Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
104     real             *vftab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     krf              = _mm_set1_pd(fr->ic->k_rf);
123     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
124     crf              = _mm_set1_pd(fr->ic->c_rf);
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
135     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
136     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
140     rcutoff_scalar   = fr->rcoulomb;
141     rcutoff          = _mm_set1_pd(rcutoff_scalar);
142     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
169
170         fix0             = _mm_setzero_pd();
171         fiy0             = _mm_setzero_pd();
172         fiz0             = _mm_setzero_pd();
173         fix1             = _mm_setzero_pd();
174         fiy1             = _mm_setzero_pd();
175         fiz1             = _mm_setzero_pd();
176         fix2             = _mm_setzero_pd();
177         fiy2             = _mm_setzero_pd();
178         fiz2             = _mm_setzero_pd();
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_pd();
182         vvdwsum          = _mm_setzero_pd();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193
194             /* load j atom coordinates */
195             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
196                                               &jx0,&jy0,&jz0);
197
198             /* Calculate displacement vector */
199             dx00             = _mm_sub_pd(ix0,jx0);
200             dy00             = _mm_sub_pd(iy0,jy0);
201             dz00             = _mm_sub_pd(iz0,jz0);
202             dx10             = _mm_sub_pd(ix1,jx0);
203             dy10             = _mm_sub_pd(iy1,jy0);
204             dz10             = _mm_sub_pd(iz1,jz0);
205             dx20             = _mm_sub_pd(ix2,jx0);
206             dy20             = _mm_sub_pd(iy2,jy0);
207             dz20             = _mm_sub_pd(iz2,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
211             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
212             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
213
214             rinv00           = gmx_mm_invsqrt_pd(rsq00);
215             rinv10           = gmx_mm_invsqrt_pd(rsq10);
216             rinv20           = gmx_mm_invsqrt_pd(rsq20);
217
218             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
219             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
220             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
221
222             /* Load parameters for j particles */
223             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226
227             fjx0             = _mm_setzero_pd();
228             fjy0             = _mm_setzero_pd();
229             fjz0             = _mm_setzero_pd();
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             if (gmx_mm_any_lt(rsq00,rcutoff2))
236             {
237
238             r00              = _mm_mul_pd(rsq00,rinv00);
239
240             /* Compute parameters for interactions between i and j atoms */
241             qq00             = _mm_mul_pd(iq0,jq0);
242             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
243                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
244
245             /* Calculate table index by multiplying r with table scale and truncate to integer */
246             rt               = _mm_mul_pd(r00,vftabscale);
247             vfitab           = _mm_cvttpd_epi32(rt);
248 #ifdef __XOP__
249             vfeps            = _mm_frcz_pd(rt);
250 #else
251             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
252 #endif
253             twovfeps         = _mm_add_pd(vfeps,vfeps);
254             vfitab           = _mm_slli_epi32(vfitab,3);
255
256             /* REACTION-FIELD ELECTROSTATICS */
257             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
258             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
259
260             /* CUBIC SPLINE TABLE DISPERSION */
261             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
262             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
263             GMX_MM_TRANSPOSE2_PD(Y,F);
264             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
265             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
266             GMX_MM_TRANSPOSE2_PD(G,H);
267             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
268             VV               = _mm_macc_pd(vfeps,Fp,Y);
269             vvdw6            = _mm_mul_pd(c6_00,VV);
270             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
271             fvdw6            = _mm_mul_pd(c6_00,FF);
272
273             /* CUBIC SPLINE TABLE REPULSION */
274             vfitab           = _mm_add_epi32(vfitab,ifour);
275             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
276             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
277             GMX_MM_TRANSPOSE2_PD(Y,F);
278             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
279             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
280             GMX_MM_TRANSPOSE2_PD(G,H);
281             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
282             VV               = _mm_macc_pd(vfeps,Fp,Y);
283             vvdw12           = _mm_mul_pd(c12_00,VV);
284             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
285             fvdw12           = _mm_mul_pd(c12_00,FF);
286             vvdw             = _mm_add_pd(vvdw12,vvdw6);
287             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
288
289             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
290
291             /* Update potential sum for this i atom from the interaction with this j atom. */
292             velec            = _mm_and_pd(velec,cutoff_mask);
293             velecsum         = _mm_add_pd(velecsum,velec);
