Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_avx_128_fma_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
91     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
92     __m128i          vfitab;
93     __m128i          ifour       = _mm_set1_epi32(4);
94     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
95     real             *vftab;
96     __m128d          dummy_mask,cutoff_mask;
97     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
98     __m128d          one     = _mm_set1_pd(1.0);
99     __m128d          two     = _mm_set1_pd(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm_set1_pd(fr->ic->epsfac);
112     charge           = mdatoms->chargeA;
113     krf              = _mm_set1_pd(fr->ic->k_rf);
114     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
115     crf              = _mm_set1_pd(fr->ic->c_rf);
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     vftab            = kernel_data->table_vdw->data;
121     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
122
123     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
124     rcutoff_scalar   = fr->ic->rcoulomb;
125     rcutoff          = _mm_set1_pd(rcutoff_scalar);
126     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
152
153         fix0             = _mm_setzero_pd();
154         fiy0             = _mm_setzero_pd();
155         fiz0             = _mm_setzero_pd();
156
157         /* Load parameters for i particles */
158         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
159         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
160
161         /* Reset potential sums */
162         velecsum         = _mm_setzero_pd();
163         vvdwsum          = _mm_setzero_pd();
164
165         /* Start inner kernel loop */
166         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
167         {
168
169             /* Get j neighbor index, and coordinate index */
170             jnrA             = jjnr[jidx];
171             jnrB             = jjnr[jidx+1];
172             j_coord_offsetA  = DIM*jnrA;
173             j_coord_offsetB  = DIM*jnrB;
174
175             /* load j atom coordinates */
176             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
177                                               &jx0,&jy0,&jz0);
178
179             /* Calculate displacement vector */
180             dx00             = _mm_sub_pd(ix0,jx0);
181             dy00             = _mm_sub_pd(iy0,jy0);
182             dz00             = _mm_sub_pd(iz0,jz0);
183
184             /* Calculate squared distance and things based on it */
185             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
186
187             rinv00           = avx128fma_invsqrt_d(rsq00);
188
189             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
190
191             /* Load parameters for j particles */
192             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
193             vdwjidx0A        = 2*vdwtype[jnrA+0];
194             vdwjidx0B        = 2*vdwtype[jnrB+0];
195
196             /**************************
197              * CALCULATE INTERACTIONS *
198              **************************/
199
200             if (gmx_mm_any_lt(rsq00,rcutoff2))
201             {
202
203             r00              = _mm_mul_pd(rsq00,rinv00);
204
205             /* Compute parameters for interactions between i and j atoms */
206             qq00             = _mm_mul_pd(iq0,jq0);
207             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
208                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
209
210             /* Calculate table index by multiplying r with table scale and truncate to integer */
211             rt               = _mm_mul_pd(r00,vftabscale);
212             vfitab           = _mm_cvttpd_epi32(rt);
213 #ifdef __XOP__
214             vfeps            = _mm_frcz_pd(rt);
215 #else
216             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
217 #endif
218             twovfeps         = _mm_add_pd(vfeps,vfeps);
219             vfitab           = _mm_slli_epi32(vfitab,3);
220
221             /* REACTION-FIELD ELECTROSTATICS */
222             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
223             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
224
225             /* CUBIC SPLINE TABLE DISPERSION */
226             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
227             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
228             GMX_MM_TRANSPOSE2_PD(Y,F);
229             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
230             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
231             GMX_MM_TRANSPOSE2_PD(G,H);
232             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
233             VV               = _mm_macc_pd(vfeps,Fp,Y);
234             vvdw6            = _mm_mul_pd(c6_00,VV);
235             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
236             fvdw6            = _mm_mul_pd(c6_00,FF);
237
238             /* CUBIC SPLINE TABLE REPULSION */
239             vfitab           = _mm_add_epi32(vfitab,ifour);
240             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
241             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
242             GMX_MM_TRANSPOSE2_PD(Y,F);
243             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
244             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
245             GMX_MM_TRANSPOSE2_PD(G,H);
246             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
