Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
102     real             *vftab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     krf              = _mm_set1_pd(fr->ic->k_rf);
121     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
122     crf              = _mm_set1_pd(fr->ic->c_rf);
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_vdw->data;
128     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
133     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
134     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
138     rcutoff_scalar   = fr->rcoulomb;
139     rcutoff          = _mm_set1_pd(rcutoff_scalar);
140     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
166                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
167
168         fix0             = _mm_setzero_pd();
169         fiy0             = _mm_setzero_pd();
170         fiz0             = _mm_setzero_pd();
171         fix1             = _mm_setzero_pd();
172         fiy1             = _mm_setzero_pd();
173         fiz1             = _mm_setzero_pd();
174         fix2             = _mm_setzero_pd();
175         fiy2             = _mm_setzero_pd();
176         fiz2             = _mm_setzero_pd();
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_pd();
180         vvdwsum          = _mm_setzero_pd();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_pd(ix0,jx0);
198             dy00             = _mm_sub_pd(iy0,jy0);
199             dz00             = _mm_sub_pd(iz0,jz0);
200             dx10             = _mm_sub_pd(ix1,jx0);
201             dy10             = _mm_sub_pd(iy1,jy0);
202             dz10             = _mm_sub_pd(iz1,jz0);
203             dx20             = _mm_sub_pd(ix2,jx0);
204             dy20             = _mm_sub_pd(iy2,jy0);
205             dz20             = _mm_sub_pd(iz2,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
209             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
210             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
211
212             rinv00           = gmx_mm_invsqrt_pd(rsq00);
213             rinv10           = gmx_mm_invsqrt_pd(rsq10);
214             rinv20           = gmx_mm_invsqrt_pd(rsq20);
215
216             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
217             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
218             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
219
220             /* Load parameters for j particles */
221             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
222             vdwjidx0A        = 2*vdwtype[jnrA+0];
223             vdwjidx0B        = 2*vdwtype[jnrB+0];
224
225             fjx0             = _mm_setzero_pd();
226             fjy0             = _mm_setzero_pd();
227             fjz0             = _mm_setzero_pd();
228
229             /**************************
230              * CALCULATE INTERACTIONS *
231              **************************/
232
233             if (gmx_mm_any_lt(rsq00,rcutoff2))
234             {
235
236             r00              = _mm_mul_pd(rsq00,rinv00);
237
238             /* Compute parameters for interactions between i and j atoms */
239             qq00             = _mm_mul_pd(iq0,jq0);
240             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
241                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
242
243             /* Calculate table index by multiplying r with table scale and truncate to integer */
244             rt               = _mm_mul_pd(r00,vftabscale);
245             vfitab           = _mm_cvttpd_epi32(rt);
246 #ifdef __XOP__
247             vfeps            = _mm_frcz_pd(rt);
248 #else
249             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
250 #endif
251             twovfeps         = _mm_add_pd(vfeps,vfeps);
252             vfitab           = _mm_slli_epi32(vfitab,3);
253
254             /* REACTION-FIELD ELECTROSTATICS */
255             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
256             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
257
258             /* CUBIC SPLINE TABLE DISPERSION */
259             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
260             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
261             GMX_MM_TRANSPOSE2_PD(Y,F);
262             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
263             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
264             GMX_MM_TRANSPOSE2_PD(G,H);
265             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
266             VV               = _mm_macc_pd(vfeps,Fp,Y);
267             vvdw6            = _mm_mul_pd(c6_00,VV);
268             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
269             fvdw6            = _mm_mul_pd(c6_00,FF);
270
271             /* CUBIC SPLINE TABLE REPULSION */
272             vfitab           = _mm_add_epi32(vfitab,ifour);
273             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
274             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
275             GMX_MM_TRANSPOSE2_PD(Y,F);
276             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
277             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
278             GMX_MM_TRANSPOSE2_PD(G,H);
279             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
280             VV               = _mm_macc_pd(vfeps,Fp,Y);
281             vvdw12           = _mm_mul_pd(c12_00,VV);
282             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
283             fvdw12           = _mm_mul_pd(c12_00,FF);
284             vvdw             = _mm_add_pd(vvdw12,vvdw6);
285             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
286
287             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             velec            = _mm_and_pd(velec,cutoff_mask);
291             velecsum         = _mm_add_pd(velecsum,velec);
292             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