294             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
295             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
296
297             fscal            = _mm_add_pd(felec,fvdw);
298
299             fscal            = _mm_and_pd(fscal,cutoff_mask);
300
301             /* Update vectorial force */
302             fix0             = _mm_macc_pd(dx00,fscal,fix0);
303             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
304             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
305             
306             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
307             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
308             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
309
310             }
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             if (gmx_mm_any_lt(rsq10,rcutoff2))
317             {
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq10             = _mm_mul_pd(iq1,jq0);
321
322             /* REACTION-FIELD ELECTROSTATICS */
323             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
324             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
325
326             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velec            = _mm_and_pd(velec,cutoff_mask);
330             velecsum         = _mm_add_pd(velecsum,velec);
331
332             fscal            = felec;
333
334             fscal            = _mm_and_pd(fscal,cutoff_mask);
335
336             /* Update vectorial force */
337             fix1             = _mm_macc_pd(dx10,fscal,fix1);
338             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
339             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
340             
341             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
342             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
343             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
344
345             }
346
347             /**************************
348              * CALCULATE INTERACTIONS *
349              **************************/
350
351             if (gmx_mm_any_lt(rsq20,rcutoff2))
352             {
353
354             /* Compute parameters for interactions between i and j atoms */
355             qq20             = _mm_mul_pd(iq2,jq0);
356
357             /* REACTION-FIELD ELECTROSTATICS */
358             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
359             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
360
361             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
362
363             /* Update potential sum for this i atom from the interaction with this j atom. */
364             velec            = _mm_and_pd(velec,cutoff_mask);
365             velecsum         = _mm_add_pd(velecsum,velec);
366
367             fscal            = felec;
368
369             fscal            = _mm_and_pd(fscal,cutoff_mask);
370
371             /* Update vectorial force */
372             fix2             = _mm_macc_pd(dx20,fscal,fix2);
373             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
374             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
375             
376             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
377             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
378             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
379
380             }
381
382             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
383
384             /* Inner loop uses 156 flops */
385         }
386
387         if(jidx<j_index_end)
388         {
389
390             jnrA             = jjnr[jidx];
391             j_coord_offsetA  = DIM*jnrA;
392
393             /* load j atom coordinates */
394             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
395                                               &jx0,&jy0,&jz0);
396
397             /* Calculate displacement vector */
398             dx00             = _mm_sub_pd(ix0,jx0);
399             dy00             = _mm_sub_pd(iy0,jy0);
400             dz00             = _mm_sub_pd(iz0,jz0);
401             dx10             = _mm_sub_pd(ix1,jx0);
402             dy10             = _mm_sub_pd(iy1,jy0);
403             dz10             = _mm_sub_pd(iz1,jz0);
404             dx20             = _mm_sub_pd(ix2,jx0);
405             dy20             = _mm_sub_pd(iy2,jy0);
406             dz20             = _mm_sub_pd(iz2,jz0);
407
408             /* Calculate squared distance and things based on it */
409             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
410             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
411             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
412
413             rinv00           = gmx_mm_invsqrt_pd(rsq00);
414             rinv10           = gmx_mm_invsqrt_pd(rsq10);
415             rinv20           = gmx_mm_invsqrt_pd(rsq20);
416
417             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
418             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
419             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
420
421             /* Load parameters for j particles */
422             jq0              = _mm_load_sd(charge+jnrA+0);
423             vdwjidx0A        = 2*vdwtype[jnrA+0];
424
425             fjx0             = _mm_setzero_pd();
426             fjy0             = _mm_setzero_pd();
427             fjz0             = _mm_setzero_pd();
428
429             /**************************
430              * CALCULATE INTERACTIONS *
431              **************************/
432
433             if (gmx_mm_any_lt(rsq00,rcutoff2))
434             {
435
436             r00              = _mm_mul_pd(rsq00,rinv00);
437
438             /* Compute parameters for interactions between i and j atoms */
439             qq00             = _mm_mul_pd(iq0,jq0);
440             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