247             VV               = _mm_macc_pd(vfeps,Fp,Y);
248             vvdw12           = _mm_mul_pd(c12_00,VV);
249             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
250             fvdw12           = _mm_mul_pd(c12_00,FF);
251             vvdw             = _mm_add_pd(vvdw12,vvdw6);
252             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
253
254             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
255
256             /* Update potential sum for this i atom from the interaction with this j atom. */
257             velec            = _mm_and_pd(velec,cutoff_mask);
258             velecsum         = _mm_add_pd(velecsum,velec);
259             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
260             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
261
262             fscal            = _mm_add_pd(felec,fvdw);
263
264             fscal            = _mm_and_pd(fscal,cutoff_mask);
265
266             /* Update vectorial force */
267             fix0             = _mm_macc_pd(dx00,fscal,fix0);
268             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
269             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
270             
271             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
272                                                    _mm_mul_pd(dx00,fscal),
273                                                    _mm_mul_pd(dy00,fscal),
274                                                    _mm_mul_pd(dz00,fscal));
275
276             }
277
278             /* Inner loop uses 75 flops */
279         }
280
281         if(jidx<j_index_end)
282         {
283
284             jnrA             = jjnr[jidx];
285             j_coord_offsetA  = DIM*jnrA;
286
287             /* load j atom coordinates */
288             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
289                                               &jx0,&jy0,&jz0);
290
291             /* Calculate displacement vector */
292             dx00             = _mm_sub_pd(ix0,jx0);
293             dy00             = _mm_sub_pd(iy0,jy0);
294             dz00             = _mm_sub_pd(iz0,jz0);
295
296             /* Calculate squared distance and things based on it */
297             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
298
299             rinv00           = avx128fma_invsqrt_d(rsq00);
300
301             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
302
303             /* Load parameters for j particles */
304             jq0              = _mm_load_sd(charge+jnrA+0);
305             vdwjidx0A        = 2*vdwtype[jnrA+0];
306
307             /**************************
308              * CALCULATE INTERACTIONS *
309              **************************/
310
311             if (gmx_mm_any_lt(rsq00,rcutoff2))
312             {
313
314             r00              = _mm_mul_pd(rsq00,rinv00);
315
316             /* Compute parameters for interactions between i and j atoms */
317             qq00             = _mm_mul_pd(iq0,jq0);
318             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
319
320             /* Calculate table index by multiplying r with table scale and truncate to integer */
321             rt               = _mm_mul_pd(r00,vftabscale);
322             vfitab           = _mm_cvttpd_epi32(rt);
323 #ifdef __XOP__
324             vfeps            = _mm_frcz_pd(rt);
325 #else
326             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
327 #endif
328             twovfeps         = _mm_add_pd(vfeps,vfeps);
329             vfitab           = _mm_slli_epi32(vfitab,3);
330
331             /* REACTION-FIELD ELECTROSTATICS */
332             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
333             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
334
335             /* CUBIC SPLINE TABLE DISPERSION */
336             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
337             F                = _mm_setzero_pd();
338             GMX_MM_TRANSPOSE2_PD(Y,F);
339             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
340             H                = _mm_setzero_pd();
341             GMX_MM_TRANSPOSE2_PD(G,H);
342             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
343             VV               = _mm_macc_pd(vfeps,Fp,Y);
344             vvdw6            = _mm_mul_pd(c6_00,VV);
345             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
346             fvdw6            = _mm_mul_pd(c6_00,FF);
347
348             /* CUBIC SPLINE TABLE REPULSION */
349             vfitab           = _mm_add_epi32(vfitab,ifour);
350             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
351             F                = _mm_setzero_pd();
352             GMX_MM_TRANSPOSE2_PD(Y,F);
353             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
354             H                = _mm_setzero_pd();
355             GMX_MM_TRANSPOSE2_PD(G,H);
356             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
357             VV               = _mm_macc_pd(vfeps,Fp,Y);
358             vvdw12           = _mm_mul_pd(c12_00,VV);
359             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
360             fvdw12           = _mm_mul_pd(c12_00,FF);
361             vvdw             = _mm_add_pd(vvdw12,vvdw6);
362             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
363
364             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
365
366             /* Update potential sum for this i atom from the interaction with this j atom. */
