul_pd(rsq00,rinv00);
860
861             /* Compute parameters for interactions between i and j atoms */
862             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
863                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
864
865             /* Calculate table index by multiplying r with table scale and truncate to integer */
866             rt               = _mm_mul_pd(r00,vftabscale);
867             vfitab           = _mm_cvttpd_epi32(rt);
868 #ifdef __XOP__
869             vfeps            = _mm_frcz_pd(rt);
870 #else
871             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
872 #endif
873             twovfeps         = _mm_add_pd(vfeps,vfeps);
874             vfitab           = _mm_slli_epi32(vfitab,3);
875
876             /* CUBIC SPLINE TABLE DISPERSION */
877             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
878             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
879             GMX_MM_TRANSPOSE2_PD(Y,F);
880             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
881             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
882             GMX_MM_TRANSPOSE2_PD(G,H);
883             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
884             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
885             fvdw6            = _mm_mul_pd(c6_00,FF);
886
887             /* CUBIC SPLINE TABLE REPULSION */
888             vfitab           = _mm_add_epi32(vfitab,ifour);
889             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
890             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
891             GMX_MM_TRANSPOSE2_PD(Y,F);
892             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
893             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
894             GMX_MM_TRANSPOSE2_PD(G,H);
895             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
896             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
897             fvdw12           = _mm_mul_pd(c12_00,FF);
898             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
899
900             fscal            = fvdw;
901
902             /* Update vectorial force */
903             fix0             = _mm_macc_pd(dx00,fscal,fix0);
904             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
905             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
906             
907             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
908             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
909             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
910
911             /**************************
912              * CALCULATE INTERACTIONS *
913              **************************/
914
915             if (gmx_mm_any_lt(rsq10,rcutoff2))
916             {
917
918             /* Compute parameters for interactions between i and j atoms */
919             qq10             = _mm_mul_pd(iq1,jq0);
920
921             /* REACTION-FIELD ELECTROSTATICS */
922             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
923
924             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
925
926             fscal            = felec;
927
928             fscal            = _mm_and_pd(fscal,cutoff_mask);
929
930             /* Update vectorial force */
931             fix1             = _mm_macc_pd(dx10,fscal,fix1);
932             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
933             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
934             
935             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
936             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
937             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
938
939             }
940
941             /**************************
942              * CALCULATE INTERACTIONS *
943              **************************/
944
945             if (gmx_mm_any_lt(rsq20,rcutoff2))
946             {
947
948             /* Compute parameters for interactions between i and j atoms */
949             qq20             = _mm_mul_pd(iq2,jq0);
950
951             /* REACTION-FIELD ELECTROSTATICS */
952             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
953
954             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
955
956             fscal            = felec;
957
958             fscal            = _mm_and_pd(fscal,cutoff_mask);
959
960             /* Update vectorial force */
961             fix2             = _mm_macc_pd(dx20,fscal,fix2);
962             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
963             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
964             
965             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
966             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
967             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
968
969             }
970
971             /**************************
972              * CALCULATE INTERACTIONS *
973              **************************/
974
975             if (gmx_mm_any_lt(rsq30,rcutoff2))
976             {
977
978             /* Compute parameters for interactions between i and j atoms */
979             qq30             = _mm_mul_pd(iq3,jq0);
980
981             /* REACTION-FIELD ELECTROSTATICS */
982             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
983
984             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
985
986             fscal            = felec;
987
988             fscal            = _mm_and_pd(fscal,cutoff_mask);
989
990             /* Update vectorial force */
991             fix3             = _mm_macc_pd(dx30,fscal,fix3);
992             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
993             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
994             
995             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
996             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
997             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
998
999             }
1000
1001             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1002
1003             /* Inner loop uses 153 flops */
1004         }
1005
1006         if(jidx<j_index_end)
1007         {
1008
1009             jnrA             = jjnr[jidx];
1010             j_coord_offsetA  = DIM*jnrA;
1011
1012             /* load j atom coordinates */
1013             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1014                                               &jx0,&jy0,&jz0);
1015
1016             /* Calculate displacement vector */
1017             dx00             = _mm_sub_pd(ix0,jx0);
1018             dy00             = _mm_sub_pd(iy0,jy0);
1019             dz00             = _mm_sub_pd(iz0,jz0);
1020             dx10             = _mm_sub_pd(ix1,jx0);
1021             dy10             = _mm_sub_pd(iy1,jy0);
1022             dz10             = _mm_sub_pd(iz1,jz0);
1023             dx20             = _mm_sub_pd(ix2,jx0);
1024             dy20             = _mm_sub_pd(iy2,jy0);
1025             dz20             = _mm_sub_pd(iz2,jz0);
1026             dx30             = _mm_sub_pd(ix3,jx0);
1027             dy30             = _mm_sub_pd(iy3,jy0);
1028             dz30             = _mm_sub_pd(iz3,jz0);
1029
1030             /* Calculate squared distance and things based on it */
1031             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1032             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1033             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1034             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1035
1036             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1037             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1038             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1039             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1040