293             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
294
295             fscal            = _mm_add_pd(felec,fvdw);
296
297             fscal            = _mm_and_pd(fscal,cutoff_mask);
298
299             /* Update vectorial force */
300             fix0             = _mm_macc_pd(dx00,fscal,fix0);
301             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
302             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
303             
304             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
305             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
306             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
307
308             }
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             if (gmx_mm_any_lt(rsq10,rcutoff2))
315             {
316
317             /* Compute parameters for interactions between i and j atoms */
318             qq10             = _mm_mul_pd(iq1,jq0);
319
320             /* REACTION-FIELD ELECTROSTATICS */
321             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
322             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
323
324             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
325
326             /* Update potential sum for this i atom from the interaction with this j atom. */
327             velec            = _mm_and_pd(velec,cutoff_mask);
328             velecsum         = _mm_add_pd(velecsum,velec);
329
330             fscal            = felec;
331
332             fscal            = _mm_and_pd(fscal,cutoff_mask);
333
334             /* Update vectorial force */
335             fix1             = _mm_macc_pd(dx10,fscal,fix1);
336             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
337             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
338             
339             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
340             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
341             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
342
343             }
344
345             /**************************
346              * CALCULATE INTERACTIONS *
347              **************************/
348
349             if (gmx_mm_any_lt(rsq20,rcutoff2))
350             {
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq20             = _mm_mul_pd(iq2,jq0);
354
355             /* REACTION-FIELD ELECTROSTATICS */
356             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
357             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
358
359             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
360
361             /* Update potential sum for this i atom from the interaction with this j atom. */
362             velec            = _mm_and_pd(velec,cutoff_mask);
363             velecsum         = _mm_add_pd(velecsum,velec);
364
365             fscal            = felec;
366
367             fscal            = _mm_and_pd(fscal,cutoff_mask);
368
369             /* Update vectorial force */
370             fix2             = _mm_macc_pd(dx20,fscal,fix2);
371             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
372             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
373             
374             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
375             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
376             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
377
378             }
379
380             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
381
382             /* Inner loop uses 156 flops */
383         }
384
385         if(jidx<j_index_end)
386         {
387
388             jnrA             = jjnr[jidx];
389             j_coord_offsetA  = DIM*jnrA;
390
391             /* load j atom coordinates */
392             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
393                                               &jx0,&jy0,&jz0);
394
395             /* Calculate displacement vector */
396             dx00             = _mm_sub_pd(ix0,jx0);
397             dy00             = _mm_sub_pd(iy0,jy0);
398             dz00             = _mm_sub_pd(iz0,jz0);
399             dx10             = _mm_sub_pd(ix1,jx0);
400             dy10             = _mm_sub_pd(iy1,jy0);
401             dz10             = _mm_sub_pd(iz1,jz0);
402             dx20             = _mm_sub_pd(ix2,jx0);
403             dy20             = _mm_sub_pd(iy2,jy0);
404             dz20             = _mm_sub_pd(iz2,jz0);
405
406             /* Calculate squared distance and things based on it */
407             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
408             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
409             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
410
411             rinv00           = gmx_mm_invsqrt_pd(rsq00);
412             rinv10           = gmx_mm_invsqrt_pd(rsq10);
413             rinv20           = gmx_mm_invsqrt_pd(rsq20);
414
415             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
416             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
417             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
418
419             /* Load parameters for j particles */
420             jq0              = _mm_load_sd(charge+jnrA+0);
421             vdwjidx0A        = 2*vdwtype[jnrA+0];
422
423             fjx0             = _mm_setzero_pd();
424             fjy0             = _mm_setzero_pd();
425             fjz0             = _mm_setzero_pd();
426
427             /**************************
428              * CALCULATE INTERACTIONS *
429              **************************/
430
431             if (gmx_mm_any_lt(rsq00,rcutoff2))
432             {
433
434             r00              = _mm_mul_pd(rsq00,rinv00);
435
436             /* Compute parameters for interactions between i and j atoms */
437             qq00             = _mm_mul_pd(iq0,jq0);