367             velec            = _mm_and_pd(velec,cutoff_mask);
368             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
369             velecsum         = _mm_add_pd(velecsum,velec);
370             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
371             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
372             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
373
374             fscal            = _mm_add_pd(felec,fvdw);
375
376             fscal            = _mm_and_pd(fscal,cutoff_mask);
377
378             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
379
380             /* Update vectorial force */
381             fix0             = _mm_macc_pd(dx00,fscal,fix0);
382             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
383             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
384             
385             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
386                                                    _mm_mul_pd(dx00,fscal),
387                                                    _mm_mul_pd(dy00,fscal),
388                                                    _mm_mul_pd(dz00,fscal));
389
390             }
391
392             /* Inner loop uses 75 flops */
393         }
394
395         /* End of innermost loop */
396
397         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
398                                               f+i_coord_offset,fshift+i_shift_offset);
399
400         ggid                        = gid[iidx];
401         /* Update potential energies */
402         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
403         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
404
405         /* Increment number of inner iterations */
406         inneriter                  += j_index_end - j_index_start;
407
408         /* Outer loop uses 9 flops */
409     }
410
411     /* Increment number of outer iterations */
412     outeriter        += nri;
413
414     /* Update outer/inner flops */
415
416     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*75);
417 }
418 /*
419  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_128_fma_double
420  * Electrostatics interaction: ReactionField
421  * VdW interaction:            CubicSplineTable
422  * Geometry:                   Particle-Particle
423  * Calculate force/pot:        Force
424  */
425 void
426 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_128_fma_double
427                     (t_nblist                    * gmx_restrict       nlist,
428                      rvec                        * gmx_restrict          xx,
429                      rvec                        * gmx_restrict          ff,
430                      struct t_forcerec           * gmx_restrict          fr,
431                      t_mdatoms                   * gmx_restrict     mdatoms,
432                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
433                      t_nrnb                      * gmx_restrict        nrnb)
434 {
435     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
436      * just 0 for non-waters.
437      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
438      * jnr indices corresponding to data put in the four positions in the SIMD register.
439      */
440     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
441     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
442     int              jnrA,jnrB;
443     int              j_coord_offsetA,j_coord_offsetB;
444     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
445     real             rcutoff_scalar;
446     real             *shiftvec,*fshift,*x,*f;
447     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
448     int              vdwioffset0;
449     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
450     int              vdwjidx0A,vdwjidx0B;
451     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
452     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
453     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
454     real             *charge;
455     int              nvdwtype;
456     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
457     int              *vdwtype;
458     real             *vdwparam;
459     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
460     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
461     __m128i          vfitab;
462     __m128i          ifour       = _mm_set1_epi32(4);
463     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
464     real             *vftab;
465     __m128d          dummy_mask,cutoff_mask;
466     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
467     __m128d          one     = _mm_set1_pd(1.0);
468     __m128d          two     = _mm_set1_pd(2.0);
469     x                = xx[0];
470     f                = ff[0];
471
472     nri              = nlist->nri;
473     iinr             = nlist->iinr;
474     jindex           = nlist->jindex;
475     jjnr             = nlist->jjnr;
476     shiftidx         = nlist->shift;
477     gid              = nlist->gid;
478     shiftvec         = fr->shift_vec[0];
479     fshift           = fr->fshift[0];
480     facel            = _mm_set1_pd(fr->ic->epsfac);
481     charge           = mdatoms->chargeA;
482     krf              = _mm_set1_pd(fr->ic->k_rf);
483     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
484     crf              = _mm_set1_pd(fr->ic->c_rf);
485     nvdwtype         = fr->ntype;
486     vdwparam         = fr->nbfp;