441
442             /* Calculate table index by multiplying r with table scale and truncate to integer */
443             rt               = _mm_mul_pd(r00,vftabscale);
444             vfitab           = _mm_cvttpd_epi32(rt);
445 #ifdef __XOP__
446             vfeps            = _mm_frcz_pd(rt);
447 #else
448             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
449 #endif
450             twovfeps         = _mm_add_pd(vfeps,vfeps);
451             vfitab           = _mm_slli_epi32(vfitab,3);
452
453             /* REACTION-FIELD ELECTROSTATICS */
454             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
455             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
456
457             /* CUBIC SPLINE TABLE DISPERSION */
458             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
459             F                = _mm_setzero_pd();
460             GMX_MM_TRANSPOSE2_PD(Y,F);
461             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
462             H                = _mm_setzero_pd();
463             GMX_MM_TRANSPOSE2_PD(G,H);
464             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
465             VV               = _mm_macc_pd(vfeps,Fp,Y);
466             vvdw6            = _mm_mul_pd(c6_00,VV);
467             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
468             fvdw6            = _mm_mul_pd(c6_00,FF);
469
470             /* CUBIC SPLINE TABLE REPULSION */
471             vfitab           = _mm_add_epi32(vfitab,ifour);
472             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
473             F                = _mm_setzero_pd();
474             GMX_MM_TRANSPOSE2_PD(Y,F);
475             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
476             H                = _mm_setzero_pd();
477             GMX_MM_TRANSPOSE2_PD(G,H);
478             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
479             VV               = _mm_macc_pd(vfeps,Fp,Y);
480             vvdw12           = _mm_mul_pd(c12_00,VV);
481             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
482             fvdw12           = _mm_mul_pd(c12_00,FF);
483             vvdw             = _mm_add_pd(vvdw12,vvdw6);
484             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
485
486             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
487
488             /* Update potential sum for this i atom from the interaction with this j atom. */
489             velec            = _mm_and_pd(velec,cutoff_mask);
490             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
491             velecsum         = _mm_add_pd(velecsum,velec);
492             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
493             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
494             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
495
496             fscal            = _mm_add_pd(felec,fvdw);
497
498             fscal            = _mm_and_pd(fscal,cutoff_mask);
499
500             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
501
502             /* Update vectorial force */
503             fix0             = _mm_macc_pd(dx00,fscal,fix0);
504             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
505             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
506             
507             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
508             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
509             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
510
511             }
512
513             /**************************
514              * CALCULATE INTERACTIONS *
515              **************************/
516
517             if (gmx_mm_any_lt(rsq10,rcutoff2))
518             {
519
520             /* Compute parameters for interactions between i and j atoms */
521             qq10             = _mm_mul_pd(iq1,jq0);
522
523             /* REACTION-FIELD ELECTROSTATICS */
524             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
525             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
526
527             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
528
529             /* Update potential sum for this i atom from the interaction with this j atom. */
530             velec            = _mm_and_pd(velec,cutoff_mask);
531             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
532             velecsum         = _mm_add_pd(velecsum,velec);
533
534             fscal            = felec;
535
536             fscal            = _mm_and_pd(fscal,cutoff_mask);
537
538             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
539
540             /* Update vectorial force */
541             fix1             = _mm_macc_pd(dx10,fscal,fix1);
542             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
543             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
544             
545             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
546             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
547             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
548
549             }
550
551             /**************************
552              * CALCULATE INTERACTIONS *
553              **************************/
554
555             if (gmx_mm_any_lt(rsq20,rcutoff2))
556             {
557
558             /* Compute parameters for interactions between i and j atoms */
559             qq20             = _mm_mul_pd(iq2,jq0);
560
561             /* REACTION-FIELD ELECTROSTATICS */
562             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
563             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
564
565             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
566
567             /* Update potential sum for this i atom from the interaction with this j atom. */
568             velec            = _mm_and_pd(velec,cutoff_mask);