438             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
439
440             /* Calculate table index by multiplying r with table scale and truncate to integer */
441             rt               = _mm_mul_pd(r00,vftabscale);
442             vfitab           = _mm_cvttpd_epi32(rt);
443 #ifdef __XOP__
444             vfeps            = _mm_frcz_pd(rt);
445 #else
446             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
447 #endif
448             twovfeps         = _mm_add_pd(vfeps,vfeps);
449             vfitab           = _mm_slli_epi32(vfitab,3);
450
451             /* REACTION-FIELD ELECTROSTATICS */
452             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
453             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
454
455             /* CUBIC SPLINE TABLE DISPERSION */
456             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
457             F                = _mm_setzero_pd();
458             GMX_MM_TRANSPOSE2_PD(Y,F);
459             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
460             H                = _mm_setzero_pd();
461             GMX_MM_TRANSPOSE2_PD(G,H);
462             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
463             VV               = _mm_macc_pd(vfeps,Fp,Y);
464             vvdw6            = _mm_mul_pd(c6_00,VV);
465             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
466             fvdw6            = _mm_mul_pd(c6_00,FF);
467
468             /* CUBIC SPLINE TABLE REPULSION */
469             vfitab           = _mm_add_epi32(vfitab,ifour);
470             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
471             F                = _mm_setzero_pd();
472             GMX_MM_TRANSPOSE2_PD(Y,F);
473             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
474             H                = _mm_setzero_pd();
475             GMX_MM_TRANSPOSE2_PD(G,H);
476             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
477             VV               = _mm_macc_pd(vfeps,Fp,Y);
478             vvdw12           = _mm_mul_pd(c12_00,VV);
479             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
480             fvdw12           = _mm_mul_pd(c12_00,FF);
481             vvdw             = _mm_add_pd(vvdw12,vvdw6);
482             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
483
484             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
485
486             /* Update potential sum for this i atom from the interaction with this j atom. */
487             velec            = _mm_and_pd(velec,cutoff_mask);
488             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
489             velecsum         = _mm_add_pd(velecsum,velec);
490             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
491             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
492             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
493
494             fscal            = _mm_add_pd(felec,fvdw);
495
496             fscal            = _mm_and_pd(fscal,cutoff_mask);
497
498             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
499
500             /* Update vectorial force */
501             fix0             = _mm_macc_pd(dx00,fscal,fix0);
502             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
503             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
504             
505             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
506             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
507             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
508
509             }
510
511             /**************************
512              * CALCULATE INTERACTIONS *
513              **************************/
514
515             if (gmx_mm_any_lt(rsq10,rcutoff2))
516             {
517
518             /* Compute parameters for interactions between i and j atoms */
519             qq10             = _mm_mul_pd(iq1,jq0);
520
521             /* REACTION-FIELD ELECTROSTATICS */
522             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
523             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
524
525             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
526
527             /* Update potential sum for this i atom from the interaction with this j atom. */
528             velec            = _mm_and_pd(velec,cutoff_mask);
529             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
530             velecsum         = _mm_add_pd(velecsum,velec);
531
532             fscal            = felec;
533
534             fscal            = _mm_and_pd(fscal,cutoff_mask);
535
536             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
537
538             /* Update vectorial force */
539             fix1             = _mm_macc_pd(dx10,fscal,fix1);
540             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
541             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
542             
543             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
544             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
545             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
546
547             }
548
549             /**************************
550              * CALCULATE INTERACTIONS *
551              **************************/
552
553             if (gmx_mm_any_lt(rsq20,rcutoff2))
554             {
555
556             /* Compute parameters for interactions between i and j atoms */
557             qq20             = _mm_mul_pd(iq2,jq0);
558
559             /* REACTION-FIELD ELECTROSTATICS */
560             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
561             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
562
563             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
564
565             /* Update potential sum for this i atom from the interaction with this j atom. */