487     vdwtype          = mdatoms->typeA;
488
489     vftab            = kernel_data->table_vdw->data;
490     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
491
492     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
493     rcutoff_scalar   = fr->ic->rcoulomb;
494     rcutoff          = _mm_set1_pd(rcutoff_scalar);
495     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
496
497     /* Avoid stupid compiler warnings */
498     jnrA = jnrB = 0;
499     j_coord_offsetA = 0;
500     j_coord_offsetB = 0;
501
502     outeriter        = 0;
503     inneriter        = 0;
504
505     /* Start outer loop over neighborlists */
506     for(iidx=0; iidx<nri; iidx++)
507     {
508         /* Load shift vector for this list */
509         i_shift_offset   = DIM*shiftidx[iidx];
510
511         /* Load limits for loop over neighbors */
512         j_index_start    = jindex[iidx];
513         j_index_end      = jindex[iidx+1];
514
515         /* Get outer coordinate index */
516         inr              = iinr[iidx];
517         i_coord_offset   = DIM*inr;
518
519         /* Load i particle coords and add shift vector */
520         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
521
522         fix0             = _mm_setzero_pd();
523         fiy0             = _mm_setzero_pd();
524         fiz0             = _mm_setzero_pd();
525
526         /* Load parameters for i particles */
527         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
528         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
529
530         /* Start inner kernel loop */
531         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
532         {
533
534             /* Get j neighbor index, and coordinate index */
535             jnrA             = jjnr[jidx];
536             jnrB             = jjnr[jidx+1];
537             j_coord_offsetA  = DIM*jnrA;
538             j_coord_offsetB  = DIM*jnrB;
539
540             /* load j atom coordinates */
541             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
542                                               &jx0,&jy0,&jz0);
543
544             /* Calculate displacement vector */
545             dx00             = _mm_sub_pd(ix0,jx0);
546             dy00             = _mm_sub_pd(iy0,jy0);
547             dz00             = _mm_sub_pd(iz0,jz0);
548
549             /* Calculate squared distance and things based on it */
550             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
551
552             rinv00           = avx128fma_invsqrt_d(rsq00);
553
554             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
555
556             /* Load parameters for j particles */
557             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
558             vdwjidx0A        = 2*vdwtype[jnrA+0];
559             vdwjidx0B        = 2*vdwtype[jnrB+0];
560
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             if (gmx_mm_any_lt(rsq00,rcutoff2))
566             {
567
568             r00              = _mm_mul_pd(rsq00,rinv00);
569
570             /* Compute parameters for interactions between i and j atoms */
571             qq00             = _mm_mul_pd(iq0,jq0);
572             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
573                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
574
575             /* Calculate table index by multiplying r with table scale and truncate to integer */
576             rt               = _mm_mul_pd(r00,vftabscale);
577             vfitab           = _mm_cvttpd_epi32(rt);
578 #ifdef __XOP__
579             vfeps            = _mm_frcz_pd(rt);
580 #else
581             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
582 #endif
583             twovfeps         = _mm_add_pd(vfeps,vfeps);
584             vfitab           = _mm_slli_epi32(vfitab,3);
585
586             /* REACTION-FIELD ELECTROSTATICS */
587             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
588
589             /* CUBIC SPLINE TABLE DISPERSION */
590             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
591             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
592             GMX_MM_TRANSPOSE2_PD(Y,F);
593             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
594             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
595             GMX_MM_TRANSPOSE2_PD(G,H);
596             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
597             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
598             fvdw6            = _mm_mul_pd(c6_00,FF);
599
600             /* CUBIC SPLINE TABLE REPULSION */
601             vfitab           = _mm_add_epi32(vfitab,ifour);
602             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
603             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
604             GMX_MM_TRANSPOSE2_PD(Y,F);
605             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
606             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
607             GMX_MM_TRANSPOSE2_PD(G,H);
608             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
609             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
610             fvdw12           = _mm_mul_pd(c12_00,FF);
611             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
612
613             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
614
615             fscal            = _mm_add_pd(felec,fvdw);
616
617             fscal            = _mm_and_pd(fscal,cutoff_mask);
618
619             /* Update vectorial force */