569             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
570             velecsum         = _mm_add_pd(velecsum,velec);
571
572             fscal            = felec;
573
574             fscal            = _mm_and_pd(fscal,cutoff_mask);
575
576             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
577
578             /* Update vectorial force */
579             fix2             = _mm_macc_pd(dx20,fscal,fix2);
580             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
581             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
582             
583             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
584             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
585             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
586
587             }
588
589             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
590
591             /* Inner loop uses 156 flops */
592         }
593
594         /* End of innermost loop */
595
596         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
597                                               f+i_coord_offset,fshift+i_shift_offset);
598
599         ggid                        = gid[iidx];
600         /* Update potential energies */
601         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
602         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
603
604         /* Increment number of inner iterations */
605         inneriter                  += j_index_end - j_index_start;
606
607         /* Outer loop uses 20 flops */
608     }
609
610     /* Increment number of outer iterations */
611     outeriter        += nri;
612
613     /* Update outer/inner flops */
614
615     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*156);
616 }
617 /*
618  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_128_fma_double
619  * Electrostatics interaction: ReactionField
620  * VdW interaction:            CubicSplineTable
621  * Geometry:                   Water3-Particle
622  * Calculate force/pot:        Force
623  */
624 void
625 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_128_fma_double
626                     (t_nblist                    * gmx_restrict       nlist,
627                      rvec                        * gmx_restrict          xx,
628                      rvec                        * gmx_restrict          ff,
629                      t_forcerec                  * gmx_restrict          fr,
630                      t_mdatoms                   * gmx_restrict     mdatoms,
631                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
632                      t_nrnb                      * gmx_restrict        nrnb)
633 {
634     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
635      * just 0 for non-waters.
636      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
637      * jnr indices corresponding to data put in the four positions in the SIMD register.
638      */
639     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
640     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
641     int              jnrA,jnrB;
642     int              j_coord_offsetA,j_coord_offsetB;
643     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
644     real             rcutoff_scalar;
645     real             *shiftvec,*fshift,*x,*f;
646     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
647     int              vdwioffset0;
648     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
649     int              vdwioffset1;
650     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
651     int              vdwioffset2;
652     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
653     int              vdwjidx0A,vdwjidx0B;
654     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
655     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
656     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
657     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
658     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
659     real             *charge;
660     int              nvdwtype;
661     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
662     int              *vdwtype;
663     real             *vdwparam;
664     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
665     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
666     __m128i          vfitab;
667     __m128i          ifour       = _mm_set1_epi32(4);
668     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
669     real             *vftab;
670     __m128d          dummy_mask,cutoff_mask;
671     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
672     __m128d          one     = _mm_set1_pd(1.0);
673     __m128d          two     = _mm_set1_pd(2.0);
674     x                = xx[0];
675     f                = ff[0];
676
677     nri              = nlist->nri;
678     iinr             = nlist->iinr;
679     jindex           = nlist->jindex;
680     jjnr             = nlist->jjnr;
681     shiftidx         = nlist->shift;
682     gid              = nlist->gid;
683     shiftvec         = fr->shift_vec[0];
684     fshift           = fr->fshift[0];
685     facel            = _mm_set1_pd(fr->epsfac);
686     charge           = mdatoms->chargeA;
687     krf              = _mm_set1_pd(fr->ic->k_rf);
688     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
689     crf              = _mm_set1_pd(fr->ic->c_rf);
690     nvdwtype         = fr->ntype;
691     vdwparam         = fr->nbfp;
692     vdwtype          = mdatoms->typeA;
693
694     vftab            = kernel_data->table_vdw->data;
695     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
696
697     /* Setup water-specific parameters */
698     inr              = nlist->iinr[0];
699     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
700     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
701     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