566             velec            = _mm_and_pd(velec,cutoff_mask);
567             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
568             velecsum         = _mm_add_pd(velecsum,velec);
569
570             fscal            = felec;
571
572             fscal            = _mm_and_pd(fscal,cutoff_mask);
573
574             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
575
576             /* Update vectorial force */
577             fix2             = _mm_macc_pd(dx20,fscal,fix2);
578             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
579             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
580             
581             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
582             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
583             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
584
585             }
586
587             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
588
589             /* Inner loop uses 156 flops */
590         }
591
592         /* End of innermost loop */
593
594         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
595                                               f+i_coord_offset,fshift+i_shift_offset);
596
597         ggid                        = gid[iidx];
598         /* Update potential energies */
599         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
600         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
601
602         /* Increment number of inner iterations */
603         inneriter                  += j_index_end - j_index_start;
604
605         /* Outer loop uses 20 flops */
606     }
607
608     /* Increment number of outer iterations */
609     outeriter        += nri;
610
611     /* Update outer/inner flops */
612
613     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*156);
614 }
615 /*
616  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_128_fma_double
617  * Electrostatics interaction: ReactionField
618  * VdW interaction:            CubicSplineTable
619  * Geometry:                   Water3-Particle
620  * Calculate force/pot:        Force
621  */
622 void
623 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_128_fma_double
624                     (t_nblist                    * gmx_restrict       nlist,
625                      rvec                        * gmx_restrict          xx,
626                      rvec                        * gmx_restrict          ff,
627                      t_forcerec                  * gmx_restrict          fr,
628                      t_mdatoms                   * gmx_restrict     mdatoms,
629                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
630                      t_nrnb                      * gmx_restrict        nrnb)
631 {
632     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
633      * just 0 for non-waters.
634      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
635      * jnr indices corresponding to data put in the four positions in the SIMD register.
636      */
637     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
638     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
639     int              jnrA,jnrB;
640     int              j_coord_offsetA,j_coord_offsetB;
641     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
642     real             rcutoff_scalar;
643     real             *shiftvec,*fshift,*x,*f;
644     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
645     int              vdwioffset0;
646     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
647     int              vdwioffset1;
648     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
649     int              vdwioffset2;
650     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
651     int              vdwjidx0A,vdwjidx0B;
652     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
653     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
654     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
655     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
656     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
657     real             *charge;
658     int              nvdwtype;
659     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
660     int              *vdwtype;
661     real             *vdwparam;
662     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
663     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
664     __m128i          vfitab;
665     __m128i          ifour       = _mm_set1_epi32(4);
666     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
667     real             *vftab;
668     __m128d          dummy_mask,cutoff_mask;
669     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
670     __m128d          one     = _mm_set1_pd(1.0);
671     __m128d          two     = _mm_set1_pd(2.0);
672     x                = xx[0];
673     f                = ff[0];
674
675     nri              = nlist->nri;
676     iinr             = nlist->iinr;
677     jindex           = nlist->jindex;
678     jjnr             = nlist->jjnr;
679     shiftidx         = nlist->shift;
680     gid              = nlist->gid;
681     shiftvec         = fr->shift_vec[0];
682     fshift           = fr->fshift[0];
683     facel            = _mm_set1_pd(fr->epsfac);
684     charge           = mdatoms->chargeA;
685     krf              = _mm_set1_pd(fr->ic->k_rf);
686     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
687     crf              = _mm_set1_pd(fr->ic->c_rf);
688     nvdwtype         = fr->ntype;
689     vdwparam         = fr->nbfp;
690     vdwtype          = mdatoms->typeA;
691
692     vftab            = kernel_data->table_vdw->data;
693     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
694
695     /* Setup water-specific parameters */
696     inr              = nlist->iinr[0];
697     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
698     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
699     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