1041             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1042             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1043             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1044
1045             /* Load parameters for j particles */
1046             jq0              = _mm_load_sd(charge+jnrA+0);
1047             vdwjidx0A        = 2*vdwtype[jnrA+0];
1048
1049             fjx0             = _mm_setzero_pd();
1050             fjy0             = _mm_setzero_pd();
1051             fjz0             = _mm_setzero_pd();
1052
1053             /**************************
1054              * CALCULATE INTERACTIONS *
1055              **************************/
1056
1057             r00              = _mm_mul_pd(rsq00,rinv00);
1058
1059             /* Compute parameters for interactions between i and j atoms */
1060             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1061
1062             /* Calculate table index by multiplying r with table scale and truncate to integer */
1063             rt               = _mm_mul_pd(r00,vftabscale);
1064             vfitab           = _mm_cvttpd_epi32(rt);
1065 #ifdef __XOP__
1066             vfeps            = _mm_frcz_pd(rt);
1067 #else
1068             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1069 #endif
1070             twovfeps         = _mm_add_pd(vfeps,vfeps);
1071             vfitab           = _mm_slli_epi32(vfitab,3);
1072
1073             /* CUBIC SPLINE TABLE DISPERSION */
1074             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1075             F                = _mm_setzero_pd();
1076             GMX_MM_TRANSPOSE2_PD(Y,F);
1077             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1078             H                = _mm_setzero_pd();
1079             GMX_MM_TRANSPOSE2_PD(G,H);
1080             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1081             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1082             fvdw6            = _mm_mul_pd(c6_00,FF);
1083
1084             /* CUBIC SPLINE TABLE REPULSION */
1085             vfitab           = _mm_add_epi32(vfitab,ifour);
1086             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1087             F                = _mm_setzero_pd();
1088             GMX_MM_TRANSPOSE2_PD(Y,F);
1089             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1090             H                = _mm_setzero_pd();
1091             GMX_MM_TRANSPOSE2_PD(G,H);
1092             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1093             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1094             fvdw12           = _mm_mul_pd(c12_00,FF);
1095             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1096
1097             fscal            = fvdw;
1098
1099             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1100
1101             /* Update vectorial force */
1102             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1103             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1104             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1105             
1106             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1107             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1108             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1109
1110             /**************************
1111              * CALCULATE INTERACTIONS *
1112              **************************/
1113
1114             if (gmx_mm_any_lt(rsq10,rcutoff2))
1115             {
1116
1117             /* Compute parameters for interactions between i and j atoms */
1118             qq10             = _mm_mul_pd(iq1,jq0);
1119
1120             /* REACTION-FIELD ELECTROSTATICS */
1121             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
1122
1123             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1124
1125             fscal            = felec;
1126
1127             fscal            = _mm_and_pd(fscal,cutoff_mask);
1128
1129             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1130
1131             /* Update vectorial force */
1132             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1133             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1134             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1135             
1136             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1137             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1138             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1139
1140             }
1141
1142             /**************************
1143              * CALCULATE INTERACTIONS *
1144              **************************/
1145
1146             if (gmx_mm_any_lt(rsq20,rcutoff2))
1147             {
1148
1149             /* Compute parameters for interactions between i and j atoms */
1150             qq20             = _mm_mul_pd(iq2,jq0);
1151
1152             /* REACTION-FIELD ELECTROSTATICS */
1153             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
1154
1155             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1156
1157             fscal            = felec;
1158
1159             fscal            = _mm_and_pd(fscal,cutoff_mask);
1160
1161             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1162
1163             /* Update vectorial force */
1164             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1165             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1166             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1167             
1168             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1169             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1170             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1171
1172             }
1173
1174             /**************************
1175              * CALCULATE INTERACTIONS *
1176              **************************/
1177
1178             if (gmx_mm_any_lt(rsq30,rcutoff2))
1179             {
1180
1181             /* Compute parameters for interactions between i and j atoms */
1182             qq30             = _mm_mul_pd(iq3,jq0);
1183
1184             /* REACTION-FIELD ELECTROSTATICS */
1185             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
1186
1187             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1188
1189             fscal            = felec;
1190
1191             fscal            = _mm_and_pd(fscal,cutoff_mask);
1192
1193             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1194
1195             /* Update vectorial force */
1196             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1197             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1198             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1199             
1200             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1201             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1202             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1203
1204             }
1205
1206             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1207
1208             /* Inner loop uses 153 flops */
1209         }
1210
1211         /* End of innermost loop */
1212
1213         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1214                                               f+i_coord_offset,fshift+i_shift_offset);
1215
1216         /* Increment number of inner iterations */
1217         inneriter                  += j_index_end - j_index_start;
1218
1219         /* Outer loop uses 24 flops */
1220     }
1221
1222     /* Increment number of outer iterations */
1223     outeriter        += nri;
1224
1225     /* Update outer/inner flops */
1226
1227     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*153);
1228 }