702     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
703
704     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
705     rcutoff_scalar   = fr->rcoulomb;
706     rcutoff          = _mm_set1_pd(rcutoff_scalar);
707     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
708
709     /* Avoid stupid compiler warnings */
710     jnrA = jnrB = 0;
711     j_coord_offsetA = 0;
712     j_coord_offsetB = 0;
713
714     outeriter        = 0;
715     inneriter        = 0;
716
717     /* Start outer loop over neighborlists */
718     for(iidx=0; iidx<nri; iidx++)
719     {
720         /* Load shift vector for this list */
721         i_shift_offset   = DIM*shiftidx[iidx];
722
723         /* Load limits for loop over neighbors */
724         j_index_start    = jindex[iidx];
725         j_index_end      = jindex[iidx+1];
726
727         /* Get outer coordinate index */
728         inr              = iinr[iidx];
729         i_coord_offset   = DIM*inr;
730
731         /* Load i particle coords and add shift vector */
732         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
733                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
734
735         fix0             = _mm_setzero_pd();
736         fiy0             = _mm_setzero_pd();
737         fiz0             = _mm_setzero_pd();
738         fix1             = _mm_setzero_pd();
739         fiy1             = _mm_setzero_pd();
740         fiz1             = _mm_setzero_pd();
741         fix2             = _mm_setzero_pd();
742         fiy2             = _mm_setzero_pd();
743         fiz2             = _mm_setzero_pd();
744
745         /* Start inner kernel loop */
746         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
747         {
748
749             /* Get j neighbor index, and coordinate index */
750             jnrA             = jjnr[jidx];
751             jnrB             = jjnr[jidx+1];
752             j_coord_offsetA  = DIM*jnrA;
753             j_coord_offsetB  = DIM*jnrB;
754
755             /* load j atom coordinates */
756             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
757                                               &jx0,&jy0,&jz0);
758
759             /* Calculate displacement vector */
760             dx00             = _mm_sub_pd(ix0,jx0);
761             dy00             = _mm_sub_pd(iy0,jy0);
762             dz00             = _mm_sub_pd(iz0,jz0);
763             dx10             = _mm_sub_pd(ix1,jx0);
764             dy10             = _mm_sub_pd(iy1,jy0);
765             dz10             = _mm_sub_pd(iz1,jz0);
766             dx20             = _mm_sub_pd(ix2,jx0);
767             dy20             = _mm_sub_pd(iy2,jy0);
768             dz20             = _mm_sub_pd(iz2,jz0);
769
770             /* Calculate squared distance and things based on it */
771             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
772             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
773             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
774
775             rinv00           = gmx_mm_invsqrt_pd(rsq00);
776             rinv10           = gmx_mm_invsqrt_pd(rsq10);
777             rinv20           = gmx_mm_invsqrt_pd(rsq20);
778
779             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
780             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
781             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
782
783             /* Load parameters for j particles */
784             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
785             vdwjidx0A        = 2*vdwtype[jnrA+0];
786             vdwjidx0B        = 2*vdwtype[jnrB+0];
787
788             fjx0             = _mm_setzero_pd();
789             fjy0             = _mm_setzero_pd();
790             fjz0             = _mm_setzero_pd();
791
792             /**************************
793              * CALCULATE INTERACTIONS *
794              **************************/
795
796             if (gmx_mm_any_lt(rsq00,rcutoff2))
797             {
798
799             r00              = _mm_mul_pd(rsq00,rinv00);
800
801             /* Compute parameters for interactions between i and j atoms */
802             qq00             = _mm_mul_pd(iq0,jq0);
803             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
804                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
805
806             /* Calculate table index by multiplying r with table scale and truncate to integer */
807             rt               = _mm_mul_pd(r00,vftabscale);
808             vfitab           = _mm_cvttpd_epi32(rt);
809 #ifdef __XOP__
810             vfeps            = _mm_frcz_pd(rt);
811 #else
812             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
813 #endif
814             twovfeps         = _mm_add_pd(vfeps,vfeps);
815             vfitab           = _mm_slli_epi32(vfitab,3);
816
817             /* REACTION-FIELD ELECTROSTATICS */
818             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
819
820             /* CUBIC SPLINE TABLE DISPERSION */
821             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
822             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
823             GMX_MM_TRANSPOSE2_PD(Y,F);
824             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
825             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
826             GMX_MM_TRANSPOSE2_PD(G,H);
827             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
828             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
829             fvdw6            = _mm_mul_pd(c6_00,FF);
830
831             /* CUBIC SPLINE TABLE REPULSION */
832             vfitab           = _mm_add_epi32(vfitab,ifour);
833             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
834             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
835             GMX_MM_TRANSPOSE2_PD(Y,F);
836             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