700     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
701
702     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
703     rcutoff_scalar   = fr->rcoulomb;
704     rcutoff          = _mm_set1_pd(rcutoff_scalar);
705     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
706
707     /* Avoid stupid compiler warnings */
708     jnrA = jnrB = 0;
709     j_coord_offsetA = 0;
710     j_coord_offsetB = 0;
711
712     outeriter        = 0;
713     inneriter        = 0;
714
715     /* Start outer loop over neighborlists */
716     for(iidx=0; iidx<nri; iidx++)
717     {
718         /* Load shift vector for this list */
719         i_shift_offset   = DIM*shiftidx[iidx];
720
721         /* Load limits for loop over neighbors */
722         j_index_start    = jindex[iidx];
723         j_index_end      = jindex[iidx+1];
724
725         /* Get outer coordinate index */
726         inr              = iinr[iidx];
727         i_coord_offset   = DIM*inr;
728
729         /* Load i particle coords and add shift vector */
730         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
731                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
732
733         fix0             = _mm_setzero_pd();
734         fiy0             = _mm_setzero_pd();
735         fiz0             = _mm_setzero_pd();
736         fix1             = _mm_setzero_pd();
737         fiy1             = _mm_setzero_pd();
738         fiz1             = _mm_setzero_pd();
739         fix2             = _mm_setzero_pd();
740         fiy2             = _mm_setzero_pd();
741         fiz2             = _mm_setzero_pd();
742
743         /* Start inner kernel loop */
744         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
745         {
746
747             /* Get j neighbor index, and coordinate index */
748             jnrA             = jjnr[jidx];
749             jnrB             = jjnr[jidx+1];
750             j_coord_offsetA  = DIM*jnrA;
751             j_coord_offsetB  = DIM*jnrB;
752
753             /* load j atom coordinates */
754             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
755                                               &jx0,&jy0,&jz0);
756
757             /* Calculate displacement vector */
758             dx00             = _mm_sub_pd(ix0,jx0);
759             dy00             = _mm_sub_pd(iy0,jy0);
760             dz00             = _mm_sub_pd(iz0,jz0);
761             dx10             = _mm_sub_pd(ix1,jx0);
762             dy10             = _mm_sub_pd(iy1,jy0);
763             dz10             = _mm_sub_pd(iz1,jz0);
764             dx20             = _mm_sub_pd(ix2,jx0);
765             dy20             = _mm_sub_pd(iy2,jy0);
766             dz20             = _mm_sub_pd(iz2,jz0);
767
768             /* Calculate squared distance and things based on it */
769             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
770             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
771             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
772
773             rinv00           = gmx_mm_invsqrt_pd(rsq00);
774             rinv10           = gmx_mm_invsqrt_pd(rsq10);
775             rinv20           = gmx_mm_invsqrt_pd(rsq20);
776
777             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
778             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
779             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
780
781             /* Load parameters for j particles */
782             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
783             vdwjidx0A        = 2*vdwtype[jnrA+0];
784             vdwjidx0B        = 2*vdwtype[jnrB+0];
785
786             fjx0             = _mm_setzero_pd();
787             fjy0             = _mm_setzero_pd();
788             fjz0             = _mm_setzero_pd();
789
790             /**************************
791              * CALCULATE INTERACTIONS *
792              **************************/
793
794             if (gmx_mm_any_lt(rsq00,rcutoff2))
795             {
796
797             r00              = _mm_mul_pd(rsq00,rinv00);
798
799             /* Compute parameters for interactions between i and j atoms */
800             qq00             = _mm_mul_pd(iq0,jq0);
801             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
802                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
803
804             /* Calculate table index by multiplying r with table scale and truncate to integer */
805             rt               = _mm_mul_pd(r00,vftabscale);
806             vfitab           = _mm_cvttpd_epi32(rt);
807 #ifdef __XOP__
808             vfeps            = _mm_frcz_pd(rt);
809 #else
810             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
811 #endif
812             twovfeps         = _mm_add_pd(vfeps,vfeps);
813             vfitab           = _mm_slli_epi32(vfitab,3);
814
815             /* REACTION-FIELD ELECTROSTATICS */
816             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
817
818             /* CUBIC SPLINE TABLE DISPERSION */
819             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
820             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
821             GMX_MM_TRANSPOSE2_PD(Y,F);
822             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
823             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
824             GMX_MM_TRANSPOSE2_PD(G,H);
825             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
826             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
827             fvdw6            = _mm_mul_pd(c6_00,FF);
828
829             /* CUBIC SPLINE TABLE REPULSION */
830             vfitab           = _mm_add_epi32(vfitab,ifour);
831             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
832             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
833             GMX_MM_TRANSPOSE2_PD(Y,F);
834             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