620             fix0             = _mm_macc_pd(dx00,fscal,fix0);
621             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
622             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
623             
624             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
625                                                    _mm_mul_pd(dx00,fscal),
626                                                    _mm_mul_pd(dy00,fscal),
627                                                    _mm_mul_pd(dz00,fscal));
628
629             }
630
631             /* Inner loop uses 60 flops */
632         }
633
634         if(jidx<j_index_end)
635         {
636
637             jnrA             = jjnr[jidx];
638             j_coord_offsetA  = DIM*jnrA;
639
640             /* load j atom coordinates */
641             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
642                                               &jx0,&jy0,&jz0);
643
644             /* Calculate displacement vector */
645             dx00             = _mm_sub_pd(ix0,jx0);
646             dy00             = _mm_sub_pd(iy0,jy0);
647             dz00             = _mm_sub_pd(iz0,jz0);
648
649             /* Calculate squared distance and things based on it */
650             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
651
652             rinv00           = avx128fma_invsqrt_d(rsq00);
653
654             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
655
656             /* Load parameters for j particles */
657             jq0              = _mm_load_sd(charge+jnrA+0);
658             vdwjidx0A        = 2*vdwtype[jnrA+0];
659
660             /**************************
661              * CALCULATE INTERACTIONS *
662              **************************/
663
664             if (gmx_mm_any_lt(rsq00,rcutoff2))
665             {
666
667             r00              = _mm_mul_pd(rsq00,rinv00);
668
669             /* Compute parameters for interactions between i and j atoms */
670             qq00             = _mm_mul_pd(iq0,jq0);
671             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
672
673             /* Calculate table index by multiplying r with table scale and truncate to integer */
674             rt               = _mm_mul_pd(r00,vftabscale);
675             vfitab           = _mm_cvttpd_epi32(rt);
676 #ifdef __XOP__
677             vfeps            = _mm_frcz_pd(rt);
678 #else
679             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
680 #endif
681             twovfeps         = _mm_add_pd(vfeps,vfeps);
682             vfitab           = _mm_slli_epi32(vfitab,3);
683
684             /* REACTION-FIELD ELECTROSTATICS */
685             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
686
687             /* CUBIC SPLINE TABLE DISPERSION */
688             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
689             F                = _mm_setzero_pd();
690             GMX_MM_TRANSPOSE2_PD(Y,F);
691             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
692             H                = _mm_setzero_pd();
693             GMX_MM_TRANSPOSE2_PD(G,H);
694             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
695             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
696             fvdw6            = _mm_mul_pd(c6_00,FF);
697
698             /* CUBIC SPLINE TABLE REPULSION */
699             vfitab           = _mm_add_epi32(vfitab,ifour);
700             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
701             F                = _mm_setzero_pd();
702             GMX_MM_TRANSPOSE2_PD(Y,F);
703             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
704             H                = _mm_setzero_pd();
705             GMX_MM_TRANSPOSE2_PD(G,H);
706             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
707             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
708             fvdw12           = _mm_mul_pd(c12_00,FF);
709             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
710
711             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
712
713             fscal            = _mm_add_pd(felec,fvdw);
714
715             fscal            = _mm_and_pd(fscal,cutoff_mask);
716
717             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
718
719             /* Update vectorial force */
720             fix0             = _mm_macc_pd(dx00,fscal,fix0);
721             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
722             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
723             
724             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
725                                                    _mm_mul_pd(dx00,fscal),
726                                                    _mm_mul_pd(dy00,fscal),
727                                                    _mm_mul_pd(dz00,fscal));
728
729             }
730
731             /* Inner loop uses 60 flops */
732         }
733
734         /* End of innermost loop */
735
736         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
737                                               f+i_coord_offset,fshift+i_shift_offset);
738
739         /* Increment number of inner iterations */
740         inneriter                  += j_index_end - j_index_start;
741
742         /* Outer loop uses 7 flops */
743     }
744
745     /* Increment number of outer iterations */
746     outeriter        += nri;
747
748     /* Update outer/inner flops */
749
750     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*60);
751 }