837             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
838             GMX_MM_TRANSPOSE2_PD(G,H);
839             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
840             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
841             fvdw12           = _mm_mul_pd(c12_00,FF);
842             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
843
844             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
845
846             fscal            = _mm_add_pd(felec,fvdw);
847
848             fscal            = _mm_and_pd(fscal,cutoff_mask);
849
850             /* Update vectorial force */
851             fix0             = _mm_macc_pd(dx00,fscal,fix0);
852             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
853             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
854             
855             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
856             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
857             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
858
859             }
860
861             /**************************
862              * CALCULATE INTERACTIONS *
863              **************************/
864
865             if (gmx_mm_any_lt(rsq10,rcutoff2))
866             {
867
868             /* Compute parameters for interactions between i and j atoms */
869             qq10             = _mm_mul_pd(iq1,jq0);
870
871             /* REACTION-FIELD ELECTROSTATICS */
872             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
873
874             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
875
876             fscal            = felec;
877
878             fscal            = _mm_and_pd(fscal,cutoff_mask);
879
880             /* Update vectorial force */
881             fix1             = _mm_macc_pd(dx10,fscal,fix1);
882             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
883             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
884             
885             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
886             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
887             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
888
889             }
890
891             /**************************
892              * CALCULATE INTERACTIONS *
893              **************************/
894
895             if (gmx_mm_any_lt(rsq20,rcutoff2))
896             {
897
898             /* Compute parameters for interactions between i and j atoms */
899             qq20             = _mm_mul_pd(iq2,jq0);
900
901             /* REACTION-FIELD ELECTROSTATICS */
902             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
903
904             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
905
906             fscal            = felec;
907
908             fscal            = _mm_and_pd(fscal,cutoff_mask);
909
910             /* Update vectorial force */
911             fix2             = _mm_macc_pd(dx20,fscal,fix2);
912             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
913             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
914             
915             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
916             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
917             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
918
919             }
920
921             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
922
923             /* Inner loop uses 129 flops */
924         }
925
926         if(jidx<j_index_end)
927         {
928
929             jnrA             = jjnr[jidx];
930             j_coord_offsetA  = DIM*jnrA;
931
932             /* load j atom coordinates */
933             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
934                                               &jx0,&jy0,&jz0);
935
936             /* Calculate displacement vector */
937             dx00             = _mm_sub_pd(ix0,jx0);
938             dy00             = _mm_sub_pd(iy0,jy0);
939             dz00             = _mm_sub_pd(iz0,jz0);
940             dx10             = _mm_sub_pd(ix1,jx0);
941             dy10             = _mm_sub_pd(iy1,jy0);
942             dz10             = _mm_sub_pd(iz1,jz0);
943             dx20             = _mm_sub_pd(ix2,jx0);
944             dy20             = _mm_sub_pd(iy2,jy0);
945             dz20             = _mm_sub_pd(iz2,jz0);
946
947             /* Calculate squared distance and things based on it */
948             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
949             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
950             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
951
952             rinv00           = gmx_mm_invsqrt_pd(rsq00);
953             rinv10           = gmx_mm_invsqrt_pd(rsq10);
954             rinv20           = gmx_mm_invsqrt_pd(rsq20);
955
956             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
957             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
958             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
959
960             /* Load parameters for j particles */
961             jq0              = _mm_load_sd(charge+jnrA+0);
962             vdwjidx0A        = 2*vdwtype[jnrA+0];
963
964             fjx0             = _mm_setzero_pd();
965             fjy0             = _mm_setzero_pd();
966             fjz0             = _mm_setzero_pd();
967
968             /**************************
969              * CALCULATE INTERACTIONS *
970              **************************/
971
972             if (gmx_mm_any_lt(rsq00,rcutoff2))
973             {
974
975             r00              = _mm_mul_pd(rsq00,rinv00);
976
977             /* Compute parameters for interactions between i and j atoms */
978             qq00             = _mm_mul_pd(iq0,jq0);
979             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
980