835             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
836             GMX_MM_TRANSPOSE2_PD(G,H);
837             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
838             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
839             fvdw12           = _mm_mul_pd(c12_00,FF);
840             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
841
842             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
843
844             fscal            = _mm_add_pd(felec,fvdw);
845
846             fscal            = _mm_and_pd(fscal,cutoff_mask);
847
848             /* Update vectorial force */
849             fix0             = _mm_macc_pd(dx00,fscal,fix0);
850             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
851             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
852             
853             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
854             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
855             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
856
857             }
858
859             /**************************
860              * CALCULATE INTERACTIONS *
861              **************************/
862
863             if (gmx_mm_any_lt(rsq10,rcutoff2))
864             {
865
866             /* Compute parameters for interactions between i and j atoms */
867             qq10             = _mm_mul_pd(iq1,jq0);
868
869             /* REACTION-FIELD ELECTROSTATICS */
870             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
871
872             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
873
874             fscal            = felec;
875
876             fscal            = _mm_and_pd(fscal,cutoff_mask);
877
878             /* Update vectorial force */
879             fix1             = _mm_macc_pd(dx10,fscal,fix1);
880             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
881             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
882             
883             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
884             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
885             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
886
887             }
888
889             /**************************
890              * CALCULATE INTERACTIONS *
891              **************************/
892
893             if (gmx_mm_any_lt(rsq20,rcutoff2))
894             {
895
896             /* Compute parameters for interactions between i and j atoms */
897             qq20             = _mm_mul_pd(iq2,jq0);
898
899             /* REACTION-FIELD ELECTROSTATICS */
900             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
901
902             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
903
904             fscal            = felec;
905
906             fscal            = _mm_and_pd(fscal,cutoff_mask);
907
908             /* Update vectorial force */
909             fix2             = _mm_macc_pd(dx20,fscal,fix2);
910             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
911             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
912             
913             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
914             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
915             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
916
917             }
918
919             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
920
921             /* Inner loop uses 129 flops */
922         }
923
924         if(jidx<j_index_end)
925         {
926
927             jnrA             = jjnr[jidx];
928             j_coord_offsetA  = DIM*jnrA;
929
930             /* load j atom coordinates */
931             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
932                                               &jx0,&jy0,&jz0);
933
934             /* Calculate displacement vector */
935             dx00             = _mm_sub_pd(ix0,jx0);
936             dy00             = _mm_sub_pd(iy0,jy0);
937             dz00             = _mm_sub_pd(iz0,jz0);
938             dx10             = _mm_sub_pd(ix1,jx0);
939             dy10             = _mm_sub_pd(iy1,jy0);
940             dz10             = _mm_sub_pd(iz1,jz0);
941             dx20             = _mm_sub_pd(ix2,jx0);
942             dy20             = _mm_sub_pd(iy2,jy0);
943             dz20             = _mm_sub_pd(iz2,jz0);
944
945             /* Calculate squared distance and things based on it */
946             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
947             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
948             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
949
950             rinv00           = gmx_mm_invsqrt_pd(rsq00);
951             rinv10           = gmx_mm_invsqrt_pd(rsq10);
952             rinv20           = gmx_mm_invsqrt_pd(rsq20);
953
954             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
955             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
956             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
957
958             /* Load parameters for j particles */
959             jq0              = _mm_load_sd(charge+jnrA+0);
960             vdwjidx0A        = 2*vdwtype[jnrA+0];
961
962             fjx0             = _mm_setzero_pd();
963             fjy0             = _mm_setzero_pd();
964             fjz0             = _mm_setzero_pd();
965
966             /**************************
967              * CALCULATE INTERACTIONS *
968              **************************/
969
970             if (gmx_mm_any_lt(rsq00,rcutoff2))
971             {
972
973             r00              = _mm_mul_pd(rsq00,rinv00);
974
975             /* Compute parameters for interactions between i and j atoms */
976             qq00             = _mm_mul_pd(iq0,jq0);
977             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
978
979             /* Calculate table index by multiplying r with table scale and truncate to integer */
980             rt               = _mm_mul_pd(r00,vftabscale);
981             vfitab           = _mm_cvttpd_epi32(rt);
982 #ifdef __XOP__
983             vfeps            = _mm_frcz_pd(rt);
984 #else
985             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
986 #endif
987             twovfeps         = _mm_add_pd(vfeps,vfeps);
988             vfitab           = _mm_slli_epi32(vfitab,3);
989
990             /* REACTION-FIELD ELECTROSTATICS */
991             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
992
993             /* CUBIC SPLINE TABLE DISPERSION */
994             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
995             F                = _mm_setzero_pd();
996             GMX_MM_TRANSPOSE2_PD(Y,F);
997             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
998             H                = _mm_setzero_pd();
999             GMX_MM_TRANSPOSE2_PD(G,H);
1000             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1001             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1002             fvdw6            = _mm_mul_pd(c6_00,FF);
1003
1004             /* CUBIC SPLINE TABLE REPULSION */
1005             vfitab           = _mm_add_epi32(vfitab,ifour);
1006             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1007             F                = _mm_setzero_pd();
1008             GMX_MM_TRANSPOSE2_PD(Y,F);
1009             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1010             H                = _mm_setzero_pd();
1011             GMX_MM_TRANSPOSE2_PD(G,H);
1012             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1013             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1014             fvdw12           = _mm_mul_pd(c12_00,FF);
1015             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1016
1017             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1018
1019             fscal            = _mm_add_pd(felec,fvdw);
1020
1021             fscal            = _mm_and_pd(fscal,cutoff_mask);
1022
1023             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1024
1025             /* Update vectorial force */
1026             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1027             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1028             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1029             
1030             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1031             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1032             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1033
1034             }
1035
1036             /**************************
1037              * CALCULATE INTERACTIONS *
1038              **************************/
1039
1040             if (gmx_mm_any_lt(rsq10,rcutoff2))
1041             {
1042
1043             /* Compute parameters for interactions between i and j atoms */
1044             qq10             = _mm_mul_pd(iq1,jq0);
1045
1046             /* REACTION-FIELD ELECTROSTATICS */
1047             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
1048
1049             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1050
1051             fscal            = felec;
1052
1053             fscal            = _mm_and_pd(fscal,cutoff_mask);
1054
1055             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1056
1057             /* Update vectorial force */
1058             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1059             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1060             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1061             
1062             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1063             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1064             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1065
1066             }
1067
1068             /**************************
1069              * CALCULATE INTERACTIONS *
1070              **************************/
1071
1072             if (gmx_mm_any_lt(rsq20,rcutoff2))
1073             {
1074
1075             /* Compute parameters for interactions between i and j atoms */
1076             qq20             = _mm_mul_pd(iq2,jq0);
1077
1078             /* REACTION-FIELD ELECTROSTATICS */
1079             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
1080
1081             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1082
1083             fscal            = felec;
1084
1085             fscal            = _mm_and_pd(fscal,cutoff_mask);
1086
1087             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1088
1089             /* Update vectorial force */
1090             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1091             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1092             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1093             
1094             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1095             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1096             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1097
1098             }
1099
1100             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1101
1102             /* Inner loop uses 129 flops */
1103         }
1104
1105         /* End of innermost loop */
1106
1107         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1108                                               f+i_coord_offset,fshift+i_shift_offset);
1109
1110         /* Increment number of inner iterations */
1111         inneriter                  += j_index_end - j_index_start;
1112
1113         /* Outer loop uses 18 flops */
1114     }
1115
1116     /* Increment number of outer iterations */
1117     outeriter        += nri;
1118
1119     /* Update outer/inner flops */
1120
1121     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*129);
1122 }