981             /* Calculate table index by multiplying r with table scale and truncate to integer */
982             rt               = _mm_mul_pd(r00,vftabscale);
983             vfitab           = _mm_cvttpd_epi32(rt);
984 #ifdef __XOP__
985             vfeps            = _mm_frcz_pd(rt);
986 #else
987             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
988 #endif
989             twovfeps         = _mm_add_pd(vfeps,vfeps);
990             vfitab           = _mm_slli_epi32(vfitab,3);
991
992             /* REACTION-FIELD ELECTROSTATICS */
993             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
994
995             /* CUBIC SPLINE TABLE DISPERSION */
996             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
997             F                = _mm_setzero_pd();
998             GMX_MM_TRANSPOSE2_PD(Y,F);
999             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1000             H                = _mm_setzero_pd();
1001             GMX_MM_TRANSPOSE2_PD(G,H);
1002             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1003             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1004             fvdw6            = _mm_mul_pd(c6_00,FF);
1005
1006             /* CUBIC SPLINE TABLE REPULSION */
1007             vfitab           = _mm_add_epi32(vfitab,ifour);
1008             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1009             F                = _mm_setzero_pd();
1010             GMX_MM_TRANSPOSE2_PD(Y,F);
1011             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1012             H                = _mm_setzero_pd();
1013             GMX_MM_TRANSPOSE2_PD(G,H);
1014             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1015             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1016             fvdw12           = _mm_mul_pd(c12_00,FF);
1017             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1018
1019             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1020
1021             fscal            = _mm_add_pd(felec,fvdw);
1022
1023             fscal            = _mm_and_pd(fscal,cutoff_mask);
1024
1025             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1026
1027             /* Update vectorial force */
1028             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1029             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1030             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1031             
1032             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1033             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1034             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1035
1036             }
1037
1038             /**************************
1039              * CALCULATE INTERACTIONS *
1040              **************************/
1041
1042             if (gmx_mm_any_lt(rsq10,rcutoff2))
1043             {
1044
1045             /* Compute parameters for interactions between i and j atoms */
1046             qq10             = _mm_mul_pd(iq1,jq0);
1047
1048             /* REACTION-FIELD ELECTROSTATICS */
1049             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
1050
1051             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1052
1053             fscal            = felec;
1054
1055             fscal            = _mm_and_pd(fscal,cutoff_mask);
1056
1057             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1058
1059             /* Update vectorial force */
1060             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1061             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1062             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1063             
1064             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1065             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1066             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1067
1068             }
1069
1070             /**************************
1071              * CALCULATE INTERACTIONS *
1072              **************************/
1073
1074             if (gmx_mm_any_lt(rsq20,rcutoff2))
1075             {
1076
1077             /* Compute parameters for interactions between i and j atoms */
1078             qq20             = _mm_mul_pd(iq2,jq0);
1079
1080             /* REACTION-FIELD ELECTROSTATICS */
1081             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
1082
1083             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1084
1085             fscal            = felec;
1086
1087             fscal            = _mm_and_pd(fscal,cutoff_mask);
1088
1089             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1090
1091             /* Update vectorial force */
1092             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1093             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1094             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1095             
1096             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1097             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1098             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1099
1100             }
1101
1102             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1103
1104             /* Inner loop uses 129 flops */
1105         }
1106
1107         /* End of innermost loop */
1108
1109         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1110                                               f+i_coord_offset,fshift+i_shift_offset);
1111
1112         /* Increment number of inner iterations */
1113         inneriter                  += j_index_end - j_index_start;
1114
1115         /* Outer loop uses 18 flops */
1116     }
1117
1118     /* Increment number of outer iterations */
1119     outeriter        += nri;
1120
1121     /* Update outer/inner flops */
1122
1123     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*129);
1